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PART I: MOTIVATION



The structure we inhabit (Galaxies, clusters…) originates 

from the growth of a primordial spectrum of perturbations


on the top of a homogeneous, isotropic distribution of matter

Fact

What are the observed properties of this primordial spectrum?



 Is quasi scale invariant,  ns - 1= - 1/30 ± 10%

 No observed running of spectral index

 Gaussian to 1 part in ~104


  Isocurvature modes are below ~5%

 No observed tensor modes, r<.04

The primordial power spectrum

All properties (+ flatness of spatial slices of Universe) 

that are in agreement with simple predictions of inflation



✓ very early Universe filled by scalar field φ, the inflaton, with 
potential V(φ)>0

✓ to give enough inflation,  V(φ) must be flat

V(φ)

φ

INFLATION



Inflation requires |V’(φ)|<<V (φ)/MP, |V’’(φ)|<<V (φ)/MP 2


A simple (the simplest?) way of obtaining this:

monomial potential, with φ large enough

V(φ)=m2 φ2 /2

Famous example: quadratic potential (chaotic inflation)
Linde 1983

Amplitude of perturbations 

produced during inflation m ~ 1013 GeV



A MODEL OF NATURAL QUADRATIC 
INFLATION…



Let me introduce you the 4-form…

Fμνρλ=∂[μ Aνρλ]S4form= -            Fμνρλ Fμνρλ  d4x∫1
48

tensor structure in 4d⇒ Fμνρλ = q(xα) εμνρλ 

equations of motion  DμFμνρλ =0 ⇒ q(xα) = constant

this is why particle physicists do not care about 4-forms:

trivial dynamics ( )

(Higher rank relative of the electromagnetic field)
Kaloper, LS 09

+Lawrence 11



Sources for the 4-form: membranes

[ xα(ξa)=membrane worldvolume]

q(xα) jumps by e across a membrane

q(xα) is locally constant 

and 


quantized in units of e

e = charge per unit membrane surface



Let us couple the 4-form to a pseudoscalar

Action invariant under shift symmetry:

under φ → φ + c, L → L + c μ εμνρλ Fμνρλ/24

Di Vecchia and Veneziano 1980

Quevedo and Trugenberger 1996


Dvali and Vilenkin 2001

Dvali 2005


Kaloper and LS 2008



Let us couple the 4-form to a pseudoscalar

Action invariant under shift symmetry:

under φ → φ + c, L → L + c μ εμνρλ Fμνρλ/24
total derivative! (F=dA)

Di Vecchia and Veneziano 1980

Quevedo and Trugenberger 1996


Dvali and Vilenkin 2001

Dvali 2005


Kaloper and LS 2008



Equations of motion (away from branes)

Variation of 
the action { ∇μ  (Fμνρλ-μ εμνρλ φ)=0

∇2φ+μ εμνρλ Fμνρλ/24=0

After simple 
manipulations { ∇2φ-μ2 (φ+q/μ)=0

Fμνρλ= εμνρλ (q + μ φ)

q = integration constant



• (μ/24) φ εμνρλ Fμνρλ  is actually a mass term!


• The theory is massive while retaining the shift symmetry!


• No contributions ∝φ4, φ6, φ8... to potential. 


• The symmetry is broken spontaneously when a solution is 
picked


• q changes by e across branes ⇒ q is quantized



HOW ABOUT DATA?



Simple is beautiful…

…and quadratic inflation is in agreement with all the observed 
properties of the power spectrum (including the spectral index),


but is ruled out by non observation of tensors!

(figure from the BICEP-Keck 2021 paper)
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FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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FIG. 6. Expectation values and noise uncertainties of the
` ⇠ 80 BB bandpower in the BICEP/Keck field. The solid
and dashed black lines show the expected signal power of
lensed-⇤CDM and r0.05 = 0.01. Since CMB units are used,
the levels corresponding to these are flat with frequency. The
blue bands show the 1 and 2� ranges of dust, and the red
shaded region shows the 95% upper limit on synchrotron in
the baseline analysis including the uncertainties in the am-
plitude and frequency spectral index parameters (Async,23,�s

and Ad,353,�d). The BICEP/Keck auto-spectrum noise un-
certainties are shown as large blue circles, and the noise un-
certainties of the used WMAP/Planck single-frequency spec-
tra evaluated in the BICEP/Keck field are shown in black.
The blue crosses show the noise uncertainty of selected cross-
spectra, and are plotted at horizontal positions such that they
can be compared vertically with the dust and sync curves.
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These lines 

computed assuming metric

perturbations generated 


by amplification of

vacuum fluctuations



Let us look more in detail into 

the models of quadratic inflation


to see how robust this conclusion is…

Disclaimer: 

I will make heavy use 


of this one 

theorist’s prejudice



1- Supersymmetry

Even if we do not see SUSY at the TeV scale,

it might be there at the ~1016 GeV inflationary scale…

A simple superpotential
<latexit sha1_base64="jB+FVPspdG1Ddr1ipl2vHKsZ+mM="></latexit>

W =
µ

2
�2 =) V =

µ2

2
|�|2

works great…

…but since the inflaton takes values >MP,


must use full supergravity



makes V steep at large φ 

(“η problem”)

II- Supergravity

Given superpotential W(Φi) and Kähler potential K(Φi, Φi*)

typically dominate at large φ 

only term surviving 

in global SUSY
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II- Supergravity

Problem solved in stabilizer models:  W=W(S,Φ)=S f(Φ)  

where the stabilizer S=0 during inflation, thanks to S-dependence of K 

typically dominate at large φ 

Given superpotential W(Φi) and Kähler potential K(Φi, Φi*)
<latexit sha1_base64="A7LHOffvjtEYv2O3UOFo05Tf7bY="></latexit>
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III- Shift symmetry

Problem solved in shift-symmetric models:  K=K(Φ+Φ*; S, S*)  

If inflaton=Im(Φ), then Kähler does not contribute to V

makes V steep at large φ 

(“η problem”)

Given superpotential W(Φi) and Kähler potential K(Φi, Φi*)
<latexit sha1_base64="A7LHOffvjtEYv2O3UOFo05Tf7bY="></latexit>
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SUGRA models of inflation


More complicated theory,

contains fermions and new interactions 


INTERESTING PHENOMENOLOGY?



PART II: PHENOMENOLOGY OF 
FERMION PRODUCTION


IN AXION INFLATION



A rolling pseudoscalar, shift symmetric inflaton φ 

interacts with a fermion field Y of mass mψ via

(f=constant with dimensions of a mass)

Our system
Adshead, Pearce, Peloso, LS, Roberts 18

computations.

2 Fermion production during inflation

In this section we study the production of fermions during axion inflation and obtain solutions
to the Dirac equation for a fermion coupled to the slowly-rolling (�̇ =constant) pseudoscalar.
In particular, we compute the resulting occupation number for the right- and the left-handed
components of the fermion.

We consider the theory of a pseudoscalar inflaton � interacting with a Dirac fermion X
through a derivative interaction with coupling constant 1/f

L = a4
⇢
X̄


i

✓
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2

a0
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�̃0

◆
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f
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Here the �̃-matrices in flat Friedmann-Lemâıtre-Robertson-Walker spacetime with scale fac-
tor a are related to those in Minkowski spacetime by �̃µ = �µ/a, while �5 = i a4 �̃0�̃1�̃2�̃3 =
i �0�1�2�3. We neglect metric fluctuations1 and treat the background as fixed de Sitter
spacetime.

Throughout this work we use conformal time and “mostly minus” signature for our
metric, and we use the Dirac representation for the � matrices. Specifically,

�0 =

✓
1 0
0 �1

◆
, �i =
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The fermions are canonically normalized by redefining Y = X a3/2, so that

L = Ȳ
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Next, we perform one more redefinition of the fermion field,

Y = e�i�
5
�/f  , (2.4)

which yields the Lagrangian
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The latter field redefinition is motivated by two considerations. First, as discussed in the
introduction, by writing the Lagrangian in terms of  it is apparent that the inflaton de-
couples from the fermion in the limit m ! 0. This decoupling is not as evident when the
Lagrangian is in the form of eq. (2.3). Second, in order to determine the occupation num-
ber for the fermions we resort to the usual technique of the Bogolyubov coe�cients, which
relies on the diagonalization of the portion of Hamiltonian that is quadratic in the fields. In
the formulation of eq. (2.3) the momentum conjugate to �, which is needed to compute the
Hamiltonian, is given by ⇧� = a2 �̇� 1

f
Ȳ �0�5Y , which contains a term that is quadratic in

the fermion field (this should be compared with the simpler expression ⇧� = a2 �̇ obtained
in the formulation in eq. (2.5)). This leads to a di↵erent definition of the quadratic part

1More precisely, we study scalar metric perturbations in the spatially flat gauge, neglecting the presence
of the shift and lapse scalar factors which provide slow-roll suppressed contributions to the spectra.
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1More precisely, we study scalar metric perturbations in the spatially flat gauge, neglecting the presence
of the shift and lapse scalar factors which provide slow-roll suppressed contributions to the spectra.
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2We denote ˙⌘ d/dt, 0 ⌘ d/d⌧ , with t cosmic time and ⌧ conformal time. We note that �̇0 varies at second
order in slow roll, but we disregard this small effect here.
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Figure 1. The occupation number of r = �1 (top, solid curves) and r = +1 (bottom, dashed curves)
fermions, Nr as a function of the momentum k, for ⇠ = 10 and µ = 1 (left panel) and µ = 0.1 (right
panel).

The occupation number of helicity-r particles (and antiparticles) is then

Nr ⌘ |�r|2 = h0|â†r(k) âr(k)|0i = h0|b̂†r(k) b̂r(k)|0i
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We now discuss the main properties of the functions Nr(k). In figure 1, we show the
occupation number of the r = +1 and r = �1 fermions at the end of inflation (⌧ = �1/H)
for ⇠ = 10 with µ = 1 (left) and µ = 0.1 (right). First, let us focus on fermions with
r = +1. For those particles the occupation number drops rapidly to zero as k gets larger
than m. The reason for this behavior is that the presence of a nonvanishing mass leads to
the breaking of conformality and the generation of fermions on the de Sitter background.
For momenta larger than m the fermions are approximately conformal and the occupation
number becomes smaller. This phenomenon is purely gravitational and affects both the left-
and the right-handed modes, but for the modes with r = �1 it is overwhelmed by the effects
of nonvanishing ⇠. In fact, modes with r = �1 have nonvanishing occupation number for k
as large as 2⇠H. We interpret this as the consequence of the fact that the excitation of those
fermion modes is induced by the coupling to the pseudoscalar inflaton.3 We also note that
the occupation number of the interesting r = �1 mode displays high frequency oscillations
as a function of the momentum k. The two panels of figure 1 show that those oscillations
happen around a value of the occupation number that is approximately given by µ2/⇠.

By evaluating analytically eq. (2.19) in various limits we observe that both N+ and N�
vanish as µ2 in the limit µ ! 0. This is consistent with the decoupling of  from the inflaton
for m = 0. More specifically, one obtains

Nr '
µ2

4x2
, µ ⌧ x ⌧ 1 . (2.20)

3These results rely on the assumption that ⇠ > 0. Changing the sign of ⇠ has the effect of exchanging the
occupation numbers of the r = + and r = � modes.

– 7 –

Occupation numbers of fermions

Different helicities ⇒ different occupation #s (parity violation)

For mψ→0, neither helicity is produced

(can be used for leptogenesis) Adshead and Sfakianakis 15
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Figure 1. The occupation number of r = �1 (top, solid curves) and r = +1 (bottom, dashed curves)
fermions, Nr as a function of the momentum k, for ⇠ = 10 and µ = 1 (left panel) and µ = 0.1 (right
panel).

The occupation number of helicity-r particles (and antiparticles) is then

Nr ⌘ |�r|2 = h0|â†r(k) âr(k)|0i = h0|b̂†r(k) b̂r(k)|0i

=
1

2
� mR

4!

�
|ur|2 � |vr|2

�
� k

2!
Re (u⇤rvr)�

rmI

2!
Im (u⇤rvr) . (2.19)

We now discuss the main properties of the functions Nr(k). In figure 1, we show the
occupation number of the r = +1 and r = �1 fermions at the end of inflation (⌧ = �1/H)
for ⇠ = 10 with µ = 1 (left) and µ = 0.1 (right). First, let us focus on fermions with
r = +1. For those particles the occupation number drops rapidly to zero as k gets larger
than m. The reason for this behavior is that the presence of a nonvanishing mass leads to
the breaking of conformality and the generation of fermions on the de Sitter background.
For momenta larger than m the fermions are approximately conformal and the occupation
number becomes smaller. This phenomenon is purely gravitational and affects both the left-
and the right-handed modes, but for the modes with r = �1 it is overwhelmed by the effects
of nonvanishing ⇠. In fact, modes with r = �1 have nonvanishing occupation number for k
as large as 2⇠H. We interpret this as the consequence of the fact that the excitation of those
fermion modes is induced by the coupling to the pseudoscalar inflaton.3 We also note that
the occupation number of the interesting r = �1 mode displays high frequency oscillations
as a function of the momentum k. The two panels of figure 1 show that those oscillations
happen around a value of the occupation number that is approximately given by µ2/⇠.

By evaluating analytically eq. (2.19) in various limits we observe that both N+ and N�
vanish as µ2 in the limit µ ! 0. This is consistent with the decoupling of  from the inflaton
for m = 0. More specifically, one obtains

Nr '
µ2

4x2
, µ ⌧ x ⌧ 1 . (2.20)

3These results rely on the assumption that ⇠ > 0. Changing the sign of ⇠ has the effect of exchanging the
occupation numbers of the r = + and r = � modes.
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Scalings, for ξ≫1, µ≲1

+ helicity:  N~1 for k<amψ,  N~0 for k>amψ

- helicity:  N~1 for k<amψ ,  N~µ2/ξ for amψ<k<2aHξ,  N~0 for k>2aHξ

Total number density of -helicity ~µ2ξ2H3    , can be >>H3!

~ ~

~
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Occupation numbers of fermions

Even heavy mψ>>H fermions copiously produced!
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Figure 2. Same as figure 1, but for ⇠ = 10, µ = 10 (left) and for ⇠ = 1, µ = 10 (right).

In the regime of moderate µ . 1 and large ⇠ � 1 we find that the occupation number
of the r = �1 modes is oscillating about a constant that is well approximated by µ2/⇠ for
modes with x . ⇠ before dropping as ⇠2 µ2/x4 for x & ⇠. As a consequence, for this range
of parameters the total number density of the modes with r = �1 scales, for µ . 1, as
µ
2

⇠
⇥ ⇠3 ⇠ µ2 ⇠2 that can be parametrically larger than unity per Hubble volume.

Moving to the regime of large µ, in figure 2 we show the occupation number for the
r = +1 and r = �1 modes for µ = 10 and ⇠ = 10 (left) and for µ = 10, ⇠ = 1 (right).
Remarkably, even if the occupation number for the r = +1 modes is smaller than that of
the r = �1 ones, both occupation numbers are of order unity despite the fact that the mass
of the fermions is much larger than the Hubble scale. This means that the coupling to the
inflaton prevents the decoupling of fermions with m � H (for comparison, the occupation
number of fermions with µ = 10 and ⇠ = 0, not plotted, is at most of the order of 10�5). Of
course, the occupation number of the fermions decreases (as ⇠ ⇠2/µ2) when µ becomes much
larger than ⇠.

A numerical evaluation of the total number density of r = �1 fermions yields
Z

d3k N�(k) ' 52H3µ2 ⇠2 , ⇠ � µ , ⇠ � 1. (2.21)

The main conclusion of this section is that a nonvanishing value of ⇠ leads to nontrivial
behavior of the fermions. Chiral fermions are copiously produced even if m ⌧ H (as long
as µ2 ⇠2 is large enough), and even very heavy fermions with m � H can be produced with
large occupation numbers as long as µ . ⇠. We now move on to compute the effect of these
fermions on the inflaton.

3 Backreaction

In this section we examine the backreaction of the produced fermions on the homogeneous,
or background, inflaton. The equation of motion for the inflaton, derived from the La-
grangian (2.5), reads

�00 + 2
a0

a
�0 ���+ a2 V 0(�) =

2m

f a
 ̄


sin

✓
2�

f

◆
+ i�5 cos

✓
2�

f

◆�
 . (3.1)
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Effects of these fermions on CMB

power spectrum

Using in-in formalism

 

�� ��

�� ��
 

Figure 3. The two diagrams that contribute at leading order to the two-point function of ��.

4.1 Quartic loop

The first diagram in figure 3 gives

�P (4)
⇣

(⌧, k) = i
k3

2⇡2
H2

�̇20

2m

f2

Z
⌧

d⌧1 a(⌧1)
Z

d3p d3q d3w

(2⇡)3

*"
��(0) (⌧, k) ��(0)

�
⌧, k0� ,

 ̄ (⌧1, p)


cos

✓
2
�0(⌧1)

f

◆
� i �5 sin

✓
2
�0(⌧1)

f

◆�
 (⌧1, q)

��(0) (⌧1, w) ��(0) (⌧1, p� q�w)

#+0

, (4.5)

which, with some algebra and in the large scale limit �k⌧ ! 0, can be simplified to

�P (4)
⇣

(⌧, k) =
2H5m

f2k3⇡2�̇20

Z
⌧ d⌧1
⌧1

[cos (k⌧1) + k⌧1 sin (k⌧1)] [sin (k⌧1)� k⌧1 cos (k⌧1)]

⇥
Z

d3p

(2⇡)3

D
 ̄ (p)

h
cos

⇣
2 �̂

⌘
� i �5 sin

⇣
2 �̂

⌘i
 (p)

E0

⌧1

. (4.6)

By inserting the expressions for the mode functions of the fermions into this equation we
finally obtain

�P (4)
⇣

(⌧, k)

P (0)
⇣

=
4H2µ

f2⇡2

Z

x

dx1
x41

[cos (x1) + x1 sin (x1)] [x1 cos (x1)� sin (x1)]

⇥
Z

dxp xp
X

r

< [d⇤r (xp) sr (xp)] , (4.7)

where we have normalized this contribution to P⇣ by the vacuum term P (0)
⇣

= H4/(4⇡2 �̇20),
we have introduced the dimensionless integration variables x1 ⌘ �k⌧1 and xp ⌘ �p⌧1, and
where the functions dr(x) and sr(x) are given in eq. (2.10).

We proceed to evaluate the two integrals that appear in eq. (4.7). The integral in dx1
diverges when the lower limit of integration x is sent to 0 (remember that x = �k⌧ = k/H
as we want to evaluate the power spectrum at the end of inflation, ⌧ = �1/H). In fact one
finds
Z 1

x

dx1
x41

[cos (x1) + x1 sin (x1)] [x1 cos (x1)� sin (x1)]
���
x!0

' 1

3
log(x) +

3 log 2 + 3 �E � 7

9

+O(x2) , (4.8)

where �E ' .577 is the Euler-Mascheroni constant. This infrared divergence is a consequence
of the fact that the fermions have a nonvanishing average density that keeps sourcing the
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4 Power spectrum

Fermions with a nonvanishing occupation number backreact on the fluctuations of the inflaton,
therefore modifying the primordial scalar perturbations. In this section we compute this
effect to leading order. As we will show, at the level of approximation that we are using this
modification is scale invariant, and therefore it is unobservable in the spectrum because it
is degenerate with the vacuum contribution generated by the inflationary expansion of the
Universe. However, an observable effect is potentially generated in the bispectrum, which
in single-field inflation is slow-roll suppressed to a currently unobservable level. A precise
calculation of the bispectrum is very challenging, but in section 5 below we use the results of
this section 4 to estimate its magnitude.

In order to focus on the physics, we only present the main steps of our calculation of
the leading order correction to power spectrum in this section. The details can be found in
appendices D and E. Discussions on our renormalization scheme are presented in appendix
F.

We compute the leading order modifications to the power spectrum of the fluctuations
of the inflaton using the in-in formalism (see, e.g. [40]). To do so, we define the perturbation
��(x, ⌧) = �(x, ⌧)��0(⌧) and we expand the interaction Hamiltonian to second order in ��

Hint �� 2am

f

Z
d3x  ̄


sin

✓
2
�0
f

◆
+ i �5 cos

✓
2
�0
f

◆�
 ��

� 2am

f2

Z
d3x  ̄


cos

✓
2
�0
f

◆
� i �5 sin

✓
2
�0
f

◆�
 ��2 ⌘ H(3)

 
+H(4)

 
, (4.1)

where we have neglected the contribution from the inflaton self-interactions, whose effects are
slow-roll suppressed. We then use Hint to compute the modification to the power spectrum

�P⇣ (⌧, k)
���
�k⌧⌧1

=
k3

2⇡2
H2

�̇20

1X

N=1

(�i)N
Z
⌧

d⌧1 . . .
Z
⌧N�1

d⌧N

⇥
Dhh

· · ·
h
��(0) (⌧, k) ��(0)

�
⌧, k0� , Hint (⌧1)

i
, · · ·

i
, Hint (⌧N )

iE0
, (4.2)

where we have used the relation ⇣ = �H ��/�̇0 between the fluctuations of the inflaton and
the scalar perturbation of the metric, and the prime denotes the correlator stripped of the
�(3)(k+ k0) associated with momentum conservation.

In evaluating the expression eq. (4.2) we use the mode functions for  found in section 2
above, eqs. (2.7) through (2.10). Regarding the mode functions of ��, we use those of a
massless field in de Sitter space:

��(0) (x, ⌧) =

Z
d3k

(2⇡)3/2
eik·x

h
��(0)

k
(⌧) ak + ��(0)⇤

k
(⌧) a†�k

i
, (4.3)

with
��(0)

k
(⌧) =

Hp
2k

✓
i ⌧ +

1

k

◆
e�ik⌧ . (4.4)

The two parts of the interaction Hamiltonian H(3)
 

and H(4)
 

describe a cubic  ̄  ��
vertex and a quartic  ̄  ��2 vertex. Those two vertices can be used to draw the two diagrams
shown in figure 3, which contribute to eq. (4.2) at leading order in the 1/f expansion. We
discuss these diagrams in the next two subsections.
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and can be computed analytically!



Effects of these fermions on CMB

power spectrum

The full result of the first diagramAs noted in the text, the dx1 integral can be performed but has an infrared divergence. After
this step, the power spectrum is given by

�P⇣

P 0
⇡ 4mH

3⇡2f2
ln (x)

Z
dy y

X

r

Re[sr(y)d
⇤
r(y)]. (D.3)

The remaining integral can be performed analytically following identical steps as those in
appendix C for the backreaction, in which we evaluated

P
r
r
R

dy y=[d⇤r(y)sr(y)].
As before, we write the Whittaker functions in the integrand using the Mellin-Barnes

representation (see eq. (C.4)) and identify the poles. Everything proceeds as above until the
sum over r; in place of (C.16) one finds instead

X

r

Z
ysr(y)d

⇤
r(y) dy = µ


1

2

✓�
µ2 � 2⇠(4⇠ � 3i) + 1

�✓
H�i

⇣p
µ2+4⇠2�2⇠

⌘ +H
i

⇣
2⇠+

p
µ2+4⇠2

⌘
◆

+
�
µ2 � 2⇠(4⇠ + 3i) + 1

�✓
H

i

⇣p
µ2+4⇠2�2⇠

⌘ +H�i

⇣
2⇠+

p
µ2+4⇠2

⌘
◆◆

+⇤2 � (ln(2⇤) + �E)
�
µ2 � 8⇠2 + 1

�
+ i⇤+

1

8

�
µ4 � 4i⇡

�
µ2 � 8⇠2 + 1

�
� 7µ2 + 12

��

+
X

r

Ar , (D.4)

with Ar given as in eq. (C.17). The remaining integral, which does not depend on the cutoff
⇤, proceeds as in appendix C with the same definitions for f1, g, and h. In place of eq. (C.22)
we have
X

r

Z

C

ds<(f1(s)g(s)) =

1

8

�
a2
�
2b2 � 1

�
� a4 � b4 + b2 � 4

�
+

1

4
e�⇡(a+b)csch(⇡a)sech(⇡a)

 �
(a� b)

�
3a4b+ a3

�
2� 9b2

�
+ 9a2

�
b3 + b

�
+ a

�
4� 3b2

�
b2 + 5

��
+ 4b3 + 5b

�
+ 2
�

(a� b� i)(a� b+ i)(a� b� 2i)(a� b+ 2i)

·
⇣
e2⇡(a+b) � 1

⌘
cosh(⇡(a� b))

�
�
(a+ b)

�
3a4b+ a3

�
9b2 � 2

�
+ 9a2

�
b3 + b

�
+ a

�
3b2

�
b2 + 5

�
� 4
�
+ 4b3 + 5b

�
� 2
�

(a+ b� i)(a+ b+ i)(a+ b� 2i)(a+ b+ 2i)

·
⇣
e2⇡(a+b) + 1

⌘
sinh(⇡(a� b))

⌘i
. (D.5)

The
R
ds f1(s)h(s) integral similarly proceeds along the lines of appendix C; again, it is

convenient to take the real part and sum over r before performing the sum that results from
the infinite number of poles. The final integral contributes

X

r

Z
i1

�i1
ds<(f1(s)h(s)) =

1

4
csch(⇡a)sech(⇡a)

⇥�
3
�
a2 � 3b2 + 1

�
�
�
a2 � 3b(b� i) + 1

�
Hi(a+b�2i) �

�
a2 � 3b(b+ i) + 1

�
H�i(a+b+2i)

�

· sinh(⇡(a� b)) cosh(⇡(a+ b))

+
�
3
�
a2 � 3b2 + 1

�
�
�
a2 � 3b(b� i) + 1

�
H2�ia+ib +

�
�a2 + 3b(b+ i)� 1

�
H2+ia�ib

�

· sinh(⇡(a+ b)) cosh(⇡(a� b))] . (D.6)
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Combining all the pieces gives the full analytic result

X

r

Z
y< (sr(y)d

⇤
r(y)) dy = µ


1

2

✓
2⇤2 +

1

4

�
�8(log(2⇤) + �E)

�
µ2 � 8⇠2 + 1

�
+ µ4 � 7µ2 + 12

�◆

+
1

4

�
µ2 � 8⇠ � 6i⇠ + 1

� 
H�i

⇣
2⇠+

p
µ2+4⇠2

⌘
⇣
sinh(4⇡⇠)csch

⇣
2⇡

p
µ2 + 4⇠2

⌘
+ 1

⌘

+H
i
⇣p

µ2+4⇠2�2⇠
⌘
⇣
1� sinh(4⇡⇠)csch

⇣
2⇡

p
µ2 + 4⇠2

⌘⌘�

+
1

4

�
µ2 � 8⇠2 + 6i⇠ + 1

� 
H

i
⇣
2⇠+

p
µ2+4⇠2

⌘
⇣
sinh(4⇡⇠)csch

⇣
2⇡

p
µ2 + 4⇠2

⌘
+ 1

⌘

+H�i
⇣p

µ2+4⇠2�2⇠
⌘
⇣
1� sinh(4⇡⇠)csch

⇣
2⇡

p
µ2 + 4⇠2

⌘⌘�

+6⇠
p
µ2 + 4⇠2 sinh(4⇡⇠)csch

⇣
2⇡

p
µ2 + 4⇠2

⌘
� µ4

8
+

11µ2

8
� 12⇠2

�
, (D.7)

which is quadratically divergent. If µ ⌧ 1, this becomes

X

r

Z
y< (sr(y)d

⇤
r(y)) dy ⇡ µ


⇤2 + (8⇠2 � 1) log(2⇤) +

✓
�4⇠2 + 3i⇠ +

1

2

◆
 (0)(4i⇠ + 1)

+

✓
�4⇠2 � 3i⇠ +

1

2

◆
 (0)(1� 4i⇠) +

3

2

�
. (D.8)

In the ⇠ � 1 limit, the finite piece simplifies further to
P

r

R
y< (sr(y)d⇤r(y)) ⇡ �8µ ln(⇠)⇠2.

Substituting this into eq. (D.3) gives

�P⇣

P 0
⇡ 32m2 ln(⇠)⇠2

3⇡2f2
| ln (x) | , (D.9)

where we have noted that for x ⌧ 1, ln(x) < 0. This is in agreement with eq. (4.10).

E Cubic loop integral

This appendix presents the calculations relevant to the evaluation of the right diagram in
figure 3, leading to eq. (4.14). In the in-in formalism, this diagram corresponds to

h��k1(⌧) ��k2(⌧)i = �
Z

⌧

d⌧1
✓
�2a(⌧1)

f

◆Z
⌧1

d⌧2
✓
�2a(⌧2)

f

◆Z
d3p1 d3q1
(2⇡)3/2

Z
d3p2 d3q2
(2⇡)3/2

⌦⇥⇥
��k1(⌧) ��k2(⌧),  ̄p1(⌧1)

⇥
ms + i�5mc

⇤
 q1(⌧1) ��p1�q1(⌧1)

⇤
,

 ̄p2(⌧2)
⇥
ms + i�5mc

⇤
 q2(⌧2) ��p2�q2(⌧2)

⇤↵
, (E.1)

where ms = mI/a and mc = mR/a. Because the �� creation and annihilation operators
commute with the fermionic creation and annihilation operators, we can use (4.3) to find
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4.4 The spectral index

From eq. (4.15) we can compute the scalar spectral index by assuming that each individ-
ual mode is evolving with constant values of H and �̇, while treating H and �̇ as time
dependent when comparing di↵erent modes. This is justified by slow roll: H and �̇ evolve
adiabatically, on a times scale (✏H)�1, while each mode evolves on the much faster timescale
H�1. Assuming for simplicity that the scalar spectrum is dominated by the sourced part
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Then, the spectral index is obtained as
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or, using the slow-roll relations Ḣ = �✏H2, |�̇| =
p
2✏HMP an �̈ = (⌘ � ✏) H �̇,
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log ⇠
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where N denotes the number of efoldings. The spectral index of the scalar perturbations
can thus agree with the measured value [3] ns ' .97 for reasonable values of N and of the
slow-roll parameters.

5 Non-Gaussianity

As we saw above, the calculation of the fermionic contribution to the two-point function of the
inflaton is challenging, and for the cubic diagram we could only obtain what we consider to be
a reasonable estimate. As one can expect, the calculation of the three-point function is even
more challenging. There is a new operator, besides the cubic and the quartic interaction

Hamiltonians H(3)
 

and H(4)
 

given in eq. (4.1) above, that contributes to the three-point
function. It is a quintic interaction Hamiltonian

H(5)
 

= �4ma

3f3
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+ i�5 cos
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2�0
f

◆�
 ��3 , (5.1)

which leads to a new  ̄  ��3 vertex. Using the vertices generated from H(3)
 

, H(4)
 

, and H(5)
 

we obtain, at leading order in 1/f , the three diagrams of figure 4.

5.1 The quintic diagram

As we argue below, the first of these diagrams gives the leading contribution to the bispec-
trum. Fortunately, this contribution can be calculated analytically; after some long calcula-
tions that we report in appendix G, we find the following expression
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2H6m

3f3

Z
⌧

d⌧1 a(⌧1)f(k1, k2, k3, ⌧1)

⇥
Z

d3p

(2⇡)9/2

X

r

r

�p⌧1
= {(d⇤r(�p⌧1)sr(�p⌧1)} , (5.2)
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Figure 4. The three diagrams that contribute at leading order to the three-point function of ��.
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As we argue below, the first of these diagrams gives the leading contribution to the bispectrum.
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we report in appendix G, we find the following expression
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where

f(k1, k2, k3, ⌧1) =
1

k31k
3
2k
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⌧21 (k1k2 + k1k3 + k2k3)� 1

�
sin(⌧1(k1 + k2 + k3))

⇤
. (5.3)

Since most of the dynamics occurs at momenta �k⌧ ⇠ ⇠ � 1, which is well within the
horizon, we expect the non-Gaussianities to be of equilateral shape. Therefore we estimate
the magnitude of the bispectrum by setting k1 = k2 = k3 ⌘ k. As in the two-point functions,
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Figure 5. Contour lines of non-linear parameter fNL evaluated on exactly equilateral configurations.
We indicate the regions of parameter space in which the vacuum and the sourced perturbations
dominate the scalar power spectrum. The figure also shows the region where |�̇| > (4⇡f)2 (where
the e↵ective quantum field theory description of the rolling axion with a fixed decay constant f is
inappropriate) and the region µ >

p
⇠, where the diagrams that we have neglected in the calculation

of the power spectrum and bispectrum are not negligible (see discussion in subsection 5.2). The region
where the motion of the inflaton is controlled by the backreaction of the produced fermions (where
our analysis of the perturbations is invalid) lies in the top right corner of this plot.

and quintic diagrams obtained from eqs. (D.7) and (C.30) respectively. We see that there is
significant parameter space consistent with f eq

NL
= �4±43 [44]. In the figure we also show the

region where |�̇0| < (4⇡f)2, and the e↵ective quantum field theory description of the rolling
axion with a fixed decay constant f is under control (we also need to impose H < 4⇡f ; this
condition is satisfied wherever |�̇0| < (4⇡f)2). We note that, for a fixed value of m, the
non-Gaussianity first grows with growing ⇠, and then it decreases. To understand this, we
recall that fermion modes of chirality r = �1 are produced with momentum up to ⇠ 2 ⇠H,
as we discussed after eq. (2.19). Therefore, as ⇠ increases we increase the number of fermion
modes that are produced, and these then source the inflaton perturbations. The sourced
perturbations are non-Gaussian, which explains the initial growth of the non-Gaussianity
parameter with ⇠. However, as ⇠ keeps growing, the contributions from the various fermion
modes add up in an uncorrelated way to each other, and their contribution becomes more and
more Gaussian (due to the central limit theorem) as their number grows.4 This argument,
and the trend in figure 5, leads us to argue that the perturbations should be Gaussian also
in the regime of strong backreaction, where our computation of the perturbations is invalid.

4We note that this di↵ers from the mechanism of non-Gaussian inflation perturbations sourced by a vector
field [25]. In that case the monotonic growth of non-Gaussianity with ⇠ is due to the fact that the amplitude
of the gauge modes grows exponentially with ⇠.
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of the power spectrum and bispectrum are not negligible (see discussion in subsection 5.2). The region
where the motion of the inflaton is controlled by the backreaction of the produced fermions (where
our analysis of the perturbations is invalid) lies in the top right corner of this plot.
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recall that fermion modes of chirality r = �1 are produced with momentum up to ⇠ 2 ⇠H,
as we discussed after eq. (2.19). Therefore, as ⇠ increases we increase the number of fermion
modes that are produced, and these then source the inflaton perturbations. The sourced
perturbations are non-Gaussian, which explains the initial growth of the non-Gaussianity
parameter with ⇠. However, as ⇠ keeps growing, the contributions from the various fermion
modes add up in an uncorrelated way to each other, and their contribution becomes more and
more Gaussian (due to the central limit theorem) as their number grows.4 This argument,
and the trend in figure 5, leads us to argue that the perturbations should be Gaussian also
in the regime of strong backreaction, where our computation of the perturbations is invalid.

4We note that this di↵ers from the mechanism of non-Gaussian inflation perturbations sourced by a vector
field [25]. In that case the monotonic growth of non-Gaussianity with ⇠ is due to the fact that the amplitude
of the gauge modes grows exponentially with ⇠.

– 17 –

~
~

<latexit sha1_base64="cj45dIO72A8+lCXeLuyPEPLjsqQ=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKe6KqMegF48RzAOSJcxOZpMh81hnZoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTv3WE9WGKflgxwkNBR5IFjOCrZPaotdNDDuLe+WKX/VnQMskyEkFctR75a9uX5FUUGkJx8Z0Aj+xYYa1ZYTTSambGppgMsID2nFUYkFNmM3unaATp/RRrLQradFM/T2RYWHMWESuU2A7NIveVPzP66Q2vg4zJpPUUknmi+KUI6vQ9HnUZ5oSy8eOYKKZuxWRIdaYWBdRyYUQLL68TJrn1eCy6t9fVGo3eRxFOIJjOIUArqAGd1CHBhDg8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPZb4/Y</latexit> m
 
/f



So…

The system has a regime where Planck measures

H
2
m

2

f4
<latexit sha1_base64="XvyI7dpiHWIh2aJEpaLyCTfQa40=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5GSyCCylJKai7opsuKxhbaNoymU7aoTOTMDMRagj+ihsXKm79EHf+jdM2C209cOFwzr3ce08QM6q043xbhZXVtfWN4mZpa3tnd8/eP7hXUSIx8XDEItkOkCKMCuJpqhlpx5IgHjDSCsY3U7/1QKSikbjTk5h0ORoKGlKMtJH69pEfSoTTRq/qn/NeNUvDXi3r22Wn4swAl4mbkzLI0ezbX/4gwgknQmOGlOq4Tqy7KZKaYkaykp8oEiM8RkPSMVQgTlQ3nV2fwVOjDGAYSVNCw5n6eyJFXKkJD0wnR3qkFr2p+J/XSXR42U2piBNNBJ4vChMGdQSnUcABlQRrNjEEYUnNrRCPkIlDm8BKJgR38eVl4lUrVxX3tlauX+dpFMExOAFnwAUXoA4aoAk8gMEjeAav4M16sl6sd+tj3lqw8plD8AfW5w8MyJSE</latexit><latexit sha1_base64="XvyI7dpiHWIh2aJEpaLyCTfQa40=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5GSyCCylJKai7opsuKxhbaNoymU7aoTOTMDMRagj+ihsXKm79EHf+jdM2C209cOFwzr3ce08QM6q043xbhZXVtfWN4mZpa3tnd8/eP7hXUSIx8XDEItkOkCKMCuJpqhlpx5IgHjDSCsY3U7/1QKSikbjTk5h0ORoKGlKMtJH69pEfSoTTRq/qn/NeNUvDXi3r22Wn4swAl4mbkzLI0ezbX/4gwgknQmOGlOq4Tqy7KZKaYkaykp8oEiM8RkPSMVQgTlQ3nV2fwVOjDGAYSVNCw5n6eyJFXKkJD0wnR3qkFr2p+J/XSXR42U2piBNNBJ4vChMGdQSnUcABlQRrNjEEYUnNrRCPkIlDm8BKJgR38eVl4lUrVxX3tlauX+dpFMExOAFnwAUXoA4aoAk8gMEjeAav4M16sl6sd+tj3lqw8plD8AfW5w8MyJSE</latexit><latexit sha1_base64="XvyI7dpiHWIh2aJEpaLyCTfQa40=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5GSyCCylJKai7opsuKxhbaNoymU7aoTOTMDMRagj+ihsXKm79EHf+jdM2C209cOFwzr3ce08QM6q043xbhZXVtfWN4mZpa3tnd8/eP7hXUSIx8XDEItkOkCKMCuJpqhlpx5IgHjDSCsY3U7/1QKSikbjTk5h0ORoKGlKMtJH69pEfSoTTRq/qn/NeNUvDXi3r22Wn4swAl4mbkzLI0ezbX/4gwgknQmOGlOq4Tqy7KZKaYkaykp8oEiM8RkPSMVQgTlQ3nV2fwVOjDGAYSVNCw5n6eyJFXKkJD0wnR3qkFr2p+J/XSXR42U2piBNNBJ4vChMGdQSnUcABlQRrNjEEYUnNrRCPkIlDm8BKJgR38eVl4lUrVxX3tlauX+dpFMExOAFnwAUXoA4aoAk8gMEjeAav4M16sl6sd+tj3lqw8plD8AfW5w8MyJSE</latexit><latexit sha1_base64="XvyI7dpiHWIh2aJEpaLyCTfQa40=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5GSyCCylJKai7opsuKxhbaNoymU7aoTOTMDMRagj+ihsXKm79EHf+jdM2C209cOFwzr3ce08QM6q043xbhZXVtfWN4mZpa3tnd8/eP7hXUSIx8XDEItkOkCKMCuJpqhlpx5IgHjDSCsY3U7/1QKSikbjTk5h0ORoKGlKMtJH69pEfSoTTRq/qn/NeNUvDXi3r22Wn4swAl4mbkzLI0ezbX/4gwgknQmOGlOq4Tqy7KZKaYkaykp8oEiM8RkPSMVQgTlQ3nV2fwVOjDGAYSVNCw5n6eyJFXKkJD0wnR3qkFr2p+J/XSXR42U2piBNNBJ4vChMGdQSnUcABlQRrNjEEYUnNrRCPkIlDm8BKJgR38eVl4lUrVxX3tlauX+dpFMExOAFnwAUXoA4aoAk8gMEjeAav4M16sl6sd+tj3lqw8plD8AfW5w8MyJSE</latexit>

instead of the usual
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How about the tensors?

Computed them in Adshead, Pearce, Peloso, LS, Roberts 19: 

The component sourced by the fermions

always subdominant with respect 


to the standard one

so we keep the standard expression
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PART III: REVIVING CHAOTIC 
INFLATION
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General study: equations of motion for fermions in

models of inflation with stabilizer

General N=1, d=4 SUGRA with two superfields S, Φ 

with W=S f(Φ), K=K(Φ, Φ*)+g(SS*) 

Stabilizer condition S=0 ⟹W=0
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V = eK/M2
P |f(�)|2



General study: equations of motion for fermions in

models of inflation with stabilizer

Two matter fermions (one is goldstino, can be set to zero in 
unitary gauge)+helicity-1/2 part of gravitino.

So two coupled fermions θ and Υ in the end

7

PR =
1

2
(1� �5) , PL =

1

2
(1 + �5) , ⇧ij =

1

↵
(mig

k

j
�̇k �mjg

k

i
�̇k) ,

F̂ = � 4

↵�2 det g

⇣
⇠kPR (g�1)l

k
mli⇧

ij⇠†
j
+ ⇠kPL(g

�1)k
l
mli⇧ij⇠

†j
⌘
, (16)

where a prime denotes a derivative with respect to the conformal time while an overdot is a derivative with respect to
cosmic time, and where @i = @/@�i, and @i = @/@�i. Also, gi

j
⌘ @i@jK is the Kähler metric and �ij

k = (glk)�1@igj l
is the Kähler connection. The scalars satisfy the equations of motion gj

i
(�̈j + 3H�̇j + �kl

j
�̇k�̇l) + @iV = 0. Further,

we have the relation ↵2
1 + ↵†

2↵2 + ↵2�2 = 1.
We will denote the two chiral superfields by � = �1, and S = �2 (with scalar components � and s, respectively),

and we choose a minimal Kähler potential for S, but keep a general potential for �,

K(�, �̄;S, S̄) = K(�, �̄) + SS̄ . (17)

For the superpotential, we use a stabilizer model,

W = S f(�) , (18)

where f(�) is an arbitrary function and S is stabilized at 0. A consequence of this is that m|s=0 = 0, and therefore
the mass of the longitudinal helicity-3/2 component of the gravitino, m3/2 = |m|/M2

P
vanishes.

The scalar potential is

V = e
K

M2
P


(g�1)i

j

✓
@iW

⇤ +
@iK

M2
P

W ⇤
◆✓

@jW +
@jK

M2
P

W

◆
� 3

|W |2

M2
P

�

= e
K

M2
P

h���f(�) +
|s|2

M2
P

f(�)
���
2
+ g�

�
|s|2

���f 0(�) +
@�K

M2
P

f(�)
���
2
� 3

|s|2

M2
P

|f(�)|2
i
. (19)

Di↵erentiating gives @sV |s=0 = 0, @2
s
V |s=0 � 0, and @s@s̄V |s=0 � 0 showing that s = 0 is a stable critical point of

the potential. Therefore, from here on we set s = 0, and the scalar potential is simply V = e
K

M2
P |f(�)|2.

With these choices, we have

ms = e
K

2M2
P f(�) , ms� = e

K
2M2

P

h
f 0(�) +

@�K
M2

P

f(�)
i
, m� = mss = m�� = 0 , (20)

⇠s = e
K

2M2
P f(�) , ⇠� = ��0 g�

�
�̇⇤ , ⇧s� =

1

↵
e

K
2M2

P f(�)g�
�
�̇⇤ . (21)

A bit of calculation shows that

F̂ =
V � |�̇|2

2V |�̇|2
⇣
@�V �̇+ @�V �̇⇤

⌘
+

V + |�̇|2

2V |�̇|2
⇣
@�V �̇� @�V �̇⇤

⌘
�5 . (22)

Let us now proceed to diagonalize the equations of motion for the fermions. The system (15) can be derived from
the Lagrangian [33]

L = �↵a3

4k2
✓̄
h⇣

�0@̂0 + i�ikiÂ+ �0B̂
⌘
✓ � 4k2

a↵
�0⌥

i
+

� 4a

↵�2
⌥̄
h⇣

�0@̂0 � i�ikiÂ+ �0B̂† + a�0F̂ + 2ȧ�0 +
a

M2
P

�0m�0
⌘
⌥+

1

4
a↵�2�0✓

i
, (23)

where, following [31], we use the convention ✓̄ = i✓†�0 for barred spinors. We canonically normalize the fermions
defining

✓ = 2
i�ikip
↵a3

✓̃ , ⌥ =
�

2

⇣↵
a

⌘1/2
⌥̃ . (24)

The Lagrangian with normalized fields (and taking s = 0) is

L = ¯̃✓
h⇣

� �0@0 + i�iki
↵1

↵
� i

2
AB

0 �
0�5

⌘
✓̃ + i�� · k�0⌥̃

i
+

+ ¯̃⌥
h⇣

� �0@0 + i�iki
↵1

↵
+

⇣ i

2
AB

0 � aF̂5

⌘
�0�5

⌘
⌥̃+ i�� · k�0✓̃

i
. (25)

f

(helicity-3/2 gravitino is decoupled and irrelevant here)

formulae from Kallosh, Kofman, Linde and Van Proeyen 00



Does not look simple…

6

Another well-constrained quantity we have not talked about is the spectral index, .961 <⇠ ns
<⇠ .969 [39]. Its expres-

sion for this specific model is essentially the same as the standard chaotic inflation scenario, ns�1 = d logP⇣/dN ' 2/N
so that by assuming the standard value N = 60 the spectral index is automatically in agreement with observations.

To summarize this section, the globally supersymmetric model with superpotential (4), with the assumption that
the real component of the inflaton is stabilized, leads to a model of quadratic inflation that, thanks to inflaton-inflatino
interactions, is compatible with all the existing phenomenological constraints.

Of course, this model with global supersymmetry is not quite suitable for chaotic inflation, where the fields can get
Planckian values. In the next section we will thus turn our attention to the more appropriate construction of a model
of supergravity where fermions can source the spectrum of scalar perturbations.

IV. THE FULL CONSTRUCTION IN SUPERGRAVITY

Even before worrying about the role of fermions, the construction of models of inflation in supergravity is fa-
mously [26] a nontrivial task. In this paper we will consider models with a stabilizer [28–30], that allow to design
essentially any potential. The down side of these models is that they need at least two superfields – the inflaton and
the stabilizer, which makes the analysis of the fermionic sector quite cumbersome.

In Section IVA below, we will study in general terms the equations of motion for the fermionic degrees of freedom
in models with an inflaton and a stabilizer superfields. Then, in Section IVB, we will specialize our equations to the
case of a superpotential leading to quadratic inflation with small oscillations, and we will show that the analysis of
parameter space performed in the globally supersymmetric model of Section III above can be directly applied to the
full supergravity construction.

A. Equations for fermions in models of supergravity with a stabilizer

We start from a theory of two chiral multiplets coupling to the supergravity multiplet. Of the two spin-1/2 matter
fields, one is the goldstino and can be gauged away. We are thus left with two helicity-1/2 fermions, the transverse
component of the gravitino, ✓ = �i i [40–42], and the fermion ⌥ [31], a linear combination of the fermions in the
matter multiplets. The longitudinal, helicity-3/2 component of the gravitino will play no significant role (it gets a
mass proportional to the superpotential [40–42], which vanishes in the models with stabilizer we are interested in),
and we will ignore it here. The derivation of the equations of motions for fermions in general supergravity models can
be found in [31], whose convention we adopt. In particular, eq. (9.20) in that paper provides the equations of motion
for the fermions:

(@̂0 + B̂ + i�iki�
0Â) ✓ � 4

↵a
k2⌥ = 0 ,

(@̂0 � i�iki�
0Â+ B̂† + aF̂ + 2ȧ+

a

M2
P

m�0)⌥+
1

4
a↵�2✓ = 0 , (15)

where, for a Kähler potential K and a superpotential W , and considering the two superfields �i, i = 1, 2, and their
scalar components �i and �i = (�i)⇤, one has the quantities

m = e
K

2M2
P W , m = <{m}� i={m} �5 ,

mi =
⇣
@i +

1

2M2
P

@iK
⌘
m, mij =

⇣
@i +

1

2M2
P

@iK
⌘
mj � �ij

k
mk ,

@̂0 = @0 �
i

2
AB

0 �
5 , AB

0 =
i

2M2
P

(�0i@iK � �0
i
@iK) ,

H2 =
1

3M2
P

⇣
|�̇|2 + V

⌘
, V = mi(g

�1)i
j
mj � 3

|m|2

M2
P

, |�̇|2 ⌘ gi
j
�̇i �̇

j ,

↵ = 3M2
P

⇣
H2 +

|m|2

M4
P

⌘
, ↵1 = �3M2

P

⇣
H2 +

2

3
Ḣ +

|m|2

M4
P

⌘
, ↵2 = 2ṁ† ,

Â =
1

↵
(↵1 � �0↵2) , B̂ = �3

2
ȧÂ+

a

2M2
P

m�0(1 + 3Â) ,

⇠i = mi � �0gj
i
�̇j , � = 2

p
V |�̇|
↵

,



But it is!

Fermions in models of inflation with stabilizer

Making a number of field redefinitions… 
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where

F̂5 =
V + |�̇|2

2V |�̇|2
⇣
@�V �̇� @�V �̇

⇤
⌘
. (26)

Note in particular that F̂5 is pure imaginary, and that it vanishes for real �.
Let us write the Lagrangian (25) in the compact form

L = X̄
h
� �0@0 + i� · k N +M

i
X , (27)

with X = (✓̃, ⌥̃)T and N = N1 +N2�0, where

N1 =

✓
↵1/↵ 0
0 ↵1/↵

◆
, N2 =

✓
0 �
� 0

◆
, M =

✓
� i

2A
B

0 0
0 i

2A
B

0 � aF̂5

◆
�0�5 . (28)

We now redefine the fields in such a way as to remove the factor of N in front of i�iki. Using the relation ↵2�↵2
1 =

↵2�2, we can see that N†N = N2
1 +N2

2 = 1, so N is unitary. Therefore, we can define N = e2 �
0

= cos 2 +�0 sin 2 
where  is a 2⇥ 2 hermitian matrix [43]. We choose

2 =

✓
0 ⇡ � sin�1�

⇡ � sin�1� 0

◆
. (29)

It is straightforward to check that cos 2 = N1 (remember that ↵1 < 0), and sin 2 = N2. After redefining

X = e� �
0

Z, the Lagrangian takes the form

L = Z̄
h
� �0@0 + i� · k + M̃

i
Z , (30)

where the new matrix M̃ reads

M̃ ⌘ e �
0

(M � @0 ) e
� �

0

=
1

2

 ⇥
� iAB

0 + a (1� ↵1/↵) F̂5

⇤
�0�5 � ↵

↵1
�0 + a F̂5��5

� ↵

↵1
�0 + a F̂5��5

⇥
iAB

0 � a (1 + ↵1/↵) F̂5

⇤
�0�5

!
. (31)

Furthermore, we can remove the �0�5 term by redefining the fields as

Z =

✓
ei�1�

5

0

0 ei�2�
5

◆✓
 1

 2

◆
, (32)

where, in order for the �0�5 terms to vanish, �1 and �2 must satisfy

�0
1 = �1

2
AB

0 � i
a

2
(1� ↵1/↵) F̂5 ,

�0
2 =

1

2
AB

0 + i
a

2
(1 + ↵1/↵) F̂5 . (33)

Once we choose �1 and �2 that satisfy these equations, we are at last left with a coupled set of fermions with a

mass matrix of the form

✓
0 M1 + iM2�5

M1 + iM2�5 0

◆
, where M1 and M2 are defined below. Such a system can be

completely diagonalized in terms of the rotated fields

�1 =
1p
2
( 1 +  2) ,

�2 =
1p
2
( 1 �  2) , (34)

giving the final Lagrangian

L = (�̄1, �̄2)


��0@0 + i� · k + a

✓
M1 + iM2�5 0

0 �M1 � iM2�5

◆�✓
�1

�2

◆
, (35)

…where M1 and M2 are reasonably complicated functions

of the background fields


(M2=0 for Im[Φ]=0)



Specializing to our system: 

quadratic inflaton plus small instanton corrections
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where

M1 = � ↵

2↵1
�̇ cos(�1 + �2) +

i

2
F̂5� sin(�1 + �2) ,

M2 = � ↵

2↵1
�̇ sin(�1 + �2)�

i

2
F̂5� cos(�1 + �2) , (36)

that depend only on the combination

� ⌘ �1 + �2 , �̇ = i
↵1

↵
F̂5 , (37)

and where ↵, ↵1, and � are given in (16), and F̂5 is given in eq. (26). Thus, we see that we have a system of two
decoupled fermions with the same mass. This is a general result, assuming only a stabilizer model superpotential
where the Kähler potential is minimal in S. The scalar potential and fermion dynamics are determined by the choice
of function f(�) and Kähler potential, K(�, �̄). This allows a great deal of freedom in constructing a model with
fermions coupled to an inflaton with choice of inflationary potential. For example, taking � to be real will make
M2 = 0 and M1 = � ↵

2↵1
�.

In the next section, we show how this can be used to recover, in a full supergravity setting, the Lagrangian of
Section III.

B. Quadratic inflaton potential, plus small oscillations – analysis of the parameter space

We now show how we can recover the Lagrangian (6) from the full supergravity theory in (35) with the choice

f(�) = µ�+ ⇤̂2e�
p

2�
F , K(�, �̄) =

1

2
(�+ �̄)2 . (38)

We have three parameters, µ, F , and ⇤̂ with the dimensions of mass. Here, we write ⇤̂ to distinguish the parameter
of this section from the ⇤ of Section III. We take � = 1p

2
(⇢ + i') so that the scalars are canonically normalized.

During inflation, ' will act as the inflaton while ⇢ will oscillate near its minimum and will not play a significant role
in the scalar potential. The choice (38) gives the scalar potential

V = e
⇢2

M2
P

hµ2

2
(⇢2 + '2) +

p
2µ ⇤̂2e�

⇢
F

⇣
⇢ cos

'

F
� ' sin

'

F

⌘
+ ⇤̂4e�

2⇢
F

i
. (39)

We will take there to be a hierarchy of scales, ⇢ ⌧ F ⌧ MP
<⇠ '. As we will see below, therefore, ⇢ will

be nonzero, but can be made su�ciently small within a certain parameter range. As mentioned in Section III,
F ⌧ MP is motivated by embedding this model in a UV-complete theory of gravity. The scalar potential is then well
approximated by

V ' µ2

2
'2 �

p
2µ⇤̂2' sin

'

F
+ ⇤̂4 . (40)

This potential has the same for as the one given in eq. (6), namely chaotic inflation plus small oscillations. Matching
gives the relation

⇤̂2 =
p
2⇤3/F , (41)

so that monotonicity of the potential requires

p
2
⇤̂2

µF
< 1 . (42)

Once this condition is satisfied, we can use the slow-roll approximation (7) to describe the evolution of ' at zeroth
order.

We can now solve for ⇢(t) from the equations of motion obtained after keeping only the leading terms in the
potential (39) under the hierarchy ⇢ ⌧ F ⌧ MP

<⇠ ',

⇢̈+ 3H ⇢̇+

p
2µ⇤̂2

F
' sin

'

F
= 0 , (43)

no η problem for inflaton 

in imaginary part of Φ 

gives dominant 

quadratic potential

small “instanton” 

correction 


(we’ll require these to be negligible in V!)

To fix ideas…
<latexit sha1_base64="+O3V1pDVTxYaHa/zCKk/VcRBRhk="></latexit>

µ = O(1013)GeV ⇤̂ = O(1014)GeV F = O(1015)GeV
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where

M1 = � ↵

2↵1
�̇ cos(�1 + �2) +

i

2
F̂5� sin(�1 + �2) ,

M2 = � ↵

2↵1
�̇ sin(�1 + �2)�

i

2
F̂5� cos(�1 + �2) , (36)

that depend only on the combination

� ⌘ �1 + �2 , �̇ = i
↵1

↵
F̂5 , (37)

and where ↵, ↵1, and � are given in (16), and F̂5 is given in eq. (26). Thus, we see that we have a system of two
decoupled fermions with the same mass. This is a general result, assuming only a stabilizer model superpotential
where the Kähler potential is minimal in S. The scalar potential and fermion dynamics are determined by the choice
of function f(�) and Kähler potential, K(�, �̄). This allows a great deal of freedom in constructing a model with
fermions coupled to an inflaton with choice of inflationary potential. For example, taking � to be real will make
M2 = 0 and M1 = � ↵

2↵1
�.

In the next section, we show how this can be used to recover, in a full supergravity setting, the Lagrangian of
Section III.

B. Quadratic inflaton potential, plus small oscillations – analysis of the parameter space

We now show how we can recover the Lagrangian (6) from the full supergravity theory in (35) with the choice

f(�) = µ�+ ⇤̂2e�
p

2�
F , K(�, �̄) =

1

2
(�+ �̄)2 . (38)

We have three parameters, µ, F , and ⇤̂ with the dimensions of mass. Here, we write ⇤̂ to distinguish the parameter
of this section from the ⇤ of Section III. We take � = 1p

2
(⇢ + i') so that the scalars are canonically normalized.

During inflation, ' will act as the inflaton while ⇢ will oscillate near its minimum and will not play a significant role
in the scalar potential. The choice (38) gives the scalar potential

V = e
⇢2

M2
P

hµ2

2
(⇢2 + '2) +

p
2µ ⇤̂2e�

⇢
F

⇣
⇢ cos

'

F
� ' sin

'

F

⌘
+ ⇤̂4e�

2⇢
F

i
. (39)

We will take there to be a hierarchy of scales, ⇢ ⌧ F ⌧ MP
<⇠ '. As we will see below, therefore, ⇢ will

be nonzero, but can be made su�ciently small within a certain parameter range. As mentioned in Section III,
F ⌧ MP is motivated by embedding this model in a UV-complete theory of gravity. The scalar potential is then well
approximated by

V ' µ2

2
'2 �

p
2µ⇤̂2' sin

'

F
+ ⇤̂4 . (40)

This potential has the same for as the one given in eq. (6), namely chaotic inflation plus small oscillations. Matching
gives the relation

⇤̂2 =
p
2⇤3/F , (41)

so that monotonicity of the potential requires

p
2
⇤̂2

µF
< 1 . (42)

Once this condition is satisfied, we can use the slow-roll approximation (7) to describe the evolution of ' at zeroth
order.

We can now solve for ⇢(t) from the equations of motion obtained after keeping only the leading terms in the
potential (39) under the hierarchy ⇢ ⌧ F ⌧ MP

<⇠ ',

⇢̈+ 3H ⇢̇+

p
2µ⇤̂2

F
' sin

'

F
= 0 , (43)
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where

M1 = � ↵

2↵1
�̇ cos(�1 + �2) +

i

2
F̂5� sin(�1 + �2) ,

M2 = � ↵

2↵1
�̇ sin(�1 + �2)�

i

2
F̂5� cos(�1 + �2) , (36)

that depend only on the combination

� ⌘ �1 + �2 , �̇ = i
↵1

↵
F̂5 , (37)

and where ↵, ↵1, and � are given in (16), and F̂5 is given in eq. (26). Thus, we see that we have a system of two
decoupled fermions with the same mass. This is a general result, assuming only a stabilizer model superpotential
where the Kähler potential is minimal in S. The scalar potential and fermion dynamics are determined by the choice
of function f(�) and Kähler potential, K(�, �̄). This allows a great deal of freedom in constructing a model with
fermions coupled to an inflaton with choice of inflationary potential. For example, taking � to be real will make
M2 = 0 and M1 = � ↵

2↵1
�.

In the next section, we show how this can be used to recover, in a full supergravity setting, the Lagrangian of
Section III.

B. Quadratic inflaton potential, plus small oscillations – analysis of the parameter space

We now show how we can recover the Lagrangian (6) from the full supergravity theory in (35) with the choice

f(�) = µ�+ ⇤̂2e�
p

2�
F , K(�, �̄) =

1

2
(�+ �̄)2 . (38)

We have three parameters, µ, F , and ⇤̂ with the dimensions of mass. Here, we write ⇤̂ to distinguish the parameter
of this section from the ⇤ of Section III. We take � = 1p

2
(⇢ + i') so that the scalars are canonically normalized.

During inflation, ' will act as the inflaton while ⇢ will oscillate near its minimum and will not play a significant role
in the scalar potential. The choice (38) gives the scalar potential

V = e
⇢2

M2
P

hµ2

2
(⇢2 + '2) +

p
2µ ⇤̂2e�

⇢
F

⇣
⇢ cos

'

F
� ' sin

'

F

⌘
+ ⇤̂4e�

2⇢
F

i
. (39)

We will take there to be a hierarchy of scales, ⇢ ⌧ F ⌧ MP
<⇠ '. As we will see below, therefore, ⇢ will

be nonzero, but can be made su�ciently small within a certain parameter range. As mentioned in Section III,
F ⌧ MP is motivated by embedding this model in a UV-complete theory of gravity. The scalar potential is then well
approximated by

V ' µ2

2
'2 �

p
2µ⇤̂2' sin

'

F
+ ⇤̂4 . (40)

This potential has the same for as the one given in eq. (6), namely chaotic inflation plus small oscillations. Matching
gives the relation

⇤̂2 =
p
2⇤3/F , (41)

so that monotonicity of the potential requires

p
2
⇤̂2

µF
< 1 . (42)

Once this condition is satisfied, we can use the slow-roll approximation (7) to describe the evolution of ' at zeroth
order.

We can now solve for ⇢(t) from the equations of motion obtained after keeping only the leading terms in the
potential (39) under the hierarchy ⇢ ⌧ F ⌧ MP

<⇠ ',

⇢̈+ 3H ⇢̇+

p
2µ⇤̂2

F
' sin

'

F
= 0 , (43)

…but ρ<<F, so we are left with
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where

M1 = � ↵

2↵1
�̇ cos(�1 + �2) +

i

2
F̂5� sin(�1 + �2) ,

M2 = � ↵

2↵1
�̇ sin(�1 + �2)�

i

2
F̂5� cos(�1 + �2) , (36)

that depend only on the combination

� ⌘ �1 + �2 , �̇ = i
↵1

↵
F̂5 , (37)

and where ↵, ↵1, and � are given in (16), and F̂5 is given in eq. (26). Thus, we see that we have a system of two
decoupled fermions with the same mass. This is a general result, assuming only a stabilizer model superpotential
where the Kähler potential is minimal in S. The scalar potential and fermion dynamics are determined by the choice
of function f(�) and Kähler potential, K(�, �̄). This allows a great deal of freedom in constructing a model with
fermions coupled to an inflaton with choice of inflationary potential. For example, taking � to be real will make
M2 = 0 and M1 = � ↵

2↵1
�.

In the next section, we show how this can be used to recover, in a full supergravity setting, the Lagrangian of
Section III.

B. Quadratic inflaton potential, plus small oscillations – analysis of the parameter space

We now show how we can recover the Lagrangian (6) from the full supergravity theory in (35) with the choice

f(�) = µ�+ ⇤̂2e�
p

2�
F , K(�, �̄) =

1

2
(�+ �̄)2 . (38)

We have three parameters, µ, F , and ⇤̂ with the dimensions of mass. Here, we write ⇤̂ to distinguish the parameter
of this section from the ⇤ of Section III. We take � = 1p

2
(⇢ + i') so that the scalars are canonically normalized.

During inflation, ' will act as the inflaton while ⇢ will oscillate near its minimum and will not play a significant role
in the scalar potential. The choice (38) gives the scalar potential

V = e
⇢2

M2
P

hµ2

2
(⇢2 + '2) +

p
2µ ⇤̂2e�

⇢
F

⇣
⇢ cos

'

F
� ' sin

'

F

⌘
+ ⇤̂4e�

2⇢
F

i
. (39)

We will take there to be a hierarchy of scales, ⇢ ⌧ F ⌧ MP
<⇠ '. As we will see below, therefore, ⇢ will

be nonzero, but can be made su�ciently small within a certain parameter range. As mentioned in Section III,
F ⌧ MP is motivated by embedding this model in a UV-complete theory of gravity. The scalar potential is then well
approximated by

V ' µ2

2
'2 �

p
2µ⇤̂2' sin

'

F
+ ⇤̂4 . (40)

This potential has the same for as the one given in eq. (6), namely chaotic inflation plus small oscillations. Matching
gives the relation

⇤̂2 =
p
2⇤3/F , (41)

so that monotonicity of the potential requires

p
2
⇤̂2

µF
< 1 . (42)

Once this condition is satisfied, we can use the slow-roll approximation (7) to describe the evolution of ' at zeroth
order.

We can now solve for ⇢(t) from the equations of motion obtained after keeping only the leading terms in the
potential (39) under the hierarchy ⇢ ⌧ F ⌧ MP

<⇠ ',

⇢̈+ 3H ⇢̇+

p
2µ⇤̂2

F
' sin

'

F
= 0 , (43)

quadratic plus (small) wiggles
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where

F̂5 =
V + |�̇|2

2V |�̇|2
⇣
@�V �̇� @�V �̇

⇤
⌘
. (26)

Note in particular that F̂5 is pure imaginary, and that it vanishes for real �.
Let us write the Lagrangian (25) in the compact form

L = X̄
h
� �0@0 + i� · k N +M

i
X , (27)

with X = (✓̃, ⌥̃)T and N = N1 +N2�0, where

N1 =

✓
↵1/↵ 0
0 ↵1/↵

◆
, N2 =

✓
0 �
� 0

◆
, M =

✓
� i

2A
B

0 0
0 i

2A
B

0 � aF̂5

◆
�0�5 . (28)

We now redefine the fields in such a way as to remove the factor of N in front of i�iki. Using the relation ↵2�↵2
1 =

↵2�2, we can see that N†N = N2
1 +N2

2 = 1, so N is unitary. Therefore, we can define N = e2 �
0

= cos 2 +�0 sin 2 
where  is a 2⇥ 2 hermitian matrix [43]. We choose

2 =

✓
0 ⇡ � sin�1�

⇡ � sin�1� 0

◆
. (29)

It is straightforward to check that cos 2 = N1 (remember that ↵1 < 0), and sin 2 = N2. After redefining

X = e� �
0

Z, the Lagrangian takes the form

L = Z̄
h
� �0@0 + i� · k + M̃

i
Z , (30)

where the new matrix M̃ reads

M̃ ⌘ e �
0

(M � @0 ) e
� �

0

=
1

2

 ⇥
� iAB

0 + a (1� ↵1/↵) F̂5

⇤
�0�5 � ↵

↵1
�0 + a F̂5��5

� ↵

↵1
�0 + a F̂5��5

⇥
iAB

0 � a (1 + ↵1/↵) F̂5

⇤
�0�5

!
. (31)

Furthermore, we can remove the �0�5 term by redefining the fields as

Z =

✓
ei�1�

5

0

0 ei�2�
5

◆✓
 1

 2

◆
, (32)

where, in order for the �0�5 terms to vanish, �1 and �2 must satisfy

�0
1 = �1

2
AB

0 � i
a

2
(1� ↵1/↵) F̂5 ,

�0
2 =

1

2
AB

0 + i
a

2
(1 + ↵1/↵) F̂5 . (33)

Once we choose �1 and �2 that satisfy these equations, we are at last left with a coupled set of fermions with a

mass matrix of the form

✓
0 M1 + iM2�5

M1 + iM2�5 0

◆
, where M1 and M2 are defined below. Such a system can be

completely diagonalized in terms of the rotated fields

�1 =
1p
2
( 1 +  2) ,

�2 =
1p
2
( 1 �  2) , (34)

giving the final Lagrangian

L = (�̄1, �̄2)


��0@0 + i� · k + a

✓
M1 + iM2�5 0

0 �M1 � iM2�5

◆�✓
�1

�2

◆
, (35)

in this regime
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FIG. 2: Results of exact numerical integration (solid, blue) and analytical approximations, eq. (54), (dashed, orange) for the
quantities M1(t) and M2(t). The parameters used for these plots are µ = 5 ⇥ 10�6 MP , F = 5 ⇥ 10�4 MP . At these times
' ' 13.9MP .

and

�̇ ' 4

3

µM2
P

'2
� 2

p
2
⇤̂2

F
cos('/F ) . (53)

Finally, inserting (50), (51), (52), and (53) into (36), we get the fermion mass,

M1 + iM2�
5 ' µ

⇣2M2
P

3'2
�

p
2
⇤̂2

µF

�
cos('/F ) + i sin('/F )�5

�⌘
. (54)

The accuracy of this approximation is shown in Figure 2, for a choice of parameters that corresponds approximately
to the center of the white region in Figure 1.

By translating to the parameters of Section III using the identification (41), we recover the fermionic part of the
Lagrangian of equation (6). In the supergravity case, the constant part of the fermionic mass (i.e., corresponding to
the term proportional to µ in the first line of eq. (6)) is slow-roll suppressed, and we can neglect it here as we did in
Section III.

To conclude, with the redefinition (41) the plot in Figure 1 applies also to the supergravity model. In particular,
this shows that the supergravity model defined by eqs. (17), (18) and (38) there is a regime of parameter space where
the data can be in agreement with all CMB constraints while the inflaton potential is, up to corrections that we want
to be negligible, simply quadratic.

V. DISCUSSION AND CONCLUSIONS

Standard chaotic inflation is ruled out by experiment. It predicts too large a value for the tensor-to-scalar ratio. The
tensor spectrum is determined by the energy scale of inflation, which in the simple model of quadratic inflation is fixed
by the normalization of the scalar spectrum. We have shown in this paper that a source-dominated scalar spectrum
can allow to lower the energy scale of inflation, thereby bringing chaotic inflation back into the observationally allowed
regime.

In the papers [1, 2] it was shown that fermions coupled to an axion inflaton can lead to a source-dominated scalar
spectrum and a vacuum-dominated tensor spectrum. More specifically, since the vacuum perturbations and sourced
perturbations of the scalar modes are statistically independent, the power spectrum is the sum, P⇣ = Pvacuum

⇣
+

Psourced
⇣

, and similarly for the tensor spectrum. Therefore, the fermion-sourced model with 2.2⇥ 10�9 ' Psourced
⇣

�
Pvacuum
⇣

/ V / Pt, allows one to lower the energy scale of inflation. With Pt dominated by the vacuum perturbations
one can then lower the value of the tensor-to-scalar ratio.

This work contains two main results. First, we have shown that the model of [1, 2] can be e↵ectively constructed
from a globally supersymmetric model with superpotential (4). This superpotential generates a quadratic scalar
potential, plus small oscillations. The fermion sector produces the inflaton-fermion coupling studied in [1, 2] with a
negligible additional fermion mass term. In particular, this applies naturally to the model of [14–16], that naturally
leads to a quadratic inflaton potential using monodromy. Thus, the analysis from [1, 2] applies, allowing for the
lowering of r while maintaining ns una↵ected and without generating large non-Gaussianities. While the model is
subject to a number of constraints, there is a region, in white in Figure 1, where those constraints are all satisfied.

Second, we have examined supergravity with two chiral multiplets with one of the scalars acting as a stabilizer.
In Section IVA we have written down the general equations of motions for the fermions in this class of models.

negligible
11
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FIG. 2: Results of exact numerical integration (solid, blue) and analytical approximations, eq. (54), (dashed, orange) for the
quantities M1(t) and M2(t). The parameters used for these plots are µ = 5 ⇥ 10�6 MP , F = 5 ⇥ 10�4 MP . At these times
' ' 13.9MP .

and

�̇ ' 4

3

µM2
P

'2
� 2

p
2
⇤̂2

F
cos('/F ) . (53)

Finally, inserting (50), (51), (52), and (53) into (36), we get the fermion mass,

M1 + iM2�
5 ' µ

⇣2M2
P

3'2
�

p
2
⇤̂2

µF

�
cos('/F ) + i sin('/F )�5

�⌘
. (54)

The accuracy of this approximation is shown in Figure 2, for a choice of parameters that corresponds approximately
to the center of the white region in Figure 1.

By translating to the parameters of Section III using the identification (41), we recover the fermionic part of the
Lagrangian of equation (6). In the supergravity case, the constant part of the fermionic mass (i.e., corresponding to
the term proportional to µ in the first line of eq. (6)) is slow-roll suppressed, and we can neglect it here as we did in
Section III.

To conclude, with the redefinition (41) the plot in Figure 1 applies also to the supergravity model. In particular,
this shows that the supergravity model defined by eqs. (17), (18) and (38) there is a regime of parameter space where
the data can be in agreement with all CMB constraints while the inflaton potential is, up to corrections that we want
to be negligible, simply quadratic.

V. DISCUSSION AND CONCLUSIONS

Standard chaotic inflation is ruled out by experiment. It predicts too large a value for the tensor-to-scalar ratio. The
tensor spectrum is determined by the energy scale of inflation, which in the simple model of quadratic inflation is fixed
by the normalization of the scalar spectrum. We have shown in this paper that a source-dominated scalar spectrum
can allow to lower the energy scale of inflation, thereby bringing chaotic inflation back into the observationally allowed
regime.

In the papers [1, 2] it was shown that fermions coupled to an axion inflaton can lead to a source-dominated scalar
spectrum and a vacuum-dominated tensor spectrum. More specifically, since the vacuum perturbations and sourced
perturbations of the scalar modes are statistically independent, the power spectrum is the sum, P⇣ = Pvacuum

⇣
+

Psourced
⇣

, and similarly for the tensor spectrum. Therefore, the fermion-sourced model with 2.2⇥ 10�9 ' Psourced
⇣

�
Pvacuum
⇣

/ V / Pt, allows one to lower the energy scale of inflation. With Pt dominated by the vacuum perturbations
one can then lower the value of the tensor-to-scalar ratio.

This work contains two main results. First, we have shown that the model of [1, 2] can be e↵ectively constructed
from a globally supersymmetric model with superpotential (4). This superpotential generates a quadratic scalar
potential, plus small oscillations. The fermion sector produces the inflaton-fermion coupling studied in [1, 2] with a
negligible additional fermion mass term. In particular, this applies naturally to the model of [14–16], that naturally
leads to a quadratic inflaton potential using monodromy. Thus, the analysis from [1, 2] applies, allowing for the
lowering of r while maintaining ns una↵ected and without generating large non-Gaussianities. While the model is
subject to a number of constraints, there is a region, in white in Figure 1, where those constraints are all satisfied.

Second, we have examined supergravity with two chiral multiplets with one of the scalars acting as a stabilizer.
In Section IVA we have written down the general equations of motions for the fermions in this class of models.
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where

F̂5 =
V + |�̇|2

2V |�̇|2
⇣
@�V �̇� @�V �̇

⇤
⌘
. (26)

Note in particular that F̂5 is pure imaginary, and that it vanishes for real �.
Let us write the Lagrangian (25) in the compact form

L = X̄
h
� �0@0 + i� · k N +M

i
X , (27)

with X = (✓̃, ⌥̃)T and N = N1 +N2�0, where

N1 =

✓
↵1/↵ 0
0 ↵1/↵

◆
, N2 =

✓
0 �
� 0

◆
, M =

✓
� i

2A
B

0 0
0 i

2A
B

0 � aF̂5

◆
�0�5 . (28)

We now redefine the fields in such a way as to remove the factor of N in front of i�iki. Using the relation ↵2�↵2
1 =

↵2�2, we can see that N†N = N2
1 +N2

2 = 1, so N is unitary. Therefore, we can define N = e2 �
0

= cos 2 +�0 sin 2 
where  is a 2⇥ 2 hermitian matrix [43]. We choose

2 =

✓
0 ⇡ � sin�1�

⇡ � sin�1� 0

◆
. (29)

It is straightforward to check that cos 2 = N1 (remember that ↵1 < 0), and sin 2 = N2. After redefining

X = e� �
0

Z, the Lagrangian takes the form

L = Z̄
h
� �0@0 + i� · k + M̃

i
Z , (30)

where the new matrix M̃ reads

M̃ ⌘ e �
0

(M � @0 ) e
� �

0

=
1

2

 ⇥
� iAB

0 + a (1� ↵1/↵) F̂5

⇤
�0�5 � ↵

↵1
�0 + a F̂5��5

� ↵

↵1
�0 + a F̂5��5

⇥
iAB

0 � a (1 + ↵1/↵) F̂5

⇤
�0�5

!
. (31)

Furthermore, we can remove the �0�5 term by redefining the fields as

Z =

✓
ei�1�

5

0

0 ei�2�
5

◆✓
 1

 2

◆
, (32)

where, in order for the �0�5 terms to vanish, �1 and �2 must satisfy

�0
1 = �1

2
AB

0 � i
a

2
(1� ↵1/↵) F̂5 ,

�0
2 =

1

2
AB

0 + i
a

2
(1 + ↵1/↵) F̂5 . (33)

Once we choose �1 and �2 that satisfy these equations, we are at last left with a coupled set of fermions with a

mass matrix of the form

✓
0 M1 + iM2�5

M1 + iM2�5 0

◆
, where M1 and M2 are defined below. Such a system can be

completely diagonalized in terms of the rotated fields

�1 =
1p
2
( 1 +  2) ,

�2 =
1p
2
( 1 �  2) , (34)

giving the final Lagrangian

L = (�̄1, �̄2)


��0@0 + i� · k + a

✓
M1 + iM2�5 0

0 �M1 � iM2�5

◆�✓
�1

�2

◆
, (35)

in this regime
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FIG. 2: Results of exact numerical integration (solid, blue) and analytical approximations, eq. (54), (dashed, orange) for the
quantities M1(t) and M2(t). The parameters used for these plots are µ = 5 ⇥ 10�6 MP , F = 5 ⇥ 10�4 MP . At these times
' ' 13.9MP .

and

�̇ ' 4

3

µM2
P

'2
� 2

p
2
⇤̂2

F
cos('/F ) . (53)

Finally, inserting (50), (51), (52), and (53) into (36), we get the fermion mass,

M1 + iM2�
5 ' µ

⇣2M2
P

3'2
�

p
2
⇤̂2

µF

�
cos('/F ) + i sin('/F )�5

�⌘
. (54)

The accuracy of this approximation is shown in Figure 2, for a choice of parameters that corresponds approximately
to the center of the white region in Figure 1.

By translating to the parameters of Section III using the identification (41), we recover the fermionic part of the
Lagrangian of equation (6). In the supergravity case, the constant part of the fermionic mass (i.e., corresponding to
the term proportional to µ in the first line of eq. (6)) is slow-roll suppressed, and we can neglect it here as we did in
Section III.

To conclude, with the redefinition (41) the plot in Figure 1 applies also to the supergravity model. In particular,
this shows that the supergravity model defined by eqs. (17), (18) and (38) there is a regime of parameter space where
the data can be in agreement with all CMB constraints while the inflaton potential is, up to corrections that we want
to be negligible, simply quadratic.

V. DISCUSSION AND CONCLUSIONS

Standard chaotic inflation is ruled out by experiment. It predicts too large a value for the tensor-to-scalar ratio. The
tensor spectrum is determined by the energy scale of inflation, which in the simple model of quadratic inflation is fixed
by the normalization of the scalar spectrum. We have shown in this paper that a source-dominated scalar spectrum
can allow to lower the energy scale of inflation, thereby bringing chaotic inflation back into the observationally allowed
regime.

In the papers [1, 2] it was shown that fermions coupled to an axion inflaton can lead to a source-dominated scalar
spectrum and a vacuum-dominated tensor spectrum. More specifically, since the vacuum perturbations and sourced
perturbations of the scalar modes are statistically independent, the power spectrum is the sum, P⇣ = Pvacuum

⇣
+

Psourced
⇣

, and similarly for the tensor spectrum. Therefore, the fermion-sourced model with 2.2⇥ 10�9 ' Psourced
⇣

�
Pvacuum
⇣

/ V / Pt, allows one to lower the energy scale of inflation. With Pt dominated by the vacuum perturbations
one can then lower the value of the tensor-to-scalar ratio.

This work contains two main results. First, we have shown that the model of [1, 2] can be e↵ectively constructed
from a globally supersymmetric model with superpotential (4). This superpotential generates a quadratic scalar
potential, plus small oscillations. The fermion sector produces the inflaton-fermion coupling studied in [1, 2] with a
negligible additional fermion mass term. In particular, this applies naturally to the model of [14–16], that naturally
leads to a quadratic inflaton potential using monodromy. Thus, the analysis from [1, 2] applies, allowing for the
lowering of r while maintaining ns una↵ected and without generating large non-Gaussianities. While the model is
subject to a number of constraints, there is a region, in white in Figure 1, where those constraints are all satisfied.

Second, we have examined supergravity with two chiral multiplets with one of the scalars acting as a stabilizer.
In Section IVA we have written down the general equations of motions for the fermions in this class of models.

2 Fermion production during inflation

In this section we study the production of fermions during axion inflation and obtain solutions
to the Dirac equation for a fermion coupled to the slowly-rolling (�̇ =constant) pseudoscalar.
In particular, we compute the resulting occupation number for the right- and the left-handed
components of the fermion.

We consider the theory of a pseudoscalar inflaton � interacting with a Dirac fermion X
through a derivative interaction with coupling constant 1/f

L = a4
⇢
X̄


i

✓
�̃µ @µ +

3

2

a0

a
�̃0

◆
�m� 1

f
�̃µ �5 @µ�

�
X +

1

2
(@�)2 � V (�)

�
. (2.1)

Here the �̃-matrices in flat Friedmann-Lemaître-Robertson-Walker spacetime with scale factor
a are related to those in Minkowski spacetime by �̃µ = �µ/a, while �5 = i a4 �̃0�̃1�̃2�̃3 =
i �0�1�2�3. We neglect metric fluctuations1 and treat the background as fixed de Sitter
spacetime.

Throughout this work we use conformal time and “mostly minus” signature for our
metric, and we use the Dirac representation for the � matrices. Specifically,

�0 =

✓
1 0
0 �1

◆
, �i =

✓
0 �i

��i 0

◆
, �5 =

✓
0 1

1 0

◆
. (2.2)

The fermions are canonically normalized by redefining Y = X a3/2, so that

L = Ȳ


i �µ @µ �ma� 1

f
�µ �5 @µ�

�
Y +

1

2
a2⌘µ⌫@µ�@⌫�� a4V (�) . (2.3)

Next, we perform one more redefinition of the fermion field,

Y = e�i�
5
�/f  , (2.4)

which yields the Lagrangian

L =  ̄

⇢
i �µ @µ �ma


cos

✓
2�

f

◆
� i�5 sin

✓
2�

f

◆��
 +

1

2
a2⌘µ⌫@µ�@⌫�� a4V (�) . (2.5)

The latter field redefinition is motivated by two considerations. First, as discussed in the
introduction, by writing the Lagrangian in terms of  it is apparent that the inflaton decouples
from the fermion in the limit m ! 0. This decoupling is not as evident when the Lagrangian
is in the form of eq. (2.3). Second, in order to determine the occupation number for the
fermions we resort to the usual technique of the Bogolyubov coefficients, which relies on the
diagonalization of the portion of Hamiltonian that is quadratic in the fields. In the formulation
of eq. (2.3) the momentum conjugate to �, which is needed to compute the Hamiltonian, is
given by ⇧� = a2 �̇� 1

f
Ȳ �0�5Y , which contains a term that is quadratic in the fermion field

(this should be compared with the simpler expression ⇧� = a2 �̇ obtained in the formulation
in eq. (2.5)). This leads to a different definition of the quadratic part of the Hamiltonian
which, in turn, leads to the unphysical result that certain modes of the fermion are excited
by the rolling of the inflaton even in the limit m ! 0, where we would expect these degrees of

1More precisely, we study scalar metric perturbations in the spatially flat gauge, neglecting the presence
of the shift and lapse scalar factors which provide slow-roll suppressed contributions to the spectra.
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ψ

negligible

…equivalent to the system discussed in part II!



Importing the results from part II…

Imposing constraints:

 Monotonicity of potential 
 Energies below 4πF cutoff

 r<.04
 Negligible backreaction of fermions on background

 No oscillations in scalar power spectrum

 No nongaussianities

 Scalar spectral index



2x10-4 5x10-4 10-3 2x10-3
F/MP

2x10-6

5x10-6

10-5
μ /MP

Importing the results from part II…

Three parameters. 

Eliminate Λ with normalization of scalar spectrum^

ALLOWED!

r

monotonicity

EFT



Summing up

 Natural generalization of quadratic potential to sugra,

with inclusion of instantons, in agreement with all existing data

 Lower bound on r≳.004, to be probed in next O(10) years

 Analysis easily generalizable to monomial potentials (monodromy)
 Oscillations in scalar power spectrum in monodromy models:

do they survive in sugra models?



Conclusion

Monomial inflation is beautiful…

…but in its simplest form is ruled out by non observation of tensors

“Natural” embedding in supergravity can revive it…

…at least for a few years


