# Reviving chaotic inflation with fermion production: a SUGRA model 

Lorenzo Sorbo<br>UMass<br>

UC Davis, January 24, 2022

PART I: MOTIVATION

## Fact

The structure we inhabit (Galaxies, clusters...) originates from the growth of a primordial spectrum of perturbations on the top of a homogeneous, isotropic distribution of matter

What are the observed properties of this primordial spectrum?

## The primordial power spectrum

$\square$ Is quasi scale invariant, $n_{s}-1=-1 / 30 \pm 10 \%$
No observed running of spectral index
Gaussian to 1 part in $\sim 10^{4}$
Isocurvature modes are below $\sim 5 \%$
No observed tensor modes, $r<.04$

All properties (+ flatness of spatial slices of Universe)
that are in agreement with simple predictions of inflation

## INFLATION


$\checkmark$ very early Universe filled by scalar field $\phi$, the inflaton, with potential $V(\phi)>0$
$\checkmark$ to give enough inflation, $V(\phi)$ must be flat

Inflation requires $/ V^{\prime}(\phi)\left|\ll V(\phi) / M_{P} / V^{\prime \prime}(\phi)\right| \ll V(\phi) / M_{P}{ }^{2}$

A simple (the simplest?) way of obtaining this: monomial potential, with $\phi$ large enough

Famous example: quadratic potential (chaotic inflation) Linde I983

$$
V(\phi)=m^{2} \phi^{2} / 2
$$

Amplitude of perturbations produced during inflation

## A MODEL OF NATURAL QUADRATIC INFLATION...

## Let me introduce you the 4-form... Kaloper, LS 09 <br> (Higher rank relative of the electromagnetic field) +Lawrence II

$$
S_{4 f o r m}=-\frac{1}{48} \int F_{\mu v \varrho \lambda} F^{\mu v \varrho \lambda} d^{4} x
$$

$$
F_{\mu \nu \varrho \lambda}=\partial_{[\mu} A_{\nu \varrho \lambda]}
$$

## tensor structure in $4 \mathrm{~d} \Rightarrow F_{\mu \nu \varrho \lambda}=q\left(x^{\alpha}\right) \varepsilon_{\mu \nu \varrho \lambda}$

equations of motion $D^{\mu} F_{\mu \nu \varrho \lambda}=0 \Rightarrow q\left(x^{\alpha}\right)=$ constant
(this is why particle physicists do not care about 4-forms: )

## Sources for the 4-form: membranes

$$
\mathcal{S}_{\text {brane }} \ni \frac{e}{6} \int d^{3} \xi \sqrt{\gamma} e^{a b c} \partial_{a} x^{\mu} \partial_{b} x^{\nu} \partial_{c} x^{\lambda} A_{\mu \nu \lambda}
$$

[ $x^{\alpha}\left(\xi^{a}\right)=m e m b r a n e$ worldvolume]
$e=$ charge per unit membrane surface
$q\left(x^{\alpha}\right)$ jumps by $e$ across a membrane
$q\left(x^{\alpha}\right)$ is locally constant and quantized in units of $e$

## Let us couple the 4-form to a pseudoscalar

$$
\mathcal{S}_{\text {bulk }}=\int d^{4} x \sqrt{g}\left(\frac{M_{P l}^{2}}{2} R-\frac{1}{2}(\nabla \phi)^{2}-\frac{1}{48} F_{\mu \nu \lambda \sigma}^{2}+\frac{\mu \phi}{24} \frac{\epsilon^{\mu \nu \lambda \sigma}}{\sqrt{g}} F_{\mu \nu \lambda \sigma}+\ldots\right)
$$

Action invariant under shift symmetry:
under $\phi \rightarrow \phi+c, \mathfrak{L} \rightarrow \mathfrak{L}+c \mu \varepsilon^{\mu \nu \varrho \lambda} F_{\mu \nu \varrho \lambda} / 24$

## Let us couple the 4-form to a pseudoscalar

$$
\mathcal{S}_{\text {bulk }}=\int d^{4} x \sqrt{g}\left(\frac{M_{P l}^{2}}{2} R-\frac{1}{2}(\nabla \phi)^{2}-\frac{1}{48} F_{\mu \nu \lambda \sigma}^{2}+\frac{\mu \phi}{24} \frac{\epsilon^{\mu \nu \lambda \sigma}}{\sqrt{g}} F_{\mu \nu \lambda \sigma}+\ldots\right)
$$

## Action invariant under shift symmetry:

$$
\begin{aligned}
& \text { under } \phi \rightarrow \phi+c, \mathscr{L} \rightarrow \mathcal{L}+c \\
& \mu \varepsilon^{\mu v \varrho \lambda} F_{\mu \nu \varrho \lambda} / 24 \\
& \text { total derivative! } \\
&(F=d A)
\end{aligned}
$$

## Equations of motion (away from branes)

Variation of the action

$$
\begin{aligned}
& \nabla^{\mu}\left(F_{\mu v \varrho \lambda}-\mu \varepsilon_{\mu v \varrho \lambda} \phi\right)=0 \\
& \nabla^{2} \phi+\mu \varepsilon^{\mu \nu \varrho \lambda} F_{\mu \nu \varrho \lambda} / 24=0
\end{aligned}
$$

After simple manipulations

$$
F_{\mu \nu \varrho \lambda}=\varepsilon_{\mu \nu \varrho \lambda}(q+\mu \phi)
$$

$$
\nabla^{2} \phi-\mu^{2}(\phi+q / \mu)=0
$$

$q=$ integration constant

- $(\mu / 24) \phi \varepsilon^{\mu \nu \varrho \lambda} F_{\mu \nu \varrho \lambda}$ is actually a mass term!
- The theory is massive while retaining the shift symmetry!
- No contributions $\propto \phi^{4}, \phi^{6}, \phi^{8} \ldots$ to potential.
- The symmetry is broken spontaneously when a solution is picked
- $q$ changes by $e$ across branes $\Rightarrow q$ is quantized


## HOW ABOUT DATA?

## Simple is beautiful...

...and quadratic inflation is in agreement with all the observed properties of the power spectrum (including the spectral index), but is ruled out by non observation of tensors!


## Simple is beautiful...

...and quadratic inflation is in agreement with all the observed properties of the power spectrum (including the spectral index), but is ruled out by non observation of tensors!


## Let us look more in detail into the models of quadratic inflation to see how robust this conclusion is...

Disclaimer:
I will make heavy use
of this one theorist's prejudice

## I-Supersymmetry

Even if we do not see SUSY at the TeV scale, it might be there at the $\sim 10^{16} \mathrm{GeV}$ inflationary scale...

A simple superpotential

$$
W=\frac{\mu}{2} \Phi^{2} \Longrightarrow V=\frac{\mu^{2}}{2}|\phi|^{2}
$$

works great...
...but since the inflaton takes values $>M_{P}$, must use full supergravity

## II- Supergravity

Given superpotential $W\left(\Phi_{i}\right)$ and Kähler potential $K\left(\Phi_{i}, \Phi_{i}{ }^{*}\right)$

$$
V=e^{K / M_{P}^{2}}\left[\sum_{i}\left|\frac{\partial W}{\partial \Phi_{i}}+\frac{\partial K}{\partial \Phi_{i}} \frac{W}{M_{P}^{2}}\right|^{2}-3 \frac{|W|^{2}}{M_{P}^{2}}\right]
$$

makes $V$ steep at large $\phi$
(" $\eta$ problem")
typically dominate at large $\phi$
only term surviving in global SUSY

## II- Supergravity

Given superpotential $W\left(\Phi_{i}\right)$ and Kähler potential $K\left(\Phi_{i}, \Phi_{i}{ }^{*}\right)$

$$
V=e^{K / M_{P}^{2}}\left[\sum_{i}\left|\frac{\partial W}{\partial \Phi_{i}}+\frac{\partial K}{\partial \Phi_{i}} \frac{W}{M_{P}^{2}}\right|^{2}-3 \frac{|W|^{2}}{M_{P}^{2}}\right]
$$

Problem solved in stabilizer models: $W=W(S, \Phi)=S f(\Phi)$
where the stabilizer $S=0$ during inflation, thanks to $S$-dependence of $K$

## III- Shift symmetry

Given superpotential $W\left(\Phi_{i}\right)$ and Kähler potential $K\left(\Phi_{i}, \Phi_{i}{ }^{*}\right)$

$$
V=e^{K / M_{P}^{2}}\left[\sum_{i}\left|\frac{\partial W}{\partial \Phi_{i}}+\frac{\partial K}{\partial \Phi_{i}} \frac{W}{M_{P}^{2}}\right|^{2}-3 \frac{|W|^{2}}{M_{P}^{2}}\right]
$$

makes $V$ steep at large $\phi$
(" $\eta$ problem")
Problem solved in shift-symmetric models: $K=K\left(\Phi+\Phi^{*}\right.$; $\left.S, S^{*}\right)$
If inflaton $=\operatorname{Im}(\Phi)$, then Kähler does not contribute to $V$

## SUGRA models of inflation

More complicated theory, contains fermions and new interactions

## INTERESTING PHENOMENOLOGY?

PART II: PHENOMENOLOGY OF FERMION PRODUCTION IN AXION INFLATION

## Our system

A rolling pseudoscalar, shift symmetric inflaton $\phi$ interacts with a fermion field $Y$ of mass $m_{\psi}$ via

$$
\bar{Y}\left[i \gamma^{\mu} \partial_{\mu}-m_{\mu} a-\frac{1}{f} \gamma^{\mu} \gamma^{5} \partial_{\mu} \phi\right] Y
$$

( $f=$ constant with dimensions of a mass)

## A useful field redefinition

$$
Y=\mathrm{e}^{-i \gamma^{5} \phi / f} \psi
$$

allows to write the fermion Lagrangian as

$$
\bar{\psi}\left\{i \gamma^{\mu} \partial_{\mu}-m_{\psi} a\left[\cos \left(\frac{2 \phi}{f}\right)-i \gamma^{5} \sin \left(\frac{2 \phi}{f}\right)\right]\right\} \psi
$$

oscillating effective mass with amplitude $m_{\psi}$ and frequency $2 \dot{\phi} / f$
resonant production of fermions up to momenta $\sim \dot{\phi} / f$

## Time-dependent $\phi \rightarrow$ fermion generation

## Assume $d \phi / d t=$ constant,

$$
\psi=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{\frac{3}{2}}} e^{i \mathbf{k} \cdot \mathbf{x}} \sum_{r= \pm}\left[U_{r}(\mathbf{k}, \tau) a_{r}(\mathbf{k})+V_{r}(-\mathbf{k}, \tau) b_{r}^{\dagger}(-\mathbf{k})\right]
$$

$$
\begin{array}{lll}
U_{r}(\mathbf{k}, \tau)=\frac{1}{\sqrt{2}}\binom{\chi_{r}(\mathbf{k}) u_{r}(x)}{r \chi_{r}(\mathbf{k}) v_{r}(x)}, & V_{r}(\mathbf{k})=C \bar{U}_{r}(\mathbf{k})^{T}, \quad C=i \gamma^{0} \gamma^{2}=\left(\begin{array}{cc}
0 & i \sigma_{2} \\
i \sigma_{2} & 0
\end{array}\right) & u_{r}(x)=\frac{1}{\sqrt{2 x}}\left[\mathrm{e}^{i r \hat{\phi}(x)} s_{r}(x)+\mathrm{e}^{-i r \hat{\phi}(x)} d_{r}(x)\right] \\
\chi_{r}(\mathbf{k}) \equiv \frac{(k+r \sigma \cdot \mathbf{k})}{\sqrt{2 k\left(k+k_{3}\right)}} \bar{\chi}_{r}, & \bar{\chi}_{+}=\binom{1}{0}, \quad \bar{\chi}=\binom{0}{1}, & v_{r}(x)=\frac{1}{\sqrt{2 x}}\left[\mathrm{e}^{i r \hat{\phi}(x)} s_{r}(x)-\mathrm{e}^{-i r \hat{\phi}(x)} d_{r}(x)\right]
\end{array}
$$

$$
s_{r}(x)=\mathrm{e}^{-\pi r \xi} W_{\frac{1}{2}+2 i r \xi, i \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}}(-2 i x), \quad d_{r}(x)=-i \widetilde{\mu} \mathrm{e}^{-\pi r \xi} W_{-\frac{1}{2}+2 i r \xi, i \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}}(-2 i x)
$$

$$
\hat{\phi}(x) \equiv \frac{\phi_{0}}{f}=-2 \xi \log \left(x / x_{\text {in }}\right)
$$

$$
x \equiv-k \tau, \quad x_{\mathrm{in}} \equiv-k \tau_{\mathrm{in}}
$$

$$
\tilde{\mu} \equiv \frac{m_{\|}}{H}, \quad \xi \equiv \frac{\dot{\phi}_{0}}{2 f H}
$$

## Time-dependent $\phi \rightarrow$ fermion generation

Occupation numbers of fermions


Different helicities $\Rightarrow$ different occupation \#s (parity violation) (can be used for leptogenesis)

For $m_{\psi \rightarrow 0}$, neither helicity is produced

## Time-dependent $\phi \rightarrow$ fermion generation

Scalings, for $\xi \gg 1, \tilde{\mu} \leqslant 1$



+ helicity: $N \sim 1$ for $k<a m_{\psi}, N \sim 0$ for $k>a m_{\psi}$
- helicity: $N \sim 1$ for $k<a m_{\psi}, N \sim \mu^{2} / \xi$ for $a m_{\psi}<k<2 a H \xi, N \sim 0$ for $k>2 a H \xi$

Total number density of -helicity $\sim \widetilde{\mu}^{2} \xi^{2} H^{3}$, can be $\gg H^{3}$ !

## Time-dependent $\phi \rightarrow$ fermion generation

Occupation numbers of fermions


Even heavy $m_{\psi} \gg H$ fermions copiously produced!

## Effects of these fermions on CMB power spectrum

## Using in-in formalism

$$
\begin{aligned}
\left.\delta P_{\zeta}(\tau, k)\right|_{-k \tau \ll 1} & =\frac{k^{3}}{2 \pi^{2}} \frac{H^{2}}{\dot{\phi}_{0}^{2}} \sum_{N=1}^{\infty}(-i)^{N} \int^{\tau} \mathrm{d} \tau_{1} \ldots \int^{\tau_{N-1}} \mathrm{~d} \tau_{N} \\
& \times\left\langle\left[\left[\cdots\left[\delta \phi^{(0)}(\tau, \mathbf{k}) \delta \phi^{(0)}\left(\tau, \mathbf{k}^{\prime}\right), H_{\mathrm{int}}\left(\tau_{1}\right)\right], \cdots\right], H_{\mathrm{int}}\left(\tau_{N}\right)\right]\right\rangle^{\prime}
\end{aligned}
$$

two leading order contributions


## Effects of these fermions on CMB power spectrum

## The full result of the first diagram

$$
\begin{gather*}
\frac{\delta P_{\zeta}}{P^{0}} \approx \frac{4 m H}{3 \pi^{2} f^{2}} \ln (x) \int \mathrm{d} y y \sum_{r} \operatorname{Re}\left[s_{r}(y) d_{r}^{*}(y)\right] \\
\sum_{r} \int y \Re\left(s_{r}(y) d_{r}^{*}(y)\right) \mathrm{d} y=\tilde{\mu}\left[\frac{1}{2}\left(2 \Lambda^{2}+\frac{1}{4}\left(-8\left(\log (2 \Lambda)+\gamma_{E}\right)\left(\tilde{\mu}^{2}-8 \xi^{2}+1\right)+\tilde{\mu}^{4}-7 \tilde{\mu}^{2}+12\right)\right)\right. \\
+\frac{1}{4}\left(\tilde{\mu}^{2}-8 \xi-6 i \xi+1\right)\left[H_{-i\left(2 \xi+\sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)}\left(\sinh (4 \pi \xi) \operatorname{csch}\left(2 \pi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)+1\right)\right. \\
\left.+H_{i\left(\sqrt{\tilde{\mu}^{2}+4 \xi^{2}}-2 \xi\right)}\left(1-\sinh (4 \pi \xi) \operatorname{csch}\left(2 \pi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)\right)\right] \\
+\frac{1}{4}\left(\tilde{\mu}^{2}-8 \xi^{2}+6 i \xi+1\right)\left[H_{i\left(2 \xi+\sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)}\left(\sinh (4 \pi \xi) \operatorname{csch}\left(2 \pi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)+1\right)\right. \\
\left.\quad+H_{-i}\left(\sqrt{\tilde{\mu}^{2}+4 \xi^{2}}-2 \xi\right)\left(1-\sinh (4 \pi \xi) \operatorname{csch}\left(2 \pi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)\right)\right] \\
\left.+6 \xi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}} \sinh (4 \pi \xi) \operatorname{csch}\left(2 \pi \sqrt{\tilde{\mu}^{2}+4 \xi^{2}}\right)-\frac{\tilde{\mu}^{4}}{8}+\frac{11 \tilde{\mu}^{2}}{8}-12 \xi^{2}\right], \tag{D.7}
\end{gather*}
$$

## Effects of these fermions on CMB power spectrum

In the limit $\xi \gg 1, \tilde{\mu} \leq 1$

$$
\left.\delta \mathcal{P}_{\zeta}(k)\right|_{\text {end of inflation }} \simeq \mathcal{P}_{\zeta}^{(0)} \frac{32 m_{\psi}^{2} \xi^{2} \log \xi}{3 \pi^{2} f^{2}} \log (H / k)
$$

## Effects of these fermions on CMB power spectrum

In the limit $\xi \gg 1, \tilde{\mu} \leq 1$

$$
\left.\delta \mathcal{P}_{\zeta}(k)\right|_{\text {end of inflation }} \simeq \mathcal{P}_{\zeta}^{(0)} \frac{32 m_{\psi}^{2} \xi^{2} \log \xi}{3 \pi^{2} f^{2}} \log (H / k)
$$

$$
n_{s}-1=-3 \epsilon-\frac{1}{N}+\frac{2 \epsilon-\eta}{\log \xi}
$$

## Effects of these fermions on CMB bispectrum

Three leading order contributions


## Effects of these fermions on CMB bispectrum

Since source of perturbations is sub horizon, expect equilateral bispectrum


## Effects of these fermions on CMB bispectrum

Since source of perturbations is sub horizon, expect equilateral bispectrum


## Main message:

 can have spectrum dominated by sourced component and small $\mathrm{f}_{\mathrm{NL}}$(Planck constrains $f_{N L}{ }^{\text {eqq }} 540$ )

Surprising: source quadratic in gaussian field $\psi$, so nongaussian
...but many many modes contribute $\rightarrow$ central limit $\rightarrow$ gaussian

## So...

The system has a regime where Planck measures

$$
\frac{H^{2} m_{\psi}^{2}}{f^{4}}
$$

instead of the usual

$$
\frac{H^{4}}{\dot{\phi}^{2}}
$$

## How about the tensors?

Computed them in Adshead, Pearce, Peloso, LS, Roberts I9:

The component sourced by the fermions always subdominant with respect to the standard one
so we keep the standard expression

$$
\mathcal{P}_{t}=\frac{2}{\pi^{2}} \frac{H^{2}}{M_{P}^{2}}
$$

## PART III: REVIVING CHAOTIC INFLATION

M Roberts, LS 2101.01796

## General study: equations of motion for fermions in models of inflation with stabilizer

General $N=1, d=4$ SUGRA with two superfields $S, \Phi$ with $W=S f(\Phi), K=K\left(\Phi, \Phi^{*}\right)+g\left(S S^{*}\right)$

Stabilizer condition $S=0 \Longrightarrow W=0$

$$
V=e^{K / M_{P}^{2}}|f(\phi)|^{2}
$$

## General study: equations of motion for fermions in models of inflation with stabilizer

Two matter fermions (one is goldstino, can be set to zero in unitary gauge)+helicity- $1 / 2$ part of gravitino. So two coupled fermions $\theta$ and $Y$ in the end

$$
\begin{aligned}
\mathcal{L}_{f} & =-\frac{\alpha a^{3}}{4 k^{3}}\left[\left(\gamma^{0} \hat{\partial}_{0}+i \gamma^{i} k_{i} \hat{A}+\gamma^{0} \hat{B}\right) \theta-\frac{4 k^{2}}{a \alpha} \gamma^{0} \Upsilon\right]+ \\
& -\frac{4 a}{\alpha \Delta^{2}} \stackrel{2}{2}\left[\left(\gamma^{0} \hat{\partial}_{0}-i \gamma^{i} k_{i} \hat{A}+\gamma^{0} \hat{B}^{\hat{1}}+a \gamma^{0} \hat{F}+2 a \gamma^{0}+\frac{a}{M_{P}^{2}} \gamma^{0} \mathbf{m} \gamma^{0}\right) \Upsilon+\frac{1}{4} a \alpha \Delta^{2} \gamma^{0} \theta\right],
\end{aligned}
$$

(helicity-3/2 gravitino is decoupled and irrelevant here)

## Does not look simple...

$$
\begin{array}{llrl}
m & =\mathrm{e}^{\frac{K}{2 M_{P}^{2}}} W, & \mathbf{m} & =\Re\{m\}-i \Im\{m\} \gamma^{5}, \\
m^{i} & =\left(\partial^{i}+\frac{1}{2 M_{P}^{2}} \partial^{i} K\right) m, & m^{i j}=\left(\partial^{i}+\frac{1}{2 M_{P}^{2}} \partial^{i} K\right) m^{j}-\Gamma_{k}^{i j} m^{k}, \\
\hat{\partial}_{0} & =\partial_{0}-\frac{i}{2} A_{0}^{B} \gamma^{5}, & A_{0}^{B}=\frac{i}{2 M_{P}^{2}}\left(\phi^{i} \partial_{i} K-\phi_{i}^{\prime} \partial^{i} K\right), \\
H^{2} & =\frac{1}{3 M_{P}^{2}}\left(|\dot{\phi}|^{2}+V\right), & V & =m_{i}\left(g^{-1}\right)_{j}^{i} m^{j}-3 \frac{|m|^{2}}{M_{P}^{2}}, \\
\alpha & =3 M_{P}^{2}\left(H^{2}+\frac{|m|^{2}}{M_{P}^{4}}\right), & \alpha_{1}=-3 M_{P}^{2}\left(H^{2}+\frac{2}{3} \dot{H}+\frac{|m|^{2}}{M_{P}^{4}}\right), \quad|\dot{\phi}|^{2} \equiv g_{j}^{i} \dot{\phi}_{i} \dot{\phi}^{j}, \\
\hat{A} & =\frac{1}{\alpha}\left(\alpha_{1}-\gamma^{0} \alpha_{2}\right), & \hat{B}=-\frac{3}{2} \dot{a} \hat{A}+\frac{a}{2 M_{P}^{2}} \mathbf{m} \gamma^{0}(1+3 \hat{A}), \\
\xi_{i} & =m_{i}-\gamma^{0} g_{i}^{j} \dot{\phi}_{j}, & \Delta & =2 \frac{\sqrt{V}|\dot{\phi}|}{\alpha},
\end{array}
$$

## But it is!

Fermions in models of inflation with stabilizer Making a number of field redefinitions...

$$
\mathcal{L}=\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)\left[-\gamma^{0} \partial_{0}+i \gamma \cdot k+a\left(\begin{array}{cc}
M_{1}+i M_{2} \gamma^{5} & 0 \\
0 & -M_{1}-i M_{2} \gamma^{5}
\end{array}\right)\right]\binom{\chi_{1}}{\chi_{2}}
$$

$\ldots$ where $M_{1}$ and $M_{2}$ are reasonably complicated functions of the background fields

$$
\left(M_{2}=0 \text { for } \operatorname{Im}[\Phi]=0\right)
$$

## Specializing to our system: quadratic inflaton plus small instanton corrections


(we'll require these to be negligible in V !)

## To fix ideas...

$$
\mu=\mathcal{O}\left(10^{13}\right) \mathrm{GeV} \quad \hat{\Lambda}=\mathcal{O}\left(10^{14}\right) \mathrm{GeV} \quad F=\mathcal{O}\left(10^{15}\right) \mathrm{GeV}
$$

# Specializing to our system: quadratic inflator plus small instanton corrections 

Full scalar potential

$$
V=\mathrm{e}^{\frac{\rho^{2}}{M_{P}^{2}}}\left[\frac{\mu^{2}}{2}\left(\rho^{2}+\varphi^{2}\right)+\sqrt{2} \mu \hat{\Lambda}^{2} \mathrm{e}^{-\frac{\rho}{F}}\left(\rho \cos \frac{\varphi}{F}-\varphi \sin \frac{\varphi}{F}\right)+\hat{\Lambda}^{4} \mathrm{e}^{-\frac{2 \rho}{F}}\right]
$$

$$
\phi=\frac{1}{\sqrt{2}}(\rho+i \varphi)
$$

...but $\rho \ll F$, so we are left with

$$
V \simeq \frac{\mu^{2}}{2} \varphi^{2}-\sqrt{2} \mu \hat{\Lambda}^{2} \varphi \sin \frac{\varphi}{F}
$$

quadratic plus (small) wiggles

## Specializing to our system: <br> quadratic inflation plus small instanton corrections

## And for the fermions, remind that we had

$$
\mathcal{L}=\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)\left[-\gamma^{0} \partial_{0}+i \gamma \cdot k+a\left(\begin{array}{cc}
M_{1}+i M_{2} \gamma^{5} & 0 \\
0 & -M_{1}-i M_{2} \gamma^{5}
\end{array}\right)\right]\binom{\chi_{1}}{\chi_{2}}
$$

in this regime

$$
M_{1}+i M_{2} \gamma^{5} \simeq \mu\left(\frac{2 M \neq p}{\beta \varphi^{2}}-\sqrt{2} \frac{\hat{\Lambda}^{2}}{\mu F}\left(\cos (\varphi / F)+i \sin (\varphi / F) \gamma^{5}\right)\right)
$$

negligible



FIG. 2: Results of exact numerical integration (solid, blue) and analytical approximations, eq. (54), (dashed, orange) for the quantities $M_{1}(t)$ and $M_{2}(t)$. The parameters used for these plots are $\mu=5 \times 10^{-6} M_{P}, F=5 \times 10^{-4} M_{P}$. At these times $\varphi \simeq 13.9 M_{P}$.

## Specializing to our system: <br> quadratic inflaton plus small instanton corrections

And for the fermions, remind that we had

$$
\mathcal{L}=\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)\left[-\gamma^{0} \partial_{0}+i \gamma \cdot k+a\left(\begin{array}{cc}
M_{1}+i M_{2} \gamma^{5} & 0 \\
0 & -M_{1}-i M_{2} \gamma^{5}
\end{array}\right)\right]\binom{\chi_{1}}{\chi_{2}}
$$

in this regime

$$
M_{1}+i M_{2} \gamma^{5} \simeq \mu\left(\frac{2 M}{\partial \varphi^{2}}-\sqrt{2} \frac{\hat{\Lambda}^{2}}{\mu F}\left(\cos (\varphi / F)+i \sin (\varphi / F) \gamma^{5}\right)\right)
$$

negligible
...equivalent to the system discussed in part II!

$$
\bar{\psi}\left\{i \gamma^{\mu} \partial_{\mu}-m_{\psi} a\left[\cos \left(\frac{2 \phi}{f}\right)-i \gamma^{5} \sin \left(\frac{2 \phi}{f}\right)\right]\right\} \psi
$$

## Importing the results from part II...

## Imposing constraints:

Monotonicity of potential
Energies below $4 \pi F$ cutoff
$r<.04$
Negligible backreaction of fermions on background No oscillations in scalar power spectrum
No nongaussianities
Scalar spectral index

## Importing the results from part II...

Three parameters.
Eliminate $\hat{\Lambda}$ with normalization of scalar spectrum


## ALLOWED!

## Summing up

. Natural generalization of quadratic potential to sugra, with inclusion of instantons, in agreement with all existing data Lower bound on $r \geq .004$, to be probed in next O (I0) years
Analysis easily generalizable to monomial potentials (monodromy)
$\square$ Oscillations in scalar power spectrum in monodromy models: do they survive in sugra models?

## Conclusion

Monomial inflation is beautiful...
...but in its simplest form is ruled out by non observation of tensors
"Natural" embedding in supergravity can revive it... ...at least for a few years

