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Defining Chiral Gauge Theories 
Beyond Perturbation Theory

Lattice Regulating Chiral Gauge Theories
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Parity Violation in Standard Model
First conclusively seen in decay of 60Co

60C0       60Ni + e- +νe + 2γ27 28
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Parity Violation in Standard Model
First conclusively seen in decay of 60Co

60C0       60Ni + e- +νe + 2γ27 28

Phys. Rev. 105, 1413

Electroweak interactions differentiate between left-handed 
and right-handed fermions
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Motivation

Big Question: What are the necessary ingredients of 
a well-defined chiral gauge theory 

• Experimental tests of Standard Model only probe 
weakly coupled chiral gauge theories 

• No experimental access to nonperturbative regime of 
chiral gauge theories  

• Current quantum theoretic description only provides 
controlled predictions in perturbative regime
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Motivation

Big Question: What are the necessary ingredients of 
a well-defined chiral gauge theory 

• Experimental tests of Standard Model only probe 
weakly coupled chiral gauge theories 

• No experimental access to nonperturbative regime of 
chiral gauge theories  

• Current quantum theoretic description only provides 
controlled predictions in perturbative regime

To answer these, must first find a nonperturbative regulator
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Vector Theory (QED, QCD) 

• Real fermion representation 

• Gauge symmetries  allow fermion 
mass term 

• Gauge-invariant massive regulator 
(Pauli-Villars) can be used 

• Known lattice regulator

Vector vs Chiral Gauge Theories
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Chiral Theory (Electroweak) 

• Complex fermion representation 

• Gauge symmetries forbid 
fermion mass term 

• Gauge-invariant massive 
regulator cannot be used 

• No known (proven) lattice 
regulator*
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Chiral Theory (Electroweak) 

• Complex fermion representation 

• Gauge symmetries forbid 
fermion mass term 

• Gauge-invariant massive 
regulator cannot be used 

• No known (proven) lattice 
regulator*

Vector Theory (QED, QCD) 

• Real fermion representation 

• Gauge symmetries  allow fermion 
mass term 

• Gauge-invariant massive regulator 
(Pauli-Villars) can be used 

• Known lattice regulator

Vector vs Chiral Gauge Theories

Need to control UV divergences in gauge-invariant manner

*see arXiv:0011027, 0102028 for reviews
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Anomalies
Quantum violations of classical symmetry
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Example: Massless electrons in a box (2d QED) 

• Total fermion charge does not change: U(1)V preserved 

• Total chiral charge can perhaps change: U(1)A violated?

Anomalies

Right Moving 

Left Moving p

ω
Initial Ground State

Quantum violations of classical symmetry
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Final Ground State

Example: Massless electrons in a box (2d QED) 

• Total fermion charge does not change: U(1)V preserved 

• Total chiral charge can perhaps change: U(1)A violated?

Anomalies

Right Moving 

Left Moving

Electric field 
on, off

Chiral charge changes only if Dirac sea is infinitely deep

p

ω
Initial Ground State

Quantum violations of classical symmetry
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Perturbative vs Nonperturbative Construction

Continuum (Perturbative) 
• Anomalous chiral symmetries 

• Standard Model contains global 
anomalies 

• Self-consistency requires 
cancelation of gauge anomalies 

• Chiral symmetry prohibits 
additive renormalization
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Perturbative vs Nonperturbative Construction

Lattice (Nonperturbative) 
• No anomalies (finite DoF) 

• Global symmetry violated 
explicitly 

• Need “road to failure” for 
anomalous fermion reps. 

• No-go for massless fermions 
with full chiral symmetry*

Continuum (Perturbative) 
• Anomalous chiral symmetries 

• Standard Model contains global 
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• Self-consistency requires 
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Perturbative vs Nonperturbative Construction

Lattice (Nonperturbative) 
• No anomalies (finite DoF) 

• Global symmetry violated 
explicitly 

• Need “road to failure” for 
anomalous fermion reps. 

• No-go for massless fermions 
with full chiral symmetry*

Continuum (Perturbative) 
• Anomalous chiral symmetries 

• Standard Model contains global 
anomalies 

• Self-consistency requires 
cancelation of gauge anomalies 

• Chiral symmetry prohibits 
additive renormalization

*Nielson & Ninomiya ‘81

Is there new physics ‘hidden’ in the mismatch between what we expect a 
nonperturbative regulator to do and what lattice can seem to do?
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Regulating Fermions
Fermion contribution to path integral encoded in Δ(A) 

• Dirac operator maps VL   VR to VL   VR and so Δ(A) can be determined 
unambiguously 

• Chiral operator maps VL to VR and only modulus of Δ(A) can be 
determined unambiguously  
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Regulating Fermions
Fermion contribution to path integral encoded in Δ(A) 

• Dirac operator maps VL   VR to VL   VR and so Δ(A) can be determined 
unambiguously 

• Chiral operator maps VL to VR and only modulus of Δ(A) can be 
determined unambiguously  

Additional information is necessary to define δ(Α)  
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Nielson-Ninomiya Theorem

8

No-Go Theorem: No lattice fermion operator can satisfy all  
four conditions simultaneously:  

1. Periodic and analytic in momentum space 

2. Reduces to Dirac operator in continuum limit 

3. Invertible everywhere except at zero momentum 

4. Anti-commutes with γ5
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Nielson-Ninomiya Theorem

Lattice regulated chiral fermions violate at least one condition 

8

No-Go Theorem: No lattice fermion operator can satisfy all  
four conditions simultaneously:  

1. Periodic and analytic in momentum space 

2. Reduces to Dirac operator in continuum limit 

3. Invertible everywhere except at zero momentum 

4. Anti-commutes with γ5

}
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transform
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Ex: Discretized Dirac Operator 
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Block spin-averaged continuum theory results in operator that 
obeys 

• U(1)A explicitly violated only at finite lattice spacing 

•  Operator obeys index theorem correctly relating zero modes to 
winding number* 

• New symmetry protects fermion mass from additive renormalization 

• Solution has the form

*Ginsparg & Wilson, ’85 
*Luscher, ‘98

Ginsparg-Wilson Equation*

9

Lattice spacing
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Block spin-averaged continuum theory results in operator that 
obeys 

• U(1)A explicitly violated only at finite lattice spacing 

•  Operator obeys index theorem correctly relating zero modes to 
winding number* 

• New symmetry protects fermion mass from additive renormalization 

• Solution has the form

*Ginsparg & Wilson, ’85 
*Luscher, ‘98

Ginsparg-Wilson Equation*

9

Requires LH and RH fermions have same gauge transformation

Lattice spacing
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Domain Wall Fermions*

Idea: New mechanism/symmetry to allow ‘naturally’ light 
fermions 

• Introduce extra compact dimensions, s = [-L, L]  

• 5d fermion mass term depends on s 

• Spectrum contains both light and heavy fermions modes 

• Light modes exponentially localized onto the boundaries

*Kaplan ‘92

s

-M

m

s = 0 s = Ls = -L
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Domain Wall Fermions*

Idea: New mechanism/symmetry to allow ‘naturally’ light 
fermions 

• Introduce extra compact dimensions, s = [-L, L]  

• 5d fermion mass term depends on s 

• Spectrum contains both light and heavy fermions modes 

• Light modes exponentially localized onto the boundaries

*Kaplan ‘92

s

-M

m

s = 0 s = Ls = -L

LH RHRH
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Idea: U(1)A is explicitly broken at finite lattice spacing 
• Introduce s-independent 4d gauge field 

• Heavy modes decouple apart from Chern-Simons operator  
(Callan-Harvey Mechanism*) 

• Light fermions on boundary see Chern-Simons operator as 
explicit U(1)A symmetry breaking

U(1)A Anomaly on the Lattice

s

-M

mLHRH RH

11

*Callan & Harvey ’85
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Construction describes one massless Dirac fermion in limit 
of infinite extra dimension 

• Overlap of  LH and RH modes goes to zero 

• Effective fermion operator found by integrating out heavy modes* 

• Operator obeys Ginsparg-Wilson equation

*Narayan & Neuberger, ’95

Effective Fermion Operator

12

important:

m = 1 
M infinite

Wilson operatorLattice spacing
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Construction describes one massless Dirac fermion in limit 
of infinite extra dimension 

• Overlap of  LH and RH modes goes to zero 

• Effective fermion operator found by integrating out heavy modes* 

• Operator obeys Ginsparg-Wilson equation

Can we find similar operator for chiral gauge theories?

*Narayan & Neuberger, ’95

Effective Fermion Operator

12

important:

m = 1 
M infinite

Wilson operatorLattice spacing
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Idea: Localize gauge field around LH brane 
• Theory is not gauge-invariant 

• Add Yukawa-like coupling at discontinuity 

• Spectrum is vector-like as new light modes become localized at 
discontinuity*

*Golterman, Jansen & Vink, ‘93

Attempt One: Chiral Gauge Theories

A
s

LHRH RH

13

discretize extra 
dimension

‘flavor’ index

A=0
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Idea: Localize gauge field using gauge-covariant flow 
equation*  

• A★ completely determined by A 

• Gradient flow damps out high momentum gauge fields

Attempt Two: Chiral Gauge Theories

s

-M

mLHRH RH

14

BC:Flow Eq:

Integration variable 
in path integral

*DMG & Kaplan ‘15
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Gradient Flow*

*Previously used in 
LQCD (Luscher ’10 etc)

15

Behaves like a heat equation
Ex: 2d QED 

• Gauge field decomposes into gauge 
and physical degrees of freedom 

• Each obey own flow equation

High momentum modes 
damped out

Gauge DoF 
unaffected
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Gradient Flow*

*Previously used in 
LQCD (Luscher ’10 etc)

15

Behaves like a heat equation
Ex: 2d QED 

• Gauge field decomposes into gauge 
and physical degrees of freedom 

• Each obey own flow equation

High momentum modes 
damped out

Gauge DoF 
unaffected s/L

ω(x,s) 
ω(x,0)

0.20.40.60.81.0
s/L

λ(x,s) 
λ(x,0)

0

1

0 1

RH fermions have exponentially 
soft form factor
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Integrating out bulk fermions generates a Chern-Simons term

SCSIntegrate out

bulk fermions

Anomalies and Callan-Harvey Mechanism*

*Callan & Harvey ’85

2d
 S

ur
fa

ce

A(x)μ lives here
s

Heavy fermion 

Zero Mode

 A(x,s)μ lives here

2d
 S

ur
fa

ce
A(x)μ lives here

s
Zero Mode

 A(x,s)μ lives here

16
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Bulk fermions generate Chern Simons action 

• In 3 dimensions, the Chern Simons action is

Anomalies and Callan-Harvey Mechanism

17
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Fermion Contribution
Pauli Villars ContributionCS only depends on sign of 

domain wall mass 

Anomalies and Callan-Harvey Mechanism
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Bulk fermions generate Chern Simons action 

• In 3 dimensions, the Chern Simons action is

• This approximation is only valid far away from domain wall

Fermion Contribution
Pauli Villars ContributionCS only depends on sign of 

domain wall mass 

Anomalies and Callan-Harvey Mechanism

17
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Chern-Simons Term for 3d QED with flowed gauge fields 

• No gauge field in 3rd dimensions 

• Effective two point function is nonlocal 

• When flow is turned off (               ), Γ vanishes Determines speed of flow

Gauge Anomalies

18
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Chern-Simons Term for 3d QED with flowed gauge fields 

• No gauge field in 3rd dimensions 

• Effective two point function is nonlocal 

• When flow is turned off (               ), Γ vanishes Determines speed of flow

Gauge Anomalies

Effective 2d theory is nonlocal due to Chern-Simons operator

18
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DWF with flowed gauge fields give rise to nonlocal 2d theory 

• Chern-Simons has prefactor if have multiple fermion fields 

• Theory is local if prefactor vanishes

Anomaly Cancellation 
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Anomaly Cancellation 

Fermion Chirality
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DWF with flowed gauge fields give rise to nonlocal 2d theory 

• Chern-Simons has prefactor if have multiple fermion fields 

• Theory is local if prefactor vanishes

Anomaly Cancellation 

Fermion Chirality

Chiral fermion representations that satisfy this criteria 
are gauge anomaly free representations in continuum
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Summary (so far)
Proposal: Couple DWF to gradient-flowed gauge fields to 
lattice regulate chiral gauge theories 

• Massless fermions localized on boundaries in limit of infinite 
extra dimension 

• Fermions on far boundary couple with exponentially soft form 
factor 

• Gauge-anomaly cancellation criteria in continuum is analogous 
to locality criteria on the lattice 

Question 1: Do mirror partners decouple completely and if 
not, what are the physical implications? 

Question 2: What is the effective fermion operator for the 
massless fermions in this construction?
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Idea: Continuum gradient flow equation has multiple attractive 
fixed points* 

• Flow does not affect topological gauge configurations (ex: instantons) 

• RH fermions couple to these configurations

Gradient Flow Fixed Points

A A★A★
s

-M

mLHRH RH

21

BC:Flow Eq:

*(Probably) not true for 
discretized flow equation
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Idea: Continuum gradient flow equation has multiple attractive 
fixed points* 

• Flow does not affect topological gauge configurations (ex: instantons) 

• RH fermions couple to these configurations

Gradient Flow Fixed Points

A A★A★
s

-M

mLHRH RH

21

BC:Flow Eq:

Is this a problem? *(Probably) not true for 
discretized flow equation
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Weak Coupling

s

Winding number = 3
s =0 s =L

22
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Weak Coupling

At weak coupling, instanton contribution is most important 

• Flow does not affect location of instantons 

• Correlation between location of instantons on the two boundaries allows 
for exchange of energy/momentum 

• Highly suppressed process, so difficult to observe

s

Winding number = 3
s =0 s =L

22
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Strong Coupling

s

s =0 s =L

23

Winding number = 3
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Strong Coupling

At strong coupling, need to include instanton-anti instanton pairs 

• I-A pairs DO NOT satisfy equations of motion 

• If flow for sufficiently long time, all pairs will annihilate 

• If no correlation between location of instantons on the two boundary, 
standard fermions and Fluff do not exchange energy/momentum

s

s =0 s =L

23

Winding number = 3
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Idea: Derive effective fermion operator in limit of infinite 
extra dimension* 

• Satisfies Ginsparg-Wilson as eigenvalues of H are real 

• Analytic form for Dχ can be explicitly derived for special case 

Effective Fermion Operator

24

s

-M

mLHRH RH

Flowed gauge field

Hamiltonian for 
translations in s direction
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Idea: Derive effective fermion operator in limit of infinite 
extra dimension* 

• Satisfies Ginsparg-Wilson as eigenvalues of H are real 

• Analytic form for Dχ can be explicitly derived for special case 

Effective Fermion Operator

*DMG & Kaplan ‘16

24

s

-M

mLHRH RH

Flowed gauge field

Hamiltonian for 
translations in s direction
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Hard to take large L limit analytically, due to s-dependent 
flow 

• Use ‘abrupt flow’ approximation*  

• Assume A and A★  have same topology

“Abrupt Flow” operator

25

A A★A★
s

-M

mLHRH RH
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Key property: Continuum Limit 

• Gauge invariance preserved as A and A★ transform identically 

• Mirror partners should* decouple completely if A★ is pure gauge 

Open Question: How discretized gradient flow affect 
‘topology’

‘Abrupt Flow’ Operator

26

A A★A★
s

-M

mLHRH RH

*Abrupt flow might 
disrupt decoupling 
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Key property: Phase ambiguity 
• Δ(Α) determined by treating extra dimension as time component 

• Infinite extra dimension corresponds to projecting onto multi-
particle ground states of Hamiltonians, Hi-iv 

• Phase of Δ(A) unaffected by arbitrary phase rotations on 
eigenbases of Hi-iv

‘Abrupt Flow’ Operator

27

s

-M

m RH

Hi

LHRH

Hiv Hii Hiii

*Narayan & Neuberger, ’95



D.M. Grabowska  UC Davis Joint Theory Seminar   11/07/2016

Key property: Phase ambiguity 
• Δ(Α) determined by treating extra dimension as time component 

• Infinite extra dimension corresponds to projecting onto multi-
particle ground states of Hamiltonians, Hi-iv 

• Phase of Δ(A) unaffected by arbitrary phase rotations on 
eigenbases of Hi-iv

‘Abrupt Flow’ Operator

27

s

-M

m RH

Hi

LHRH

Hiv

Ground state

Hii Hiii

*Narayan & Neuberger, ’95
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Summary

28

Nonperturbative control over UV divergences in chiral gauge 
theories is key for defining self-consistent Standard Model 
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Summary

28

Nonperturbative control over UV divergences in chiral gauge 
theories is key for defining self-consistent Standard Model 

Proposal: Combine domain wall fermions and gradient flow to lattice 
regulate chiral gauge theories 

• Mirror partners decouple due to exponentially soft form factors 

• Anomalous fermion representations result in nonlocal theory (road to failure) 

• Effective operator obeys Ginsparg-Wilson equation and has unambiguously 
defined phase and correct continuum limit 

• Many unanswered questions remain
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• Mirror partners decouple due to exponentially soft form factors 

• Anomalous fermion representations result in nonlocal theory (road to failure) 

• Effective operator obeys Ginsparg-Wilson equation and has unambiguously 
defined phase and correct continuum limit 

• Many unanswered questions remain

New physics may be hidden in Standard Model due to 
nonperturbative chiral dynamics


