Microscopic black holes in neutrino telescopes, colliders and cosmology

Ningqiang Song

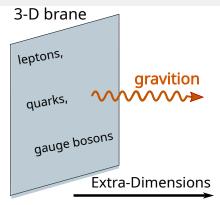
McDonald Institute, Queen's University & Perimeter Institute

Sep 14th 2020

UC Davis Seminar

Introduction

- 2 Discovery of Microscopic Black Holes at Neutrino Telescopes
- 3 A Black Hole Portal to Dark Matter at Colliders
- 4 Black Hole Imprints in the Early Universe

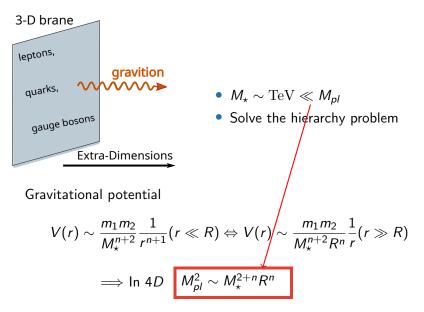

5 Conclusions

1 Introduction

- 2 Discovery of Microscopic Black Holes at Neutrino Telescopes
- 3 A Black Hole Portal to Dark Matter at Colliders
- 4 Black Hole Imprints in the Early Universe

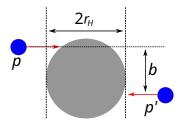
5 Conclusions

Large Extra Dimensions (LEDs)


ADD, PLB429(1998), PRD59(1999)086004

Arkani-Hamed, Dimopoulos and Dvali (ADD), 1998

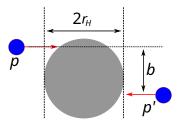
- SM particles confined to the 3-D "brane"
- Gravitions can propagate in the 3+n-D bulk "bulk"


UC Davis Seminar

Large Extra Dimensions (LEDs)

UC Davis Seminar

Microscopic Black Holes and Hoop conjecture

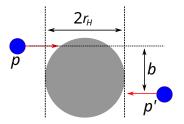


BH production only allowed if the impact parameter

$$b \leq b_{\max} = 2r_H(E_{CM}, n, M_{\star})$$

UC Davis Seminar

Microscopic Black Holes and Hoop conjecture


Equivalently, BH production is allowed if

$$E_{cm} \gtrsim M_{\star}$$

BHs can be produced in high energy particle collisions:

- Cosmic neutrino-nucleon scattering
- High energy cosmic ray detection
- Cosmic ray-cosmic ray collision
- pp collision in FCC
- Hot plasma in the early universe

Microscopic Black Holes and Hoop conjecture

BH production allowed if the impact parameter $b \leq b_{\max}$

For pp collision the cross section

$$\sigma^{pp o BH} = \int_{M_*^2/s}^1 du \int_u^1 \frac{dv}{v} \pi b_{\max}^2 \sum_{i,j} f_i(v,Q) f_j(u/v,Q)$$

D. Dai et al. Phys.Rev. D77 (2008)

UC Davis Seminar

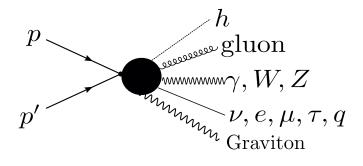
Current Limits

<i>n</i> =1 <mark>k</mark>	illed		ra dimensi	k planck scale k planck scale k blanck scale k planck scale k planck planck planck planck scale k planck scale
Method	Reference	n	$\log_{10}(E_*/e$	V) $\log_{10}(L/m)$
Grav force	[26]	2	12.5	-4.36
SN1987A	[27]	2	13.4	-6.18
		3	12.4	-9.10
NS cooling	[28]	1		-4.35
		2		-9.81
		3		-11.6
		4		-12.5
		5		-13.0
		6		-13.4
CMS	[29]	2	13.0	
		3	12.9	
		4	12.8	$M_{\star} > 5 \sim 10 \text{ TeV}$
		5	12.8	
		6	12.7	

Mack, McNees PRD 2019/1809.05089

UC Davis Seminar

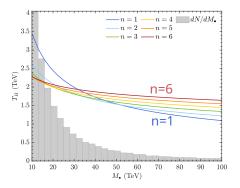
Current Limits


n = 1 is excluded by gravity at the solar system scale

Some energy scales:

- $E_{CM} = 5 \text{ TeV} = \sqrt{2m_p E_{\nu}}$ $\Rightarrow E_{\nu} \simeq 13 \text{ PeV}$
- *E_{CM}* = 13 TeV at LHC
- $E_{CM}\simeq 100~{
 m TeV}$ at FCC
- $E_p\sim$ 50 EeV at GZK limit

<i>n</i> =1 killed			$\frac{\text{extra dimensions}}{\text{bulk Planck scale}}$			
Method	Reference	n	$\log_{10}(E_{*}/$	eV) $\log_{10}(L/m)$		
Grav force	[26]	2	12.5	-4.36		
SN1987A	[27]	2	13.4	-6.18		
		3	12.4	-9.10		
NS cooling	[28]	1		-4.35		
		2		-9.81		
		3		-11.6		
		4		-12.5		
		5		-13.0		
		6		-13.4		
CMS	[29]	2	13.0			
		3	12.9			
		4	12.8	$M_{\star} > 5 \sim 10$ Te		
		5	12.8			
		6	12.7			


Hawking Radiation

BHs may decay to all possible degree of freedom, including SM and possible BSM particles

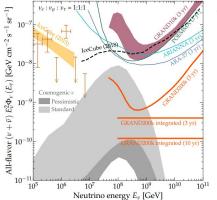
Hawking Radiation

Song, Vincent PRL 2020/arXiv:1907.08628

- Hawking temperature $T_{H} = \frac{n+1}{4\pi r_{H}(M_{BH}, n, M_{\star})}$
- Graybody distribution spectrum

$$rac{d {\it E}}{dt} \propto rac{\omega}{\exp(\omega/T_{BH})\mp 1} rac{d\omega}{2\pi}$$

1 Introduction


2 Discovery of Microscopic Black Holes at Neutrino Telescopes

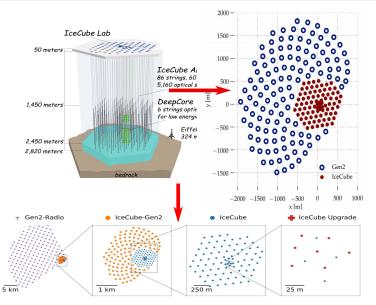
3 A Black Hole Portal to Dark Matter at Colliders

4 Black Hole Imprints in the Early Universe

5 Conclusions

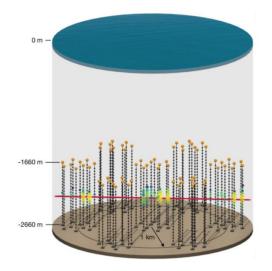
High Energy Neutrino Flux

GRAND Collaboration/1810.09994


- Atmospheric neutrinos already detected in IceCube
- Need larger detector for ultra high energy cosmogenic neutrinos

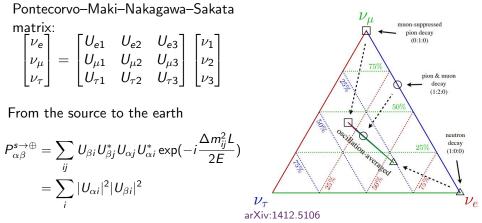
1	Dep. Energy	Time	Decl.	R.A.	Med. Angular	Event
ID	(TeV)	(MJD)	(deg.)	(deg.)	Error (deg.)	Type
1	$47.6^{+6.5}_{-5.4}$	55351	-1.8	35.2	16.3	Shower
2	117^{+15}_{-15}	55351	-28.0	282.6	25.4	Shower
3	$78.7^{+10.8}_{-8.7}$	55451	-31.2	127.9	$\lesssim 1.4$	Track
4	165^{+20}_{-15}	55477	-51.2	169.5	7.1	Shower
5	$71.4^{+9.0}_{-9.0}$	55513	-0.4	110.6	$\lesssim 1.2$	Track
6	$28.4^{+2.7}_{-2.5}$	55568	-27.2	133.9	9.8	Shower
7	$34.3^{+3.5}_{-4.3}$	55571	-45.1	15.6	24.1	Shower
8	$32.6^{+10.3}_{-11.1}$	55609	-21.2	182.4	$\lesssim 1.3$	Track
9	$63.2^{+7.1}_{-8.0}$	55686	33.6	151.3	16.5	Shower
10	$97.2^{+10.4}_{-12.4}$	55695	-29.4	5.0	8.1	Shower
11	$88.4^{+12.5}_{-10.7}$	55715	-8.9	155.3	16.7	Shower
12	$104 {}^{+13}_{-13}$	55739	-52.8	296.1	9.8	Shower
13	253^{+26}_{-22}	55756	40.3	67.9	$\lesssim 1.2$	Track
14	1041^{+132}_{-144}	55783	-27.9	265.6	13.2	Shower
15	$57.5^{+8.3}_{-7.8}$	55783	-49.7	287.3	19.7	Shower
16	$30.6^{+3.6}_{-3.5}$	55799	-22.6	192.1	19.4	Shower
17	200^{+27}_{-27}	55800	14.5	247.4	11.6	Shower
18	$31.5^{+4.6}_{-3.3}$	55924	-24.8	345.6	$\lesssim 1.3$	Track
19	$71.5^{+7.0}_{-7.2}$	55926	-59.7	76.9	9.7	Shower
20	1141_{-133}^{+143}	55929	-67.2	38.3	10.7	Shower
21	$30.2^{+3.5}_{-3.3}$	55937	-24.0	9.0	20.9	Shower
22	220^{+21}_{-24}	55942	-22.1	293.7	12.1	Shower
23	$82.2^{+8.6}_{-8.4}$	55950	-13.2	208.7	$\lesssim 1.9$	Track
24	$30.5^{+3.2}_{-2.6}$	55951	-15.1	282.2	15.5	Shower
25	$33.5^{+4.9}_{-5.0}$	55967	-14.5	286.0	46.3	Shower
26	210^{+29}_{-26}	55979	22.7	143.4	11.8	Shower
27	$60.2^{+5.6}_{-5.6}$	56009	-12.6	121.7	6.6	Shower
28	$46.1_{-4.4}^{+5.7}$	56049	-71.5	164.8	$\lesssim 1.3$	Track

IceCube Collaboration/1311.5288


UC Davis Seminar

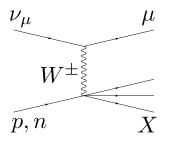
IceCube-Gen2

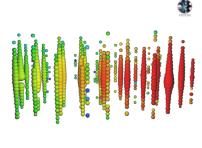
IceCube Collaboration UC Davis Seminar


Pacific Ocean Neutrino Experiment (P-ONE)

P-ONE Collaboration/2005.09493

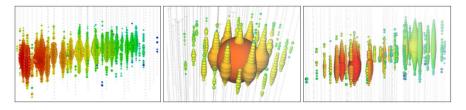
UC Davis Seminar


High Energy Neutrino Flavor Compositions



The flavor composition at the earth is constrained regardless of the flavor composition at the source

Event Topologies at IceCube: Standard Model



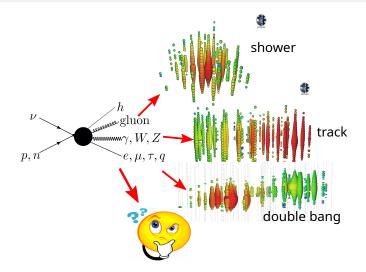
icecube.wisc.edu

Event Topologies at IceCube: Standard Model

arXiv:2008.04323

SM tracks:

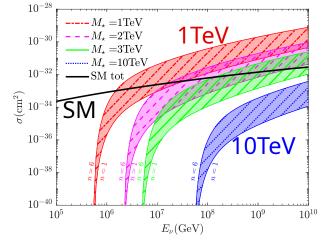
- ν_{μ} charged current
- u_{τ} charged current with high energy τ track


SM showers:

- ν_e charged current
- All ν neutral current
- u_{τ} charged current with low energy τ decay

SM double-bangs:

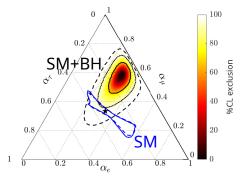
 ν_τ charged current with high energy τ decay


Event Topologies at IceCube: Black Holes

All Standard Model topologies are expected in black hole events

UC Davis Seminar

Black Hole Production Cross Section

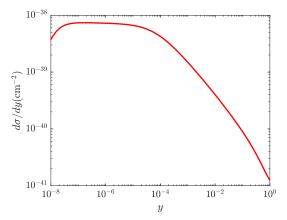


The $\nu - N$ scattering cross section

$$\sigma^{\nu N \to BH} = \int_{M_{\star}^2/s}^1 du \pi b_{\max}^2 \sum_i f_i(u, Q)$$

UC Davis Seminar

Reconstructed Flavor Composition From Black Holes

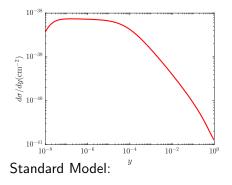


- more events expected from the same flux if $M_{\star} = 3$ TeV
- more tracks from μ , au
- rarer double bang due to energy asymmetry condition

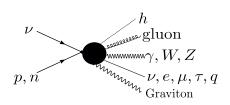
Mack, Song & Vincent JHEP 2020/1912.06656

	shower	track	double bang
$\nu_e \mathrm{SM}$	28.58	0	0
$ u_{\mu}$ SM	2.31	8.31	0
ν_{τ} SM	5.07	5.39	2.83
All Flavor Total SM	35.96	13.70	2.83
All Flavor Total BH	62.96	36.36	0.20

Standard Model Events vs Black Holes



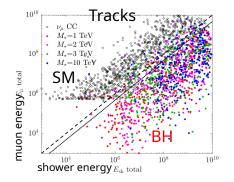
Standard Model:


- $y = 1 E_I / E_{\nu}$
- cross section peaks at large E_l

 $\underset{\text{UC Davis Seminar}}{\text{Most neutrino energy is transferred to final state lepton/neutrino}}_{\text{Ningqiang Song}}$

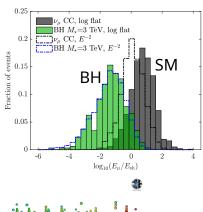
Standard Model Events vs Black Holes

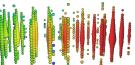
- $y = 1 E_I/E_\nu$
- cross section peaks at large E_l



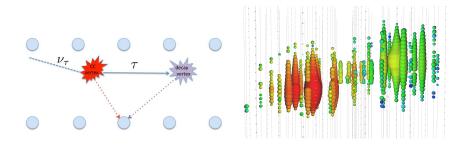
Black holes:

- BH produces N ~ 6 ~ 20 primary particles
- $E_I \sim E_{\nu}/N$


Lepton energy in black holes tends to be smaller than in SM!

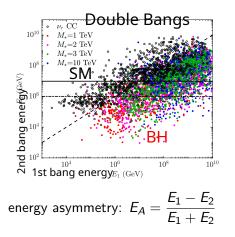

Muon Energy Ratio in BH Tracks

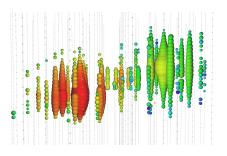
Tracks are produced in $\nu_{\mu,\tau}$ CC: $\nu_{\mu,\tau} + n \rightarrow \mu(\tau) + X$


- SM: $E_{\mu} > E_{hadron}$
- Black holes: $E_{hadron} > E_{\mu}$

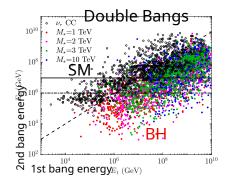
Lower track energy to shower energy ratio expected in BH events

UC Davis Seminar

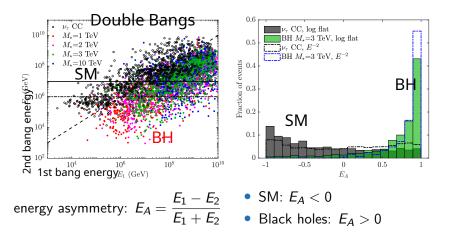



icecube.wisc.edu

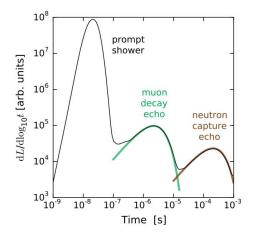
Double bangs are produced in ν_{τ} CC: $\nu_{\tau} + n \rightarrow \tau + X$


 τ travels certain distance before decay inside the detector

UC Davis Seminar

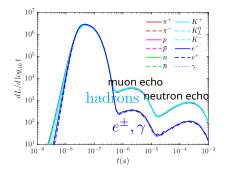


- SM: $E_1 < E_2$
- Black holes: $E_1 > E_2$



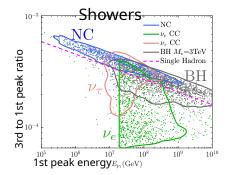
Mostly positive energy asymmetry expected in black hole events

Cherenkov Light Echos

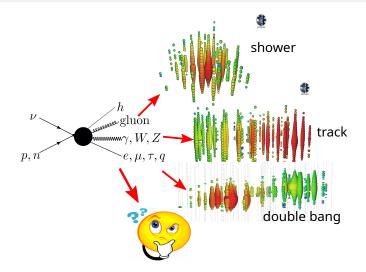


Li, Bustamante, Beacom PRL 2019/1606.06290

Particles from neutrino-nucleon interaction deposit their energy promptly within 10^{-7} s, secondary muons decay at $\sim 1-10~\mu s$, and neutrons are captured at $\sim 200~\mu s$

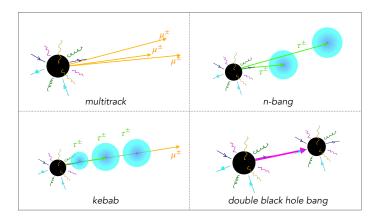

UC Davis Seminar

Cherenkov light echos


- Electromagnetic shower: electrons and gamma produce EM showers, featured with less muons and neutrons in the final states
- Hadronic shower: hadrons produce hadronic showers, featured with copious muons and neutrons in the final states
- Muon echo and neutron echo are closely correlated

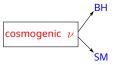
Cherenkov light echos

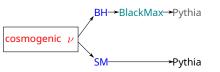
- ν_e CC: Energetic EM shower with less energetic hadronic shower
- ν_τ CC: EM shower or hadronic shower depending on decay product
- NC: Energetic hadronic shower
- Black holes: Energetic hadronic shower with less energetic EM shower


Event Topologies at IceCube: Black Holes

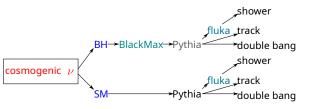
All Standard Model topologies are expected in black hole events

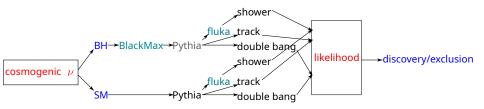
UC Davis Seminar

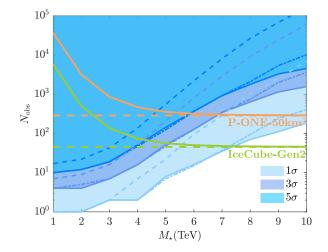

More Exciting Topologies!


- Multitrack: BHs produce multiple muons or taus
- *n*-bang: BHs produce multiple taus decaying in the detector
- Kebab: Multiple taus decay in the detector along with a track
- Double BH bang: BH decay product produces another BH

UC Davis Seminar


Analysis


Analysis


Analysis

Analysis

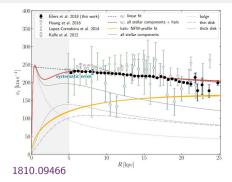
Black Hole Discovery Prospects

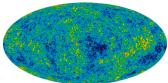
Mack, Song, Vincent JHEP 2020/arXiv:1912.06656

UC Davis Seminar

1 Introduction

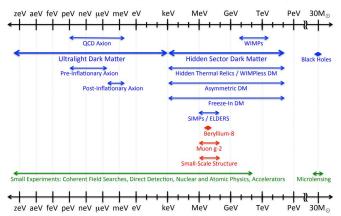
2 Discovery of Microscopic Black Holes at Neutrino Telescopes


3 A Black Hole Portal to Dark Matter at Colliders


4 Black Hole Imprints in the Early Universe

5 Conclusions

Dark Matter

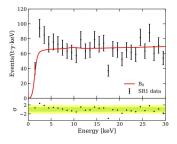


- Dark matter makes up $\sim 27\%$ of the universe, and $\sim 85\%$ of matter
- Dark matter is weakly interacting
- Fermion $M_{DM} \gtrsim 100 190 \text{ eV}$ 1903.01862
- Boson $M_{DM} \gtrsim 10^{-22} 10^{-20} \text{ eV}$ 2001.04403

Dark Matter Candidates

Dark Sector Candidates, Anomalies, and Search Techniques

UC Cosmic Visions 2017/1707.04591

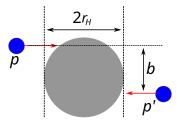

UC Davis Seminar

Dark Matter and XENONT1T Excess

Observation of Excess Electronic Recoil Events in XENON1T

E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, V. C. Antochi, E. Angelino, J. R. Ang Baudis, B. Bauermeister, L. Bellagamba, M. L. Benabderrahmane, T. Berger, A. Brown, E. Brown, S. Bruer M. R. Cardoso, D. Cichon, B. Cimmino, M. Clark, D. Coderre, A. P. Collin, J. Conrad, J. P. Cussonneau, M. A. Di Glovanni, R. Di Stefano, S. Diglio, A. Eykov, G. Eurin, A. D. Ferela, W. Fulgione, P. Gaemers, R. Ga Hasterok, C. Hils, K. Hiraide, L. Hoetzsch, J. Howlett, M. Iacovacci, Y. Itow, F. Joerg, N. Kato, S. Kazama, I Landsman, R. F. Lang, L. Levinson, Q. Lin, S. Lindemann, M. Lindner, F. Lombard, J. Long, J. A. M. Lopes Mahlstedt, A. Mancuso, L. Manenti, A. Manfredini, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Me Messina, K. Miuchi, K. Mizukoshi, A. Molinario, K. Morá, S. Moriyama, Y. Mosbacher, M. Murra, J. Nagano Palacio, B. Pelsers, R. Peres, J. Pienaar, V. Pizzella, G. Plante, J. Qin, H. Qin, D. Ramirce, Gancia et al. (5)

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT determine an unprecedented by low background rate of 76 ± 2 main ventrative (Hyb between 1-30 keV). An excess over thrown backgrower and unprecedented by low background rate of 76 ± 2 main ventrative (Hyb between 1-30 keV). An excess over thrown backgrower does and prominent between 2-3 keV. The solar axion model has a 3.5 σ significance, and a three-dimension to a solar solar couplings to electrons, photoes, and nucleons. This surface is inscribed in the cuboid defined by $g_{ac} = g_{ac}g_{ac}^{ac} = (A + O + O^{-18})$, and $g_{ac}g_{ac} < 7.5 \times 10^{-22} \ GeV^{-1}$, and and excide setting frame of $g_{ac}g_{ac} = g_{ac}g_{ac} = 0$, and $g_{ac} = g_{ac} < g_{ac}$.

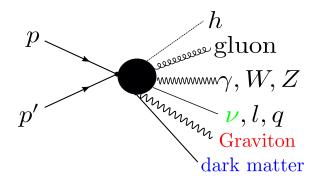

- Neutrino magnetic moment/non-standard neutrino interaction?
- Solar axion/dark photon?
- Axion/dark photon dark matter?
- Boosted dark matter?
- Exothermic dark matter?

Bramante, **Song**/arXiv:2006.14089

There exists the possibility of the "Nightmare" scenario where DM and SM only interact via gravity. However, we can still probe particle dark matter if large extra dimensions exist.

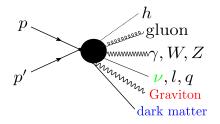
Microscopic Black Holes at Colliders

BH production only allowed if the impact parameter


$$b \leq b_{\max} = 2r_H(E_{\mathrm{CM}}, n, M_{\star})$$

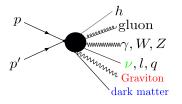
The cross section

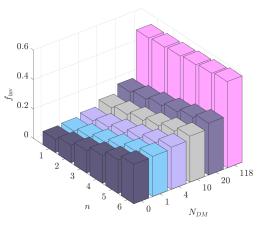
$$\sigma^{pp \to BH} = \int_{M_{\star}^2/s}^1 du \int_u^1 \frac{dv}{v} \pi b_{\max}^2 \sum_{i,j} f_i(v,Q) f_j(u/v,Q)$$


UC Davis Seminar

Invisible Decay

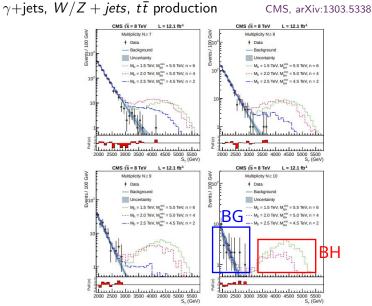
- Neutrinos, gravitons and dark matter may not be seen in future colliders
- Dark matter adds to the missing transverse momentum


Invisible Decay


- $N_{DM} = 1$: a scalar
- $N_{DM} = 4$: Dirac fermion
- $N_{DM} = 20$: simple dark sector

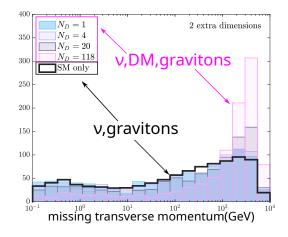
•
$$N_{DM} = 118$$
: a copy of SM

Invisible Decay


- N_{DM} = 1: a scalar
- N_{DM} = 4: Dirac fermion
- N_{DM} = 20: simple dark sector
- *N_{DM}* = 118: a copy of SM

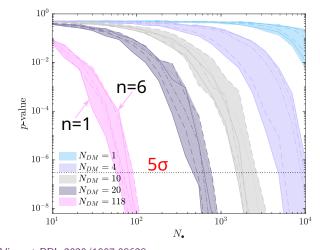
Fraction of invisible decay $f_{inv} = \frac{N_{\nu} + N_G + N_{DM}}{N_{vis} + N_{\nu} + N_G + N_{DM}}$

UC Davis Seminar


Standard Model Background

UC Davis Seminar

Results


 p_{\perp} from 10³ BH simulations (DM+SM) and 10⁶ BH simulations (SM)

As N_{DM} increases, mean p_{\perp} rises sharply

UC Davis Seminar

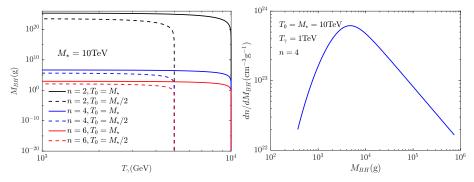
Sensitivity

Song, Vincent PRL 2020/1907.08628 Only $\mathcal{O}(100)$ to $\mathcal{O}(10000)$ BHs required to resolve the dark sector if $N_{DM} \geq 4$, well within the luminosity reach of FCC

UC Davis Seminar

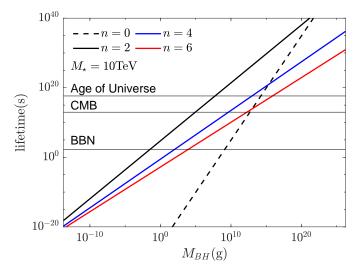
1 Introduction

2 Discovery of Microscopic Black Holes at Neutrino Telescopes

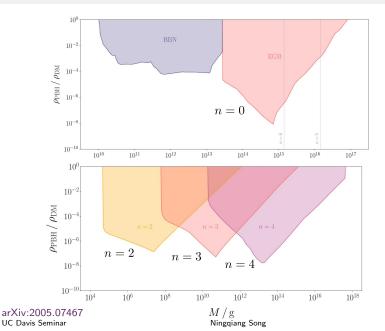

3 A Black Hole Portal to Dark Matter at Colliders

4 Black Hole Imprints in the Early Universe

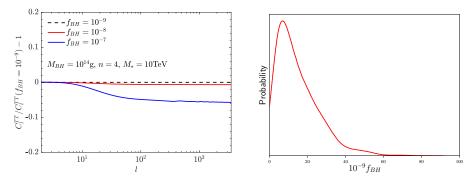
5 Conclusions


UC Davis Seminar

LED Black Holes in the Early Universe


- Microscopic BHs created in particle collisions in the plasma
- BHs produced at $T_{\gamma} < M_{\star}$ due to Boltzmann distribution
- BHs accrete instead of decay if $T_{BH} < T_{\gamma}$
- BH mass after accretion only depends on T_{γ} at production

Lifetime of Black holes



The lifetime of LED black holes can be much longer than 4d black holes, depending on the number of extra dimensions UC Davis Seminar Ningqiang Song

Extragalatic Photon Background

CMB Constraints

- BHs inject energy into the plasma from Hawking radiation
- High-I anisotropies damped due to Thomson scattering
- Implement LED BHs with modified ExoClass (arXiv:1801.01871)

1 Introduction

- 2 Discovery of Microscopic Black Holes at Neutrino Telescopes
- 3 A Black Hole Portal to Dark Matter at Colliders
- 4 Black Hole Imprints in the Early Universe

5 Conclusions

Conclusions and Prospects

- Microscopic black holes @ neutrino telescopes
 - Unusual reconstructed flavor composition
 - Different event energy distribution
 - New event topologies
 - Radio/Cherenkov telescopes?
- Microscopic black holes @ colliders
 - Increased p_{\perp} leads to discovery of dark matter DOF
 - Dark matter mass/spin?
- Microscopic black holes @ the early universe
 - Black holes accrete after microscopic production
 - Photon emission changes extragalactic photon background
 - EM emissions modify CMB anisotropies
 - BBN?
 - Constrain *M*^{*} from observations?
 - Evaporation products/Planckian remnants as dark matter?