| 1 Introduction to supersymmetry | 1 |
| 1.1 The unreasonable effectiveness of the Standard Model | 1 |
| 1.2 SUSY algebra | 4 |
| 1.3 SUSY representations | 8 |
| 1.4 Extended SUSY | 11 |
| 1.5 Central charges | 15 |
| References | 17 |
| 2 SUSY Lagrangians | 19 |
| 2.1 The free Wess-Zumino model | 19 |
| 2.2 Commutators of SUSY transformations | 21 |
| 2.3 The supercurrent and the SUSY algebra | 24 |
| 2.4 The interacting Wess-Zumino model | 26 |
| 2.5 SUSY Yang-Mills | 29 |
| 2.6 SUSY gauge theories | 30 |
| 2.7 Superspace | 34 |
| 2.8 N = 0 SUSY | 38 |
| 2.9 Exercises | 41 |
| References | 41 |
| | |
| 3 SUSY gauge theories | 43 |
| 3.1 Symmetries and group theory | 43 |
| 3.2 Renormalization group | 47 |
| 3.3 Quadratic divergence of the squark mass | 52 |
| 3.4 Flat directions (classical moduli space) | 53 |
| 3.5 The super Higgs mechanism | 56 |
| 3.6 Exercises | 60 |
| References | 61 |
| 4 The minimal supersymmetric standard model | 62 |
| 4.1 Particles, sparticles, and their interactions | 62 |
| 4.2 Electroweak symmetry breaking | 67 |
| 4.3 The sparticle spectrum | 72 |
| 4.4 Gauge coupling unification | 77 |
| 4.5 Radiative electroweak symmetry breaking | 78 |
| 4.6 One-loop correction to the Higgs mass | 79 |
| 4.7 Precision electroweak measurements | 81 |
| 4.8 Problems with flavor and CP | 82 |
| 4.9 Exercises | 86 |
| References | 86 |
|
| 5 SUSY breaking and the MSSM | 90 |
| 5.1 Spontaneous SUSY breaking at tree-level | 90 |
| 5.2 SUSY breaking scenarios | 93 |
| 5.3 The goldstino | 95 |
| 5.4 The goldstino theorem | 97 |
| 5.5 Exercises | 99 |
| References | 99 |
|
| 6 Gauge mediation | 101 |
| 6.1 Messengers of SUSY breaking | 101 |
| 6.2 RG calculation of soft masses | 102 |
| 6.3 Gauge mediation and the mu problem | 105 |
| 6.4 Exercise | 106 |
| References | 106 |
|
| 7 Nonperturbative results | 108 |
| 7.1 Monopoles | 108 |
| 7.2 Anomalies in the path integral | 113 |
| 7.3 Gauge anomalies | 117 |
| 7.4 't Hooft's anomaly matching | 118 |
| 7.5 Instantons | 119 |
| 7.6 Instantons in broken gauge theories | 121 |
| 7.7 NSVZ exact function | 123 |
| 7.8 Superconformal symmetry | 125 |
| References | 130 |
|
| 8 Holomorphy | 133 |
| 8.1 Non-renormalization theorems | 133 |
| 8.2 Wavefunction renormalization | 134 |
| 8.3 Integrating out | 135 |
| 8.4 The holomorphic gauge coupling | 136 |
| 8.5 Gaugino condensation | 139 |
| 8.6 NSVZ revisited | 141 |
| 8.7 Exercises | 143 |
| References | 143 |
|
| 9 The Affleck-Dine-Seiberg superpotential | 145 |
| 9.1 Symmetry and holomorphy | 145 |
| 9.2 Consistency of W_ADS : moduli space | 148 |
| 9.3 Consistency of W_ADS : mass perturbations | 150 |
| 9.4 Generating W_ADS from instantons | 152 |
| 9.5 Generating W_ADS from gaugino condensation | 154 |
| 9.6 Vacuum structure | 155 |
| 9.7 Exercise | 155 |
| References | 155 |
|
| 10 Seiberg duality for SUSY QCD | 157 |
| 10.1 Phases of gauge theories | 157 |
| 10.2 The moduli space for F>= N | 158 |
| 10.3 IR fixed points | 160 |
| 10.4 Duality | 162 |
| 10.5 Integrating out a flavor | 165 |
| 10.6 Consistency | 167 |
| 10.7 F = N : confinement with chiral symmetry breaking | 168 |
| 10.8 F = N : consistency checks | 171 |
| 10.9 F = N + 1: s-confinement | 173 |
| 10.10 Connection to theories with F > N + 1 | 176 |
| 10.11 Exercises | 179 |
| References | 179 |
|
| 11 More Seiberg duality | 182 |
| 11.1 The SO(N ) moduli space | 182 |
| 11.2 Duality for SO(N ) | 184 |
| 11.3 Some special cases | 186 |
| 11.4 Duality for Sp(2N ) | 187 |
| 11.5 Why chiral gauge theories are interesting | 189 |
| 11.6 S-Confinement | 190 |
| 11.7 Deconfinement | 192 |
| 11.8 Exercises | 194 |
| References | 194 |
|
| 12 Dynamical SUSY breaking | 196 |
| 12.1 A rule of thumb for SUSY breaking | 196 |
| 12.2 The 3-2 model | 196 |
| 12.3 The SU(5) model | 199 |
| 12.4 SUSY breaking and deformed moduli spaces | 200 |
| 12.5 SUSY breaking from baryon runaways | 202 |
| 12.6 Direct gauge mediation | 205 |
| 12.7 Single sector models | 207 |
| 12.8 Exercise | 208 |
| References | 208 |
|
| 13 The Seiberg-Witten theory | 210 |
| 13.1 The Coulomb phase of N = 1 SO(N) | 210 |
| 13.2 Diversion on SO(3) | 214 |
| 13.3 The dyonic dual | 215 |
| 13.4 Elliptic curves | 217 |
| 13.5 N = 2: Seiberg-Witten | 221 |
| 13.6 The Seiberg-Witten curve | 225 |
| 13.7 Adding flavors | 230 |
| References | 231 |
|
| 14 Superconformal field theories | 233 |
| 14.1 A-Maximization | 233 |
| 14.2 The simplest chiral SCFT | 234 |
| 14.3 N = 2 and Argyres-Douglas points | 239 |
| 14.4 N = 4 and orbifolds | 240 |
| References | 243 |
|
| 15 Supergravity | 246 |
| 15.1 Supergravity: on-shell | 246 |
| 15.2 Supergravity: off-shell | 247 |
| 15.3 Coupling to matter | 249 |
| 15.4 10 and 11 dimensions | 251 |
| 15.5 Five dimensions | 258 |
| 15.6 Exercises | 259 |
| References | 259 |
|
| 16 Anomaly and gaugino mediation | 262 |
| 16.1 "Supergravity" mediation | 262 |
| 16.2 SUSY breaking | 265 |
| 16.3 The problem | 267 |
| 16.4 Slepton masses | 269 |
| 16.5 Gaugino mediation | 272 |
| 16.6 Exercise | 273 |
| References | 273 |
|
| 17 Introduction to the AdS/CFT correspondence | 275 |
| 17.1 D-brane constructions of gauge theories | 275 |
| 17.2 The supergravity approximation | 280 |
| 17.3 Spectra of CFT operators and AdS5x S5 KK modes | 285 |
| 17.4 Waves on AdS5 | 287 |
| 17.5 Nonperturbative static Coulomb potential | 289 |
| 17.6 Breaking SUSY: finite temperature and confinement | 290 |
| 17.7 The glueball mass gap | 291 |
| 17.8 Breaking SUSY: orbifolds | 294 |
| 17.9 Outlook | 296 |
| References | 297 |
|
| Appendix A Spinors and Pauli matrices | 301 |
| A.1 Conventions | 301 |
| A.2 Fierz and Pauli identities | 303 |
| A.3 Propagators | 303 |
| Appendix B Group theory | 305 |
| B.1 Classical Lie groups | 305 |
| B.2 SU(2) | 307 |
| B.3 SU(3) | 307 |
| B.4 SU(4) | 308 |
| References | 309 |
| Index | 311 |