EFT below the electroweak scale and constraints from EDMs

Peter Stoffer

Physics Department, UC San Diego

in collaboration with E. Jenkins and A. Manohar

JHEP 01 (2018) 084, [arXiv:1711.05270 [hep-ph]] JHEP 03 (2018) 016, [arXiv:1709.04486 [hep-ph]]

and with V. Cirigliano and E. Mereghetti

work in progress

19th March 2018

High Energy Seminar, UC Davis

1

- 2 EFTs for New Physics
- 3 EFT below the electroweak scale
- 4 Neutron EDM
- **(5)** Conclusions and outlook

1 Introduction

- **2** EFTs for New Physics
- 3 EFT below the electroweak scale
- 4 Neutron EDM
- **5** Conclusions and outlook

Particle physics in a crisis?

- Standard Model very successful
- only a few discrepancies around $2 \dots 4\sigma$:
 - muon g-2

Introduction

- *B*-physics observables: $R(D^{(*)}), R(K^{(*)}), \ldots$
- clear signals of New Physics:
 - neutrino masses
 - dark matter
 - baryon asymmetry
- naturalness so far a rather bad guide in the search for New Physics...

How to search for and describe New Physics?

- UV-complete models, mainly motivated by naturalness
- simplified models, often designed to explain a particular experimental result
- model-independent approaches using effective field theories

Model building

Advantages of using EFTs

- based on a very small set of assumptions
- generic framework, can be used 'stand-alone' or in connection with a broad range of specific models
- work with the relevant degrees of freedom at a particular energy ⇒ simplify calculations
- connect different energy regimes, avoid large logs

Disadvantages

Introduction

- limited range of validity
- large number of free parameters

Going beyond tree-level

- mixing and running can be important
- obtain correlations between different observables
- high-precision observables at low energies
- precision of LHC searches constantly improving

3 EFT below the electroweak scale

4 Neutron EDM

SMEFT

SMEFT assumptions

- New Physics at scale $\Lambda \gg v \approx 246 \; {\rm GeV}$
- underlying theory respects $G_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$
- spontaneous breaking $SU(2)_L \times U(1)_Y \to U(1)_Q$
- Higgs particle and Goldstone bosons form an electroweak doublet

Degrees of freedom and power counting

- field content: all the fields of the SM
- expansion in powers of v/Λ and p/Λ
- Lagrangian:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \cdots,$$

SMFFT

where

$$\mathcal{L}_n = \sum_i C_i^{(n)} \mathcal{Q}_i^{(n)}, \quad C_i^{(n)} \propto \frac{1}{\Lambda^{n-4}}$$

→ Buchmüller, Wyler (1986), Grzadkowski et al. (2010)

→ Lehman (2014), Lehman, Martin (2015, 2016), Henning et al. (2016, 2017)

HEFT assumptions

- New Physics at scale $\Lambda \ge 4\pi v \gg v \approx 246 \text{ GeV}$
- underlying theory respects

 $G_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$

- spontaneous breaking $SU(2)_L \times U(1)_Y \to U(1)_Q$ as in the SM
- Higgs particle treated independently of Goldstone bosons

 \rightarrow Feruglio (1993), Grinstein, Trott (2007)

Degrees of freedom and power counting

- field content: all the fields of the SM
- nonlinear realisation leads to a fusion with ChPT

HEFT

- appropriate description e.g. for strongly-coupled New Physics scenarios
- power counting controversial in the literature (naive dimensional analysis vs. pure chiral counting)

```
\rightarrow Alonso et al. (2013), Buchalla et al. (2016)
```


2 EFTs for New Physics

3 EFT below the electroweak scale Field content and symmetries

Power counting Operator basis Tree-level matching with SMEFT Anomalous dimensions Equations of motion

4 Neutron EDM

5 Conclusions and outlook

EFTs at different energies

- use appropriate EFT at each energy scale in order to resum logarithms
- below electroweak scale: use low-energy EFT (LEFT), where heavy SM particles are integrated out

Low-energy EFT

- basically the old Fermi theory of weak interaction, or 'weak Hamiltonian' of flavour physics
- well-known and studied in detail for particular processes
- however, a complete and systematic treatment was missing in the literature

Field content and symmetries

- all SM particles apart from W^{\pm} , Z, h, t
- EW symmetry spontaneously broken: in LEFT, only $SU(3)_c \times U(1)_Q$ is left

Power counting

- dimensional counting
- expansion parameter m/v, p/v
- depending on the high-scale EFT, a second expansion scheme is inherited (e.g. v/Λ from SMEFT)
- note that in DR, loops never generate factors of v in the numerator

Lagrangian

- LEFT Lagrangian: $\mathcal{L}_{\text{LEFT}} = \mathcal{L}_{\text{QCD}+\text{QED}} + \sum_{i} L_i \mathcal{O}_i$
- leading-order Lagrangian is just QCD + QED:

$$\begin{aligned} \mathcal{L}_{\text{QCD+QED}} &= -\frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ \theta_{\text{QCD}} \frac{g^2}{32\pi^2} G^A_{\mu\nu} \widetilde{G}^{A\mu\nu} + \theta_{\text{QED}} \frac{e^2}{32\pi^2} F_{\mu\nu} \widetilde{F}^{\mu\nu} \\ &+ \sum_{\psi=u,d,e,\nu_L} \overline{\psi} i \not\!\!\!D \psi \\ &- \left[\sum_{\psi=u,d,e} \overline{\psi}_{Rr} [M_{\psi}]_{rs} \psi_{Ls} + \text{h.c.} \right] \end{aligned}$$

• $\Delta L = \pm 2$ Majorana mass terms for the neutrinos:

$$\mathcal{L}_{L}^{(3)} = -\frac{1}{2} [M_{\nu}]_{rs} (\nu_{Lr}^{T} C \nu_{Ls}) + \text{h.c.}$$

 for three neutrino generations, there are 12 operators (including h.c. and before diagonalisation)

• $\Delta B = \Delta L = 0$ dipole operators for $\psi = u, d, e$:

$$\mathcal{L}^{(5)} = \sum_{\psi=e,u,d} \left(L_{\psi\gamma} \mathcal{O}_{\psi\gamma}_{rs} + \text{h.c.} \right) + \sum_{\psi=u,d} \left(L_{\psi G} \mathcal{O}_{\psi G}_{rs} + \text{h.c.} \right) \,,$$

where

$$\mathcal{O}_{\substack{\psi\gamma\\rs}} = \bar{\psi}_{Lr} \sigma^{\mu\nu} \psi_{Rs} F_{\mu\nu} , \quad \mathcal{O}_{\substack{\psi G\\rs}} = \bar{\psi}_{Lr} \sigma^{\mu\nu} T^A \psi_{Rs} G^A_{\mu\nu}$$

• 70 Hermitian operators for $n_u = 2$, $n_d = n_e = 3$

• $\Delta L = \pm 2$ neutrino dipole operators:

$$\mathcal{L}_{\not L}^{(5)} = L_{\substack{\nu\gamma\\rs}} \mathcal{O}_{\substack{\nu\gamma\\rs}} + \text{h.c.} \,,$$

where

$$\mathcal{O}_{\substack{\nu\gamma\\rs}} = \nu_{Lr}^T C \sigma^{\mu\nu} \nu_{Ls} F_{\mu\nu}$$

• antisymmetric in flavour indices \Rightarrow 6 Hermitian operators for $n_{\nu} = 3$

two gluonic operators:

$$\begin{split} \mathcal{O}_G &= f^{ABC} G^{A\nu}_\mu G^{B\lambda}_\nu G^{C\mu}_\lambda \,, \\ \mathcal{O}_{\widetilde{G}} &= f^{ABC} \widetilde{G}^{A\nu}_\mu G^{B\lambda}_\nu G^{C\mu}_\lambda \,\end{split}$$

- $\Delta B = \Delta L = 0$ four-fermion operators of the following classes: $(\bar{L}L)(\bar{L}L)$, $(\bar{R}R)(\bar{R}R)$, $(\bar{L}L)(\bar{R}R)$, $(\bar{L}R)(\bar{L}R) + h.c.$, $(\bar{L}R)(\bar{R}L) + h.c.$.
- 78 structures, in total 3631 Hermitian operators for $n_u=2,\,n_d=n_e=n_{
 u}=3$
- our choice: use Fierz identities to remove tensorial operators if possible; no lepto-quark bilinears

• 12 $\Delta L = \pm 4$ four-fermion operators:

$$\mathcal{O}_{\substack{\nu\nu\\prst}}^{S,LL} = (\nu_{Lp}^T C \nu_{Lr}) (\nu_{Ls}^T C \nu_{Lt})$$

• 1200 $\Delta L = \pm 2$ four-fermion operators, e.g.

$$\mathcal{O}_{\substack{\nu e\\prst}}^{S,LL} = (\nu_{Lp}^T C \nu_{Lr})(\bar{e}_{Rs} e_{Lt})$$

• 576 $\Delta B = \Delta L = \pm 1$ four-fermion operators, e.g.

$$\mathcal{O}_{udd}^{S,LL} = \epsilon_{\alpha\beta\gamma} (u_{Lp}^{\alpha T} C d_{Lr}^{\beta}) (d_{Ls}^{\gamma T} C \nu_{Lt})$$

• 456 $\Delta B = -\Delta L = \pm 1$ four-fermion operators, e.g.

$$\mathcal{O}_{udd}^{S,LR} = \epsilon_{\alpha\beta\gamma} (u_{Lp}^{\alpha T} C d_{Lr}^{\beta}) (\bar{\nu}_{Ls} d_{Rt}^{\gamma})$$

LEFT operators

- in total 5963 operators at dimensions three, five, and six: 3099 CP-even and 2864 CP-odd
- basis free of redundancies (EOM, Fierz, etc.)
- cross-checked with Hilbert series

Matching between the EFTs

- complete matching from SMEFT to LEFT at tree level performed
- leads to relations between the LEFT operator coefficients

SMEFT in the broken phase

• Higgs in unitary gauge:

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ \left[1 + c_{H,\mathrm{kin}} \right] h + v_T \end{array} \right) \,,$$

where

$$c_{H,\mathrm{kin}} := \left(C_{H\square} - \frac{1}{4} C_{HD} \right) v^2 \,, \quad v_T := \left(1 + \frac{3C_H v^2}{8\lambda} \right) v$$

 modifications from SM due to dimension-six Higgs operators in SMEFT

SMEFT in the broken phase

- dimension-six modifications of fermion masses and Yukawa couplings ⇒ no longer proportional
- modifications of gauge-boson mass terms
- weak charged and neutral currents modified as well,
 e.g. coupling of W⁺ to right-handed current ū_Rγ^μd_R
- after rotation to mass eigenstates, modified weak currents lead to non-unitary effective CKM quark-mixing matrix

Integrating out weak-scale SM particles

consider Higgs-exchange diagram:

$$\left[\mathcal{Y}_{\psi}\right]_{rs} = \frac{1}{v_T} \left[M_{\psi}\right]_{rs} \left[1 + c_{H,\text{kin}}\right] - \frac{v^2}{\sqrt{2}} C^*_{\substack{\psi H \\ sr}}$$

 \mathcal{Y}^2 has terms of order $(m/v)^2$, mv/Λ^2 , v^4/Λ^4 \Rightarrow diagram \mathcal{Y}^2/m_h^2 is of same order as dimension-7 or 8 contributions in LEFT or dimension-8 in SMEFT

Integrating out weak-scale SM particles

• for SMEFT \Rightarrow LEFT matching: rewrite terms

 tree-level matching simple: fix Higgs field to vev and compute W/Z-exchange diagrams

Running in the EFTs

- one-loop RGE for SMEFT known
 - \rightarrow Jenkins et al. (2013, 2014)
 - \rightarrow Alonso et al. (2014)
- one-loop RGE for HEFT recently calculated
 - \rightarrow Buchalla et al. (2017)
 - \rightarrow Alonso et al. (2017)

Running in the EFTs

- RGE for LEFT previously only partly known
 - \rightarrow many references...

e.g. for *B*-physics:

 \rightarrow Aebischer et al. (2017)

Power counting and RGE

- calculation of complete one-loop RGE up to dimension-six effects in the LEFT
- graph with insertions of higher-dimensional operators (*d_i* ≥ 5):

$$d = 4 + \sum_{i} (d_i - 4)$$

- up to dimension six:
 - · single-operator insertions of dimension five and six
 - double-operator insertions of dimension five

Double-dipole insertions

• if the LEFT derives from SMEFT as the high-scale EFT: dipole coefficients are of order

$$\frac{v}{\Lambda^2} = \frac{1}{v} \times \frac{v^2}{\Lambda^2}$$

 \Rightarrow double insertions are SMEFT dimension-8

- however, in HEFT dipoles are only $1/\Lambda\text{-suppressed}$
- keep double-dipole insertions as well as dimension-five corrections to EOM in single-dipole insertions

Full set of one-loop diagrams

ΠΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΥσορο AAAAAAAAAAAAAA Aggggggggggg Ο Ο Ω -Ο- -Ο- -Ο- -Ο- -Ο- Ο Ο Ο

Equations of motion vs. field redefinitions

- when calculating the one-loop diagrams, counterterms are generated that are not explicitly in the LEFT basis, but related to LEFT operators by field redefinitions
- performing these field redefinitions is often referred to as using the EOM
- blind application of the EOM, however, can lead to incorrect results if the operators are not manifestly Hermitian, e.g. terms of the form $\bar{\psi}(iD)^3\psi$

2 EFTs for New Physics

3 EFT below the electroweak scale

4 Neutron EDM

Electric dipole moments Experimental status EDMs in the LEFT Matching to lattice Renormalisation scheme BRST construction

4 Neutron EDM

Electric dipole moments

- permanent electric dipole moments (EDM) are *P/CP*-odd observables
- in the SM due to *CP*-violation in the CKM matrix (or due to QCD θ-term), loop suppressed and tiny
- ⇒ EDMs are attractive observables to search for new sources of *CP*-violation beyond the SM

Definition

• three-point function with off-shell photon:

$$\begin{split} \langle N(p',s')|\gamma^*(q,\lambda)N(p,s)\rangle &= ie(2\pi)^4 \delta^{(4)}(q+p-p')\epsilon_{\mu}^{\lambda}(q) \\ &\times \bar{u}(p',s')\Gamma^{\mu}(p,p',q)u(p,s), \end{split}$$

decomposition of vertex function into form factors:

$$\Gamma^{\mu}(p, p', q) = \gamma^{\mu} F_{E}(q^{2}) + i \frac{\sigma^{\mu\nu} q_{\nu}}{2m_{N}} F_{M}(q^{2}) + \frac{\sigma^{\mu\nu} q_{\nu}}{2m_{N}} \gamma_{5} F_{D}(q^{2}) + \left(\gamma^{\mu} - \frac{2m_{N} q^{\mu}}{q^{2}}\right) \gamma_{5} F_{A}(q^{2})$$

• EDM:

$$d_N = -\frac{F_D(0)}{2m_N}$$

Neutron EDM

Neutron EDM

- current limit (ILL Grenoble): $d_n < 3.0 \cdot 10^{-26} \,\mathrm{e\,cm} \;$ (90% CL) \rightarrow Pendlebury et al. (2015)
- EW contribution: $d_n^{\rm SM} \sim 10^{-32} \, {\rm e\, cm}$

 \rightarrow He et al. (1989), Dar (2000)

- ongoing and future experiments:
 ILL, PSI, TUM, TRIUMF, Jülich, LANL, ...
- · limits expected to improve by two orders of magnitude

EDMs in the LEFT

- leading contribution to leptonic EDMs given directly in terms of the LEFT dipole operators
- hadronic EDMs (nEDM) more complicated: QCD is non-perturbative
- any *P*-odd, *CP*-odd flavour-conserving operator can contribute non-perturbatively to EDM:
 - QCD θ-term
 - dimension-five (C)EDM operators
 - Weinberg's dimension-six three-gluon operator
 - dimension-six P/CP-odd four-fermion operators

EDMs in the LEFT

contribution at low energies schematically given as

$$d_N \sim \sum_i L_i \langle N | \mathcal{O}_i | N \rangle$$

 L_i : LEFT operator coefficients $\langle N | O_i | N \rangle$: hadronic matrix element

- estimating and calculating the matrix elements:
 - chiral perturbation theory and NDA
 - non-perturbative lattice QCD calculations
 - at present, uncertainties are very large

Lattice QCD for matrix elements

- a priori the best way to compute the matrix elements
- problem with lattice and LEFT:

$$d_N \sim \sum_i L_i(\mu) \langle N | \mathcal{O}_i^{\overline{\mathrm{MS}}} | N \rangle$$

 $\overline{\mathrm{MS}}$ cannot be implemented on the lattice!

- need for a matching calculation between $\overline{\rm MS}$ continuum calculation and lattice QCD

RI schemes

 widely used scheme amenable to lattice calculations: RI-(S)MOM: Regularisation-Independent (Symmetric) MOMentum-subtraction scheme

 \rightarrow Martinelli et al. (1995), Sturm et al. (2010)

- impose renormalisation conditions on truncated off-shell Green's functions for Euclidean momenta
- RI-SMOM: insert momentum into operator to avoid unwanted IR effects in lattice calculations (pion poles)
- calculation in a fixed R_{ξ} gauge

Matching $\overline{\mathrm{MS}}$ and RI-SMOM

- one-loop matching calculation between $\overline{\rm MS}$ and RI/SMOM has been carried out for the dimension-five (C)EDM operators \rightarrow Bhattacharya et al. (2016)
- work in progress: extending this to the dimension-six Weinberg three-gluon operator $\widetilde{G}GG$
- translation between different schemes:

$$\mathcal{O}_i^{\overline{\mathrm{MS}}} = C_{ij} \mathcal{O}_j^{\mathrm{RI}}, \quad C_{ij} = \left(Z^{\overline{\mathrm{MS}}} \right)_{ik}^{-1} Z_{kj}^{\mathrm{RI}}$$

at one loop:

Neutron EDM

$$Z_{ij} = \mathbb{1}_{ij} + \Delta_{ij}, \quad C_{ij} = \mathbb{1}_{ij} - \Delta_{ij}^{\overline{\text{MS}}} + \Delta_{ij}^{\overline{\text{RI}}}$$

Constructing the operator basis

Neutron EDM

Several complications compared to $\overline{\rm MS}$ calculations:

- gauge fixing explicitly breaks gauge symmetry to BRST symmetry
- off-shell Green's function in fixed gauge
 ⇒ EOM operators and gauge-variant operators contribute
- momentum insertion in operators
 - \Rightarrow total-derivative operators contribute

Physical operators

Neutron EDM

Leading-order Lagrangian:

$$\mathcal{L}_{\text{QED+QCD}} = \bar{q}(i\not\!\!D - \mathcal{M})q - \frac{1}{4}G^{\mu\nu}_{A}G^{A}_{\mu\nu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \theta_{\text{QCD}}\frac{g^2}{32\pi^2}G^{\mu\nu}_{A}\widetilde{G}^{A}_{\mu\nu}$$

with the light quarks only: $q = (u, d, s), \mathcal{M} = \text{diag}(m_u, m_d, m_s)$

Chiral symmetry

• approximate chiral symmetry:

$$q_{L,R} \stackrel{\chi}{\mapsto} U_{L,R} q_{L,R}, \quad \bar{q}_{L,R} \stackrel{\chi}{\mapsto} \bar{q}_{L,R} U_{L,R}^{\dagger}$$

 symmetry restored if *M* (and charge matrix *Q*) are promoted to spurion field with transformation

$$\mathcal{M} \stackrel{\chi}{\mapsto} U_L \mathcal{M} U_R^{\dagger}, \quad \mathcal{M}^{\dagger} \stackrel{\chi}{\mapsto} U_R \mathcal{M}^{\dagger} U_L^{\dagger}$$

Gauge-invariant operators

• building blocks:

Neutron EDM

$$q_{L,R}, \bar{q}_{L,R}, G^A_{\mu\nu}, F_{\mu\nu}, \mathcal{M}, \mathcal{M}^{\dagger}, Q_{L,R}, \partial_{\mu}, D_{\mu}$$

- symmetries required for mixing with Weinberg operator:
 - Lorentz scalars
 - $SU(3)_c \times U(1)_Q$
 - chirally invariant (in spurion sense)
 - P-odd, CP-odd
 - mass dimension \leq 6
- cross-checked with Hilbert series

BRST symmetry

Neutron EDM

add ghosts and gauge fixing to Lagrangian:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{QCD+QED}} + \mathcal{L}_{\text{GF}} + \mathcal{L}_{\text{gh}} \,, \\ \mathcal{L}_{\text{gh}} &= \partial^{\mu} \bar{c}^{A} (D^{AC}_{\mu} c^{C}) + \partial^{\mu} \bar{c}_{\gamma} \partial_{\mu} c_{\gamma} \,, \\ \mathcal{L}_{\text{GF}} &= \frac{\xi}{2} G^{A} G^{A} + (\partial^{\mu} G^{A}) G^{A}_{\mu} + \frac{\xi_{\gamma}}{2} A^{2} + (\partial^{\mu} A) A_{\mu} \end{split}$$

no longer gauge invariant, but still BRST invariant

BRST symmetry

Neutron EDM

• add source terms for BRST variations of all the fields:

$$\mathcal{L}[J] = \mathcal{L} + J^{\mu}_{A} \frac{\delta G^{A}_{\mu}}{\delta \lambda} + \ldots = \mathcal{L} - J^{\mu,A} (D^{AC}_{\mu} c^{C}) + \ldots$$

BRST operator:

$$\hat{W} = \frac{\delta S}{\delta G^A_{\mu}} \frac{\delta}{\delta J^{\mu}_A} + \frac{\delta S}{\delta J^A_{\mu}} \frac{\delta}{\delta G^{\mu}_A} + \dots$$

is nil-potent ($\hat{W}^2 = 0$) and has ghost number +1

 all gauge-variant operators can be written as a BRST variation of 'seed operators' *F* with ghost number −1:

$$\mathcal{N} = \hat{W} \cdot \mathcal{F} \qquad o$$
 Joglekar, Lee (1976)

 \Rightarrow most general solution of Slavnov-Taylor identities

Nuisance operators

• building blocks for seed operators:

 $q_{L,R}, \bar{q}_{L,R}, G^A_\mu, A_\mu, \mathcal{M}, \mathcal{M}^{\dagger}, Q_{L,R}, \partial_\mu, \text{ghosts}, \text{BRST sources}$

- required symmetries/properties:
 - Lorentz scalars
 - (global) $SU(3)_c \times U(1)_Q$
 - chirally invariant (in spurion sense)
 - P-odd, CP-odd
 - mass dimension ≤ 6
 - ghost number -1
- cross-checked with Hilbert series

Operator basis

Neutron EDM

• mixing structure for $(\mathcal{O}, \mathcal{N})$:

$$Z = \left(\begin{array}{c|c} Z_{\mathcal{O}\mathcal{O}} & Z_{\mathcal{O}\mathcal{N}} \\ \hline 0 & Z_{\mathcal{N}\mathcal{N}} \end{array} \right)$$

- nuisance operators do not contribute to physical matrix elements (nEDM), but needed to define (non-perturbatively) renormalised finite RI-SMOM operators
- BRST construction gives all (gauge-invariant) EOM operators + gauge-variant operators
- cross-checked with Hilbert series

Operator basis

Neutron EDM

- O operators: θ-term, EDM, chromo-EDM, Weinberg
 operator + total derivative operators
- *N* operators: 1 at dimension four, but 31 at dimension six (at leading order in α_{QED}):
 - 12 gauge-invariant EOM operators, e.g.

$$\mathcal{N} = i(\bar{q}_E \mathcal{M}^2 \gamma_5 q + \bar{q} \mathcal{M}^2 \gamma_5 q_E), \quad q_E := (i \not\!\!\!D - \mathcal{M})q$$

• 19 gauge-variant operators, e.g.

$$\mathcal{N} = i(\bar{q}_E\gamma_5 q + \bar{q}\gamma_5 q_E)G^a_\mu G^\mu_a$$

Introduction

- 2 EFTs for New Physics
- 3 EFT below the electroweak scale

4 Neutron EDM

(5) Conclusions and outlook

LEFT

- we constructed the full LEFT operator basis up to dimension six
- tree-level matching to SMEFT at the weak scale
- complete one-loop RGE, including (dim-5)² effects and 'down'-mixing
- completes a unified SMEFT framework to compute all leading-log effects from the scale of New Physics down to low energies
- also valid for HEFT as the high-scale EFT
- future work: phenomenology, global fits

nEDM

- use constraining power of precision (n)EDM measurements
- problem at low energies are (huge) hadronic uncertainties
- use lattice QCD for matrix elements
 ⇒ matching calculation to appropriate scheme

nEDM

- for Weinberg three-gluon operator: popular RI-SMOM scheme leads to a plethora of nuisance operators
- ongoing work: formulate renormalisation conditions
- · lattice expert have to decide about feasibility
- perhaps need to consider alternative schemes (e.g. position-space Green's functions)

Backup

LEFT basis

LEFT basis

Backup

6

$(\overline{L}L)(\overline{L}L)$		$(\overline{L}L)(\overline{R}R)$		$(\overline{L}R)(\overline{L}R) + { m h.c.}$	
$\mathcal{O}_{\nu \nu}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{\nu}_{Ls}\gamma_{\mu}\nu_{Lt})$	$\mathcal{O}_{\nu e}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{ee}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{e}_{Ls}e_{Rt})$
$\mathcal{O}_{ee}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{e}_{Ls}\gamma_{\mu}e_{Lt})$	$\mathcal{O}_{ee}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{eu}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Ls}u_{Rt})$
$\mathcal{O}_{\nu e}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{e}_{Ls}\gamma_{\mu}e_{Lt})$	$\mathcal{O}_{\nu u}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{eu}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{u}_{Ls}\sigma_{\mu\nu}u_{Rt})$
$\mathcal{O}_{\nu u}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{\nu d}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ed}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Ls}d_{Rt})$
$\mathcal{O}_{\nu d}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{eu}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{ed}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}d_{Rt})$
$\mathcal{O}_{eu}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{ed}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{\nu edu}^{S,RR}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Ls}u_{Rt})$
$\mathcal{O}_{ed}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{ue}^{V,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{\nu edu}^{T,RR}$	$(\bar{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}u_{Rt})$
$\mathcal{O}_{\nu edu}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}u_{Lt}) + h.c.$	$\mathcal{O}_{de}^{V,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{uu}^{S1,RR}$	$(\bar{u}_{Lp}u_{Rr})(\bar{u}_{Ls}u_{Rt})$
$\mathcal{O}_{uu}^{V,LL}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{\nu edu}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + h.c.$	$\mathcal{O}^{S8,RR}_{uu}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{u}_{Ls}T^A u_{Rt})$
$\mathcal{O}_{dd}^{V,LL}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{uu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{ud}^{S1,RR}$	$(\bar{u}_{Lp}u_{Rr})(\bar{d}_{Ls}d_{Rt})$
$\mathcal{O}_{ud}^{V1,LL}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{uu}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{ud}^{S8,RR}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$
$\mathcal{O}_{ud}^{V8,LL}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Ls}\gamma_{\mu}T^{A}d_{Lt})$	$\mathcal{O}_{ud}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{dd}^{S1,RR}$	$(\bar{d}_{Lp}d_{Rr})(\bar{d}_{Ls}d_{Rt})$
$(\overline{R}R)(\overline{R}R)$		$\mathcal{O}_{ud}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	$\mathcal{O}_{dd}^{S8,RR}$	$(\bar{d}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$
OV,RR	(ēn \ ^µ en)(ēn \(\core en)	$\mathcal{O}_{du}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{uddu}^{S1,RR}$	$(\bar{u}_{Lp}d_{Rr})(\bar{d}_{Ls}u_{Rt})$
$O^{V,RR}$	$(\bar{e}_{Rp} \wedge \bar{e}_{Rr})(\bar{e}_{Rs} \wedge \mu \bar{e}_{Rt})$	$\mathcal{O}_{du}^{V8,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{uddu}^{S8,RR}$	$(\bar{u}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A u_{Rt})$
$O^{V,RR}$	$(\bar{e}_{Rp} \gamma^{\mu} e_{Rr})(\bar{d}_{Rs} \gamma_{\mu} d_{Rt})$	$\mathcal{O}_{dd}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$(\overline{L}B)$	$(\overline{B}L) + hc$
$O^{V,RR}$	$(\bar{u}_{Rp}, \bar{u}_{Rr})(\bar{u}_{Rs}, \mu u_{Rt})$	$\mathcal{O}_{dd}^{V8,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	OS,RL	(ēr ep)(ūp uu)
$O^{V,RR}$	$(\bar{d}_{Rp} \uparrow \bar{d}_{Rr})(\bar{d}_{Rs} \uparrow \mu \bar{d}_{Rt})$ $(\bar{d}_{R} \uparrow \mu \bar{d}_{Rs})(\bar{d}_{R} \uparrow d_{Rs})$	$\mathcal{O}_{uddu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + h.c.$	$O^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$
$O^{V1,RR}$	$(a_{Rp} \uparrow a_{Rr})(a_{Rs} \uparrow_{\mu} a_{Rt})$ $(\bar{a}_{Rs} \uparrow_{\mu} a_{Rt})(\bar{d}_{Rs} \uparrow_{\mu} a_{Rt})$	$\mathcal{O}_{uddu}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}u_{Rt}) + h.c.$	$\mathcal{O}_{ed}^{S,RL}$	$(\overline{u}_{Lp} e_{Rr})(\overline{u}_{Rs} u_{Lt})$
$O^{V8,RR}$	$(\bar{u}_{Rp}, u_{Rr})(\bar{d}_{Rs}, \mu u_{Rt})$ $(\bar{u}_{D}, \gamma^{\mu}T^{A}u_{D})(\bar{d}_{D}, \gamma, T^{A}d_{Dt})$			Vvedu	(vLpCRr)(aRsuLt)
$\mathcal{O}_{dd}^{V,RR}$ $\mathcal{O}_{ud}^{V1,RR}$ $\mathcal{O}_{ud}^{V8,RR}$	$\begin{split} &(\bar{d}_{Rp}\gamma^{\mu}d_{Rr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})\\ &(\bar{u}_{Rp}\gamma^{\mu}u_{Rr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})\\ &(\bar{u}_{Rp}\gamma^{\mu}T^{A}u_{Rr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt}) \end{split}$	$O_{uddu}^{v 1,LR}$ $O_{uddu}^{V8,LR}$	$\begin{split} &(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(d_{Rs}\gamma_{\mu}u_{Rt})+\text{h.c.}\\ &(\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}u_{Rt})+\text{h.c.} \end{split}$	$\mathcal{O}_{ed}^{S,RL}$ $\mathcal{O}_{\nu edu}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$ $(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Rs}u_{Lt})$

LEFT basis

Backup

6

 $\frac{\Delta L = 4 + \mathrm{h.c.}}{\mathcal{O}_{\nu\nu}^{S,LL} \left| (\nu_{Lp}^T C \nu_{Lr}) (\nu_{Ls}^T C \nu_{Lt}) \right|}$

$\Delta L = 2 + { m h.c.}$		$\Delta B = \Delta L = 1 + { m h.c.}$		$\Delta B = -\Delta L = 1 + {\rm h.c.}$	
$\mathcal{O}^{S,LL}_{\nu e}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{e}_{Rs} e_{Lt})$	$\mathcal{O}_{udd}^{S,LL}$	$\epsilon_{\alpha\beta\gamma}(u_{Lp}^{\alpha T}Cd_{Lr}^{\beta})(d_{Ls}^{\gamma T}C\nu_{Lt})$	$\mathcal{O}_{ddd}^{S,LL}$	$\epsilon_{\alpha\beta\gamma}(d_{Lp}^{\alpha T}Cd_{Lr}^{\beta})(\bar{e}_{Rs}d_{Lt}^{\gamma})$
$\mathcal{O}_{\nu e}^{T,LL}$	$(\nu_{Lp}^T C \sigma^{\mu\nu} \nu_{Lr}) (\bar{e}_{Rs} \sigma_{\mu\nu} e_{Lt})$	$\mathcal{O}_{duu}^{S,LL}$	$\epsilon_{\alpha\beta\gamma}(d_{Lp}^{\alpha T}Cu_{Lr}^{\beta})(u_{Ls}^{\gamma T}Ce_{Lt})$	$\mathcal{O}_{udd}^{S,LR}$	$\epsilon_{\alpha\beta\gamma}(u_{Lp}^{\alpha T}Cd_{Lr}^{\beta})(\bar{\nu}_{Ls}d_{Rt}^{\gamma})$
$\mathcal{O}_{\nu e}^{S,LR}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{e}_{Ls} e_{Rt})$	$\mathcal{O}^{S,LR}_{uud}$	$\epsilon_{\alpha\beta\gamma}(u_{Lp}^{\alpha T}Cu_{Lr}^{\beta})(d_{Rs}^{\gamma T}Ce_{Rt})$	$\mathcal{O}_{ddu}^{S,LR}$	$\epsilon_{\alpha\beta\gamma}(d_{Lp}^{\alpha T}Cd_{Lr}^{\beta})(\bar{\nu}_{Ls}u_{Rt}^{\gamma})$
$\mathcal{O}^{S,LL}_{\nu u}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{u}_{Rs} u_{Lt})$	$\mathcal{O}_{duu}^{S,LR}$	$\epsilon_{\alpha\beta\gamma}(d_{Lp}^{\alpha T}Cu_{Lr}^{\beta})(u_{Rs}^{\gamma T}Ce_{Rt})$	$\mathcal{O}_{ddd}^{S,LR}$	$\epsilon_{\alpha\beta\gamma}(d^{\alpha T}_{Lp}Cd^{\beta}_{Lr})(\bar{e}_{Ls}d^{\gamma}_{Rt})$
$\mathcal{O}_{\nu u}^{T,LL}$	$(\nu_{Lp}^T C \sigma^{\mu\nu} \nu_{Lr}) (\bar{u}_{Rs} \sigma_{\mu\nu} u_{Lt})$	$\mathcal{O}^{S,RL}_{uud}$	$\epsilon_{\alpha\beta\gamma}(u_{Rp}^{\alpha T}Cu_{Rr}^{\beta})(d_{Ls}^{\gamma T}Ce_{Lt})$	$\mathcal{O}_{ddd}^{S,RL}$	$\epsilon_{\alpha\beta\gamma}(d_{Rp}^{\alpha T}Cd_{Rr}^{\beta})(\bar{e}_{Rs}d_{Lt}^{\gamma})$
$\mathcal{O}_{\nu u}^{S,LR}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{u}_{Ls} u_{Rt})$	$\mathcal{O}_{duu}^{S,RL}$	$\epsilon_{\alpha\beta\gamma}(d^{\alpha T}_{Rp}Cu^{\beta}_{Rr})(u^{\gamma T}_{Ls}Ce_{Lt})$	$\mathcal{O}_{udd}^{S,RR}$	$\epsilon_{\alpha\beta\gamma}(u^{\alpha T}_{Rp}Cd^{\beta}_{Rr})(\bar{\nu}_{Ls}d^{\gamma}_{Rt})$
$\mathcal{O}_{\nu d}^{S,LL}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{d}_{Rs} d_{Lt})$	$\mathcal{O}_{dud}^{S,RL}$	$\epsilon_{\alpha\beta\gamma}(d_{Rp}^{\alpha T}Cu_{Rr}^{\beta})(d_{Ls}^{\gamma T}C\nu_{Lt})$	$\mathcal{O}_{ddd}^{S,RR}$	$\epsilon_{\alpha\beta\gamma}(d_{Rp}^{\alpha T}Cd_{Rr}^{\beta})(\bar{e}_{Ls}d_{Rt}^{\gamma})$
$\mathcal{O}_{\nu d}^{T,LL}$	$(\nu_{Lp}^T C \sigma^{\mu\nu} \nu_{Lr}) (\bar{d}_{Rs} \sigma_{\mu\nu} d_{Lt})$	$\mathcal{O}_{ddu}^{S,RL}$	$\epsilon_{\alpha\beta\gamma}(d^{\alpha T}_{Rp}Cd^{\beta}_{Rr})(u^{\gamma T}_{Ls}C\nu_{Lt})$		
$\mathcal{O}_{\nu d}^{S,LR}$	$(\nu_{Lp}^T C \nu_{Lr})(\bar{d}_{Ls} d_{Rt})$	$\mathcal{O}_{duu}^{S,RR}$	$\epsilon_{\alpha\beta\gamma}(d_{Rp}^{\alpha T}Cu_{Rr}^{\beta})(u_{Rs}^{\gamma T}Ce_{Rt})$		
$\mathcal{O}_{\nu edu}^{S,LL}$	$(\nu_{Lp}^T C e_{Lr})(\bar{d}_{Rs} u_{Lt})$				
$\mathcal{O}_{\nu edu}^{T,LL}$	$(\nu_{Lp}^T C \sigma^{\mu\nu} e_{Lr}) (\bar{d}_{Rs} \sigma_{\mu\nu} u_{Lt})$				
$\mathcal{O}_{\nu edu}^{S,LR}$	$(\nu_{Lp}^T C e_{Lr})(\bar{d}_{Ls} u_{Rt})$				
$\mathcal{O}_{\nu edu}^{V,RL}$	$(\nu_{Lp}^T C \gamma^\mu e_{Rr}) (\bar{d}_{Ls} \gamma_\mu u_{Lt})$				
$\mathcal{O}_{\nu edu}^{V,RR}$	$(\nu_{Lp}^T C \gamma^\mu e_{Rr}) (\bar{d}_{Rs} \gamma_\mu u_{Rt})$				