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GOALS 
1) MEASURING THE NEUTRON PRODUCTION FROM ATMOSPHERIC NEUTRINO INTERACTIONS AS A 
FUNCTION OF ENERGY 

2) PROVIDE FIRST VALIDATION OF MONTE CARLO MODEL 

3) EXPLORE NEUTRON DETECTION IMPACT IN NEUTRINO/ANTINEUTRINO SEPARATION
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ATMOSPHERIC NEUTRINOS

THE ATMOSPHERE IS A CONSTANT SOURCE OF ~GEV NEUTRINOS AND ANTI-NEUTRINOS
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ATMOSPHERIC NEUTRINOS ARE A BACKGROUND FOR ND SEARCHES

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND 
FOR NUCLEON DECAY SEARCHES

*Same for electron/tau-neutrinos and anti-neutrinos

�9

THE ATMOSPHERE IS A CONSTANT SOURCE OF ~GEV NEUTRINOS AND ANTI-NEUTRINOS



Source: ANNIE EoI

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND 
FOR NUCLEON DECAY SEARCHES

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND FOR ND SEARCHES

�10
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Source: ANNIE EoI

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND 
FOR NUCLEON DECAY SEARCHES

PROTON DECAY → TYPICALLY NO NEUTRONS 
ATMOSPHERIC NEUTRINOS → 70% PRODUCE AT LEAST ONE

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND FOR ND SEARCHES

MINIMAL 
SUSY 

PREDICTION
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NEUTRINO/ANTI-NEUTRINO SEPARATION

PMNS MATRIX

NEUTRINO BEAM EXPERIMENTS CAN RUN IN 
NEUTRINO OR ANTI-NEUTRINO MODES 

FOR ATMOSPHERIC NEUTRINOS 
THIS IS NOT POSSIBLE…
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CP VIOLATION DETECTION IMPLIES DEMONSTRATION OF THE FACT THAT 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NEUTRINO/ANTI-NEUTRINO SEPARATION 
IN NON-MAGNETIZED DETECTORS
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IN MAGNETIZED DETECTORS WE DETERMINE NEUTRINO LEPTON NUMBER  
BY MEASURING THE CHARGE OF THE PRODUCED LEPTON
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NEUTRON DETECTION ENABLES 
NEUTRINOS AND ANTI-NEUTRINOS 

DISCRIMINATION IN NON-MAGNETIZED DETECTORS

POTENTIAL FOR CP VIOLATION FROM 
ATMOSPHERIC NEUTRINO MEASUREMENTS
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CCQE IS A VERY IMPORTANT CHANNEL FOR 
NEUTRINO ENERGY RECONSTRUCTION AND 

HENCE NEUTRINO OSCILLATION MEASUREMENTS



POTENTIAL FOR NEUTRINO INTERACTION CLASSIFICATION
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DIFFERENT NEUTRINO INTERACTION MODES 
PRODUCE DIFFERENT NUMBER OF NEUTRONS

CLEARLY DISTINGUISH BETWEEN CCQE AND OTHERS

CCQE IS A VERY IMPORTANT CHANNEL FOR 
NEUTRINO ENERGY RECONSTRUCTION AND 

HENCE NEUTRINO OSCILLATION MEASUREMENTS
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NEUTRON PRODUCTION MECHANISM IS COMPLICATED
Lepton

ν

Primary neutron

Neutrino 
interaction

Hadrons
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Lepton
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interaction

Hadrons

Final State Interactions

GENIE + GEANT4 simulation of  
atmospheric neutrinos in heavy water

NEUTRON PRODUCTION MECHANISM IS COMPLICATED

Primary neutron
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ν

Neutrino 
interaction

Lepton

Hadrons

GENIE + GEANT4 simulation of  
atmospheric neutrinos in heavy water

Final State Interactions

NEUTRON PRODUCTION MECHANISM IS COMPLICATED

Neutron  
capture De-excitation  

gammas ~2-9MeV  
after few μs/ms

Primary neutron

Secondary neutron

Secondary neutrons

Secondary neutrons
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SUPER-KAMIOKANDE DEMONSTRATED 
NEUTRON DETECTION IN LIGHT WATER

Time difference between atmospheric event 
and neutron capture in light water

Averaged number of neutrons vs 
atmospheric neutrino visible energy 

Source: Proceedings of the 32nd International Cosmic Ray Conference, Beijing, 2011  
http://inspirehep.net/record/1343280/files/v4.pdf

�26

http://inspirehep.net/record/1343280/files/v4.pdf


SNO ANALYSIS: 
WE HAVE MEASURED NEUTRON PRODUCTION FROM ATMOSPHERICS 
IN SNO AND COMPARED IT TO THE MONTE CARLO MODEL
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SNO TOOK DATA FROM 1999 TO 2006 

SNO ANALYSIS REINVIGORATED IN 2015. 
NEW COLLABORATORS TOOK ON  
NEW ANALYSES USING SNO LEGACY DATA
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For the discovery of neutrino mixing, showing that neutrinos have mass



~9500 PMTS 
(54% OPTICAL COVERAGE)

ACRYLIC VESSEL FILLED WITH ~1kt: 
- PHASE I: PURE HEAVY WATER 
- PHASE II: 35Cl-LOADED HEAVY WATER 
- PHASE III: 3He COUNTERS DEPLOYMENT

~100 EXTERNAL 
VETO PMTS

EXTERNAL LIGHT WATER VETO
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ACRYLIC VESSEL FILLED WITH ~1kt: 
- PHASE I: PURE HEAVY WATER 
- PHASE II: 35Cl-LOADED HEAVY WATER 
- PHASE III: 3He COUNTERS DEPLOYMENT
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VETO PMTS

EXTERNAL LIGHT WATER VETO
Isotope n absorption 

σ (barns) De-excitation E

H 0.33 2.2MeV
2H 0.5x10-3 6.25MeV

35Cl 44.1 8.6MeV

SNO WAS DESIGNED TO DETECT 
SOLAR NEUTRINOS AND NEUTRONS

Neutron News, Vol. 3, No. 3, 1992, pp. 29-37
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ACRYLIC VESSEL FILLED WITH ~1kt: 
- PHASE I: PURE HEAVY WATER 
- PHASE II: 35Cl-LOADED HEAVY WATER 
- PHASE III: 3He COUNTERS DEPLOYMENT

ALSO SENSITIVE TO  
HIGH ENERGY [GeV] 

ATMOSPHERIC NEUTRINOS

~100 EXTERNAL 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Isotope n absorption 

σ (barns) De-excitation E
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NEUTRON PROCESSES MONTE CARLO MODEL
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capture
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Neutron

Neutron

- Neutrino interaction
- Final State Interactions

PRIMARY NEUTRONS

�33



NEUTRON PROCESSES MONTE CARLO MODEL

Neutron

Neutron  
capture

ν

- Neutrino interaction
- Final State Interactions

- Neutron propagation
- Secondary neutron production
- Neutron capture
- De-excitation gamma emission

Neutron

Neutron

SECONDARY NEUTRONSPRIMARY NEUTRONS
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NEUTRON PROCESSES MONTE CARLO MODEL

Neutron

Neutron  
capture

SNOMAN

ν
Neutron

Neutron

Official SNO package:  
Cherenkov production and  

detector response

- Neutrino interaction
- Final State Interactions

- Neutron propagation
- Secondary neutron production
- Neutron capture
- De-excitation gamma emission

SECONDARY NEUTRONSPRIMARY NEUTRONS
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ATMOSPHERIC NEUTRINO EVENTS ARE EASILY IDENTIFIED 
BY THE CHERENKOV CONE PRODUCED BY THE CHARGED PARTICLES

Run: 10975  GTID: 2896417

T=122.1°
P=13.4°
G=9.0°

‣ The Ring Fitter algorithm → Extracts interaction 
information from Cherenkov rings (similar to SK or 
MiniBooNE routines): 

‣ Determines interaction position and direction of 
most energetic charged particle

Atmospheric neutrino interaction candidate
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ATMOSPHERIC NEUTRINO EVENTS ARE EASILY IDENTIFIED 
BY THE CHERENKOV CONE PRODUCED BY THE CHARGED PARTICLES

Run: 10975  GTID: 2896417

T=122.1°
P=13.4°
G=9.0°

‣ The Ring Fitter algorithm → Extracts interaction 
information from Cherenkov rings (similar to SK or 
MiniBooNE routines): 

‣ Determines interaction position and direction of 
most energetic charged particle 

‣ Calculates total visible energy based on total 
number of photo-electrons 

‣ Classifies main charged particle into electrons 
(shower-like) or muons (MIP-like) 

‣ Determines whether secondary Cherenkov rings are 
present → single-particle vs multi-particle events 

Atmospheric neutrino interaction candidate
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RING FITTER ENERGY CALIBRATION
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‣ Decay electrons from stopping muons are 
easily identified by coincidence → Provide a 
two-fold calibration source: 

‣ Michel electron → ~50MeV end point
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‣ Decay electrons from stopping muons are 
easily identified by coincidence → Provide a 
two-fold calibration source: 

‣ Michel electron → ~50MeV end point 

‣ Stopping muon: defined dE/dX and 
muon range calculable from Michel 
electron position and muon direction

�44



RING FITTER ENERGY CALIBRATION

N
um

be
r o

f e
ve

nt
s

0

5

10 Data
MC

 dE/dX (MeV/cm)
0 1 2 3 40

5

10

15

20

<1.35 GeV

>1.35 GeV

N
um

be
r o

f e
ve

nt
s

20 40 60 80

 N
um

be
r o

f e
ve

nt
s

5

10

15
Data
Data Fit

MC
MC Fit

Visible Energy (MeV)

‣ Decay electrons from stopping muons are 
easily identified by coincidence → Provide a 
two-fold calibration source: 

‣ Michel electron → ~50MeV end point 

‣ Stopping muon: defined dE/dX and 
muon range calculable from Michel 
electron position and muon direction 

‣ Calculate bias and resolution correction 
factors and energy systematic uncertainties
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ATMOSPHERIC NEUTRINO INTERACTION CANDIDATES

‣ Focus on events with more than 
200 PMT hits 

‣ Select fully contained events by 
requiring less than 3 external 
veto PMTs hits 

‣ Designed low level cuts to 
remove instrumental 
backgrounds (mainly flashers) 

‣ Fiducial volume cut of 7.5m

337 DAYS → 204 EVENTS 499 DAYS → 308 EVENTS
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NEUTRINO ENERGY ESTIMATION
RECONSTRUCT NEUTRINO ENERGY UNDER CCQE HYPOTHESIS
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NEUTRINO ENERGY ESTIMATION
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NO ATMOSPHERIC NEUTRINO DIRECTION → GET COS(Θ)/Ε DEPENDENCY FROM MC
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Reconstructed neutrino energy bias

NO ATMOSPHERIC NEUTRINO DIRECTION → GET COS(Θ)/Ε DEPENDENCY FROM MC

σ = 85.0 ± 2.3MeV
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NEUTRON CAPTURES ON DEUTERIUM AND 35Cl 
IDENTIFIED BY COINCIDENCE

T=86.6°
P=-53.7°
G=-0.6°

Neutron capture candidate
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NEUTRON CAPTURES ON DEUTERIUM AND 35Cl 
IDENTIFIED BY COINCIDENCE Using original SNO reconstruction tools 

identified neutrons capturing within the acrylic vessel

Time from neutrino interaction
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NEUTRON CAPTURES ON DEUTERIUM AND 35Cl 
IDENTIFIED BY COINCIDENCE

88 neutron capture 
candidates

388 neutron capture 
candidates
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�53NEUTRON DETECTION EFFICIENCY MODEL VALIDATED WITH A 252Cf SOURCE
252Cf source deployed at different 

radial positions and compared data and Monte Carlo

Phase I → Agreement @1.9% level 

Phase II → Agreement @1.4% level
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15.3% AVERAGED EFFICIENCY

�54NEUTRON DETECTION EFFICIENCY MODEL VALIDATED WITH A 252Cf SOURCE
252Cf source deployed at different 

radial positions and compared data and Monte Carlo

Phase I → Agreement @1.9% level 

Phase II → Agreement @1.4% level
44.3% AVERAGED EFFICIENCY



RESULTS
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INCLUSIVE RESULTS AND MONTE CARLO COMPARISON
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χ2/dof = 8.17/6 χ2/dof = 10.8/6



SNO/SK COMPARISON
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ESTIMATE NEUTRON PRODUCTION  IN LIGHT WATER VERSION OF SNO 
AND COMPARE TO SK
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NEUTRON PRODUCTION IN HEAVY WATER IS 9.8±2.8% LARGER 
THAN IN LIGHT WATER ACCORDING TO OUR MC MODEL

SK source: Proceedings of the 
32nd International Cosmic Ray 
Conference, Beijing, 2011  
http://inspirehep.net/record/
1343280/files/v4.pdf

http://inspirehep.net/record/1343280/files/v4.pdf
http://inspirehep.net/record/1343280/files/v4.pdf
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PRIMARY/SECONDARY NEUTRONS FIT
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Best fit 

- Primary neutrons:      Best fit MC/Nominal MC = 0.41 ± 0.50 
- Secondary neutrons: Best fit MC/Nominal MC = 0.95 ± 0.25 
- χ2/dof = 14.4/12

HELP DISENTANGLING DIFFERENT NEUTRON ORIGIN  
THROUGH SHAPE LIKELIHOOD FIT

PRIMARY/SECONDARY NEUTRON COMPONENTS ARE DIFFERENT  
FOR CCQE AND NON-CCQE INTERACTIONS



NEUTRINO/ANTI-NEUTRINO SEPARATION
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NEUTRINO/ANTI-NEUTRINO SEPARATION
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Best fit 

- Anti-neutrino normalization = 0.81 ± 0.37 

- Constrains anti-neutrino component  
at the 46% level



NEUTRINO/ANTI-NEUTRINO SEPARATION

Best fit 

- Anti-neutrino normalization = 0.81 ± 0.37 

- Constrains anti-neutrino component  
at the 46% level

SELECTING EVENTS WITH 1 OR MORE NEUTRONS 
INCREASES ANTI-NEUTRINO COMPONENT FROM 

23.6% TO 34.4%
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PROMISING WITH A HIGHER CCQE PURITY AND 
LARGER NEUTRON DETECTION EFFICIENCY
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ANNIE WILL MEASURE NEUTRON PRODUCTION FROM  
BEAM NEUTRINO INTERACTIONS AS A FUNCTION OF KINEMATICS

‣ The ANNIE approach: 

‣ Water Cherenkov detector deployed in a neutrino beam 
(FERMILAB) → Provides fixed neutrino direction, enabling 
calculation of kinematic variables 

‣ First physics use of Gd-doped water → Excellent neutron 
detection efficiency 

‣ ANNIE will provide a calibration of neutron processes
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SUMMARY

UNDERSTANDING NEUTRON PROCESSES IN NEUTRINO INTERACTIONS IS CRUCIAL FOR NUCLEON DECAY SEARCHES AND FUTURE 
NEUTRINO OSCILLATION EXPERIMENTS 

SNO HAS PUBLISHED A MC VALIDATION OF NEUTRON PRODUCTION VERSUS ENERGY AND INTERACTION CHANNELS 

GOOD AGREEMENT BETWEEN DATA AND MODELS WITHIN UNCERTAINTIES 

PROMISING RESULTS FOR NEUTRINO/ANTI-NEUTRINO SEPARATION USING NEUTRON TAGGING IN FUTURE DEDICATED DETECTORS 

EXCITING RESULTS FROM ANNIE WILL COME DURING THE NEXT YEAR
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NEUTRON PRODUCTION IN ATMOSPHERIC NEUTRINO 
INTERACTIONS

NEUTRON PRODUCTION BY COSMIC MUONS

NEUTRINO DECAY SEARCH

LORENTZ VIOLATION SEARCH

SOLAR HEP NEUTRINO SEARCH

PHYS. REV. D 98, 112013 (2018)

PHYS. REV. D 99, 032013 (2019)

PHYS. REV. D 99, 112007 (2019)

ARXIV:1909.11728 [HEP-EX]

PAPER IN PREPARATION

OTHER RECENT SNO ANALYSES �65



BACKUP
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1. Seed determination: 

1. Hough transform → Direction seed 

2. SNO+ water fitter → Position seed 

3. Total number of PE → Energy seed 

2. Precise event position and direction → Likelihood fit under the single ring hypothesis 
 
 

3. Particle identification → Perform likelihood fit under electron and muon hypothesis and calculate ΔL 

4. Visible energy reconstruction → Use fit position and total number of PE to get energy from MC lookup tables   

5. Ring multiplicity → Subtract main ring and redo Hough transform  

RING FITTER ALGORITHM Hough transform



Events with more than 10 neutrons
OUTLIERS

All of them are multi-ring events 

The external veto was definitely 
working for those runs



NEUTRON ENERGY DISTRIBUTIONS Cf-252

Atmospheric neutrinos



ENERGY SYSTEMATIC UNCERTAINTIES



IMPROVEMENT OF ENERGY RESOLUTION �71



NEUTRON TAGGING CAN HELP DETECTING ANTI-NUE 
THROUGH INVERSE BETA DECAY PROCESS

Horiuchi and Beacom, PRD 79 083013 (2009)

NEUTRON TAGGING ENABLES 
DETECTION THROUGH IBD

�72



HADRON MULTIPLICITY VS W2

While charged hadron production increases with energy [Eur.Phys.J.C63:1-10,2009] that’s not 
the case of neutron production, according to the GENIE hadronization model.
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ATMOSPHERIC NEUTRINO SELECTION SUMMARY �74



CROSS-SECTION SYSTEMATICS �75



SYSTEMATIC UNCERTAINTIES SUMMARY �76



GEANT4 [RATPAC] — SECONDARY NEUTRONS AND NEUTRON 
CAPTURES

�77

‣ Two bugs were found and corrected: 

‣ De-excitation of 36Cl and 17O not properly treated → Gammas will be 
extracted randomly from energy levels spectrum without taking into 
account branching ratios or that even that total sum of the gammas 
corresponds to the energy available for the de-excitation  

‣ Deuteron breakup from gammas won’t produce an extra neutron, but just 
a proton



https://arxiv.org/abs/1311.5285

NUCLEON DECAY (ND) B-L conserving modes �78

https://arxiv.org/abs/1311.5285
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