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Holography = Solvable Toy Model

Solvable models adtrong coupling dynamics.

« Study Transportealtime
 Study FiniteDensity of electrons or quarks

 Study far from equilibrium

Common Theme: Experimentally relevant, calculations challenging.

Gives us gualitative guidance/intuition.
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Why toy models?

Strong coupling =
no perturbation theory!

But can’t we Just do



Challenge for Computers:

strong coupling:

? We do have methods for
T

e.g. Lattice QCD

But: typically relies on importance sampling. Monte-Carlo

: techniques.
Q weighting in Euclidean path integral.

4

FAILS FOR DYNAMIC PROCESSES OR AT FINITE DENSITY (sign problem)



Holographic Toy models.

Can we at least

get a qualitative
understanding of

what dynamics look
like at strong coupling?
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Holographic Theories:

Examples known:

* Ind=1, 2, 3, 4, 5, 6 spatceme dimensions
* with orwithout supersymmetry

« conformal or confining

« with or without chiral symmetry breaking
« with finite temperature and density
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Holographic Theories:

Holographic toy models have two key properties

N Lar g ehedtyis essentially classical

A L a redq :darge separation of scales
In the spectrum

~ \l/4
sSpin2-meson spinl-meson

QCD: 1275MeV 775 MeV

: ... 8
(note: there are some exotic examples where the same parameter N controls both, classicality
and separation of scales in spectrum)



Mathematical Foundations

The ngl ueo:

Find asymptotically hyperbolic
solutions to E
Full geometry includes compact
Internal factor.

Required geometric data found long ago by two
mathematiciang;effermanand Graham



Mathematical Foundations

The ngquar kso:

Find minimal areaubmanifoldsn

asymptotically Einstein spaces. (AK, Ka2)

FlavorBranes
Required geometric data for juetympt Einstein

constructed bysraham and Wittergeneralized to include
Internal space bfsraham and AK.
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A holographic dual:

E.g Maximally SUSY SU(N) YM with
fundamental reppypermultiplets

[
r=oc  8AdS, UV O »
D7-branes w O

R scale O
| r=L u=I[ H

(picture from CLMRWreview, 2011)




Applications toQCD
Transport.

NnNThe strong force [ &
because 1|t | S SO Str

(from Lisa Randall’'s “Warped Passages”)

] 1 s
ongo

C

a l
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Applications to QCD Transport

(as experimentally probed in Heavy lon Collisions)

A Viscosity and Hydrodynamics

A Energy Loss
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Shear Viscosity

Viscosity = Diffusion constant for momentum

Viscosity = [(force/area)] per unit velocity gradient 14



Viscosity in Heavy lons.

by
frt

t low pressure

How does the almond .§ high pressure
shaped fluid expand?



Viscosity

Viscosity can be quantified:

water: | centipoise (cp)
air: 0.02 cp
honey: 2000- 10000 cp

(1cp=10 P =10 Pa-9

16



Measuring Viscosity- an example

Pitch drop experiment

Started in 1930

8 drops fell so far

but no one has ever withessed a
drop fall

2005 Ig Nobel Prize in Physics

Viscosity of pitch: 230 billions
times that of water

(2.3 1G'cp) o




Measuring Viscosity- an example

Recall: Viscosity of pitch: ~ 2.3 18cp



Measuring Viscosity- an example

Recall: Viscosity of pitch: ~ 2.3 18cp

RHI Co6s measurement of QGP (confirr

107 2%7erg - s

14
(10=13cm)? ~ 107

i
-’,*}' M —— 8
47

19



Measuring Viscosity- an example

Recall: Viscosity of pitch: ~ 2.3 18cp

RHI Co6s measurement of QGP (confirr

107 2%7erg - s

14
(10=13cm)? ~ 107

h
-’,*}' M —— 8
4

BNL press release 2005:

“The degree of collective interaction, rapid thermalization, and
extremely low viscosity of the matter being form at RHIC makes this
the most nearly perfect liquid ever observed.” 20
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Viscosity in Holography:

In a large class of systems:

0, h

— (Kovtun, Son,Starinet$

S A7t

* pinpoints correct observable

* In contrast to QGR)/s enormous for pitch
* gives ballparkfigure

+ large at weak couplinground?



Viscosity— Recent Developments

Not a b()u ndl (Kats,Petroy 2007, using flavobrane$
N 1 1 N =2 Sp(N)
—_ = — 1 _ 4 fundamental
S 47‘{' 2 N 1 antisymmetric traceless

Higher Curvature corrections violate bound.
(Brigante Liu, Myers,ShenkerYaida Buchel Sinhg e )

Calculations only reliable if violations are small.



Energy LOSS




Energy Loss In Heavy lons.

/
" See one of two baelo-back
created particles.

t her one got

Jet quenchings a direct indication afargedrag.
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Holographic Energy Loss
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Observable: Stopping Distance

PerturbativeQCD: L ~EY2 (BbMPS, .

Holography:

Maximal Stopping Distance: L ~ E1/3
(Chesler, Jensen, AK, Yaff§ubseyGulottag Pufu Rocha)

Typical Stopping Distance: L ~ E4

(Arnold, Vaman- 2011)

Experiment: RHIC: holography good
LHC: holography bad -- weak coupling?
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Observable: Stopping Distance

PerturbativeQCD: L~ EY2 (BDMPS, )
Holography: Exponents!

Maximal Stopping Distance: L ~ E1/3
(Chesler, Jensen, AK, Yaff§ubseyGulottag Pufu Rocha)

Typical Stopping Distance: L ~ E4

(Arnold, Vaman- 2011)

Experiment: RHIC: holography good
LHC: holography bad -- weak coupling?



Applications to Condensed
Matter Physics.
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Strong Coupling in CM.

The theory of everything:

How hard can it be?
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Strong Coupling in CM

Already Helium too difficult to
solve analytically.

electron/electron Coulomb repulsion not weak!
If it is negligible, we have good theory control:
Band structure! Insulators and conductors.
but what to do when it is not? *



Landau’ s paradi c

AN

 |dentify physical candidates for
low energydegrees of freedom.

dominate transport

* Write down most general allowed interactior

many |1 nteractions Nnirrelev

l
« See how Interactionscalein low energy limit

31
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What could they be?

1) weakly coupled fermions.

Landau Fermi Liquid

—_

* Fermi Surface
* Low energy excitations near

Fermi Surface |
« Only Cooper Pair Instability

survives at low energies, all <—— universal!

other interactions scale to zero 2

at low temperatures
resistivity grows as P
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What could they be?

1) weakly coupled bosons.

Landaudos Theory of Phase T

b ) d
Gm.T) = ?U(T —Tom* + Em4 + 6m +

f N

order parameter

free energy = scalar field.

Scalar mass relevant; dominates at low energies. 33
Can be tuned to zero close to a phase transition.



Is this all?

T (k)

Non Fermi Liquid

» 7 Strange Metal /'
A} ‘

f"

Carrier Concentration

Fermi Liquid

X

Degrees of freedon
In highTc
superconductors
are neither!

Non-Fermi Liquid

at low temperatures
resistivity grows as T



What else could it be?

Perfect questions to ask a solvable toy model:

 What are the possible low energy
behaviors?

* Are their qualitative new phenomena
hiding at strong coupling?



Two Applications

A Far from equilibrium steady states.
A Novel Scaling Exponents.



Steady States




Non-equilibrium

Strongly correlated neaquilibrium physics
IS intrinsically difficult, even in holography.

The simplest and most tractable raoquilibrium
systems areon-equilibrium steady states
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DC Conductivity/Resistivity

one of the most basic transport properties of any matter/fluid
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Steady State Is Out of Equilibrium

Defects
@ O

//.
E .f _________ E
— 0 —
— @
S - © P —
— @
— — @ S



Dissipation driven Steady States

Acceleration from electric field balanced
by momentum dissipation.

ypically requires broken translation invariance

Constant Entropy Productio@hmicHeating.

First Holographic Real il z.



Quantum Ciritical Transport:

(AK, Shivaji Sondh).

At quantum critical point DC conductivity non-linear!
j=sE~ E°?

Predicted by Greene and Sondhi based on scaling.
Holography provides only known calculable example
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Flow Driven Steady State

(Bernard, Doyon;
Doyon, LucasSchalm Bhaseen

Chang, AK,Yarom)

TL JE#O

(intermediate
time steady state)

43

(picture fromDoyon,LucasSchalm Bhaseeh
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Flow Driven Steady State

0gToAFPo

020406
|

Strong coupling=
Hydro valid on Plateau

44



Summary, steady states

Holography gives solvable realizations of
strongly correlated steady states.

« Confirms (theoretical existence) of non
linear transport at quantum critical points

* Points to existence of qualitatively novel
(flow driven) steady states at strong
coupling.



Novel Scaling Exponents

(recent work with Sean Hartnoll)




Strange Metal / QCP

. : (Hussey;Sachdey
“\‘T* ] T h‘?
\, : . Linear resistivity directly
"\, p~T o’ driven by Quantum Critical
< L \, : 4 Fluctuations?
- “ : b
p(T) A i .’ 2
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‘\ . " or
= ‘\ 7 p ~ Tn
upturns (1<n<?2) TFL?
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Hole doping x
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Strange Metal / QCP

. : (Hussey;Sachdey
T E T 2
\, : . Linear resistivity directly
"\, p~T o driven by Quantum Critical
<L \ : ’,-' Fluctuations?
- “ : b
p(T) ‘\ : "'" 2
S-shaped . P -(I:-)r+ T
L oL p~T" Q C P ’?
upturns
Al inp(T)
F’ .
M d-wave SC Sop~T
. g
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Hole doping x



Dimensional Analysis at QCP

@ p [0 @

Dynamical Ciritical
Exponent.



Dimensional Analysis at QCP

[ p 0] &
(] Q |

Hyperscaling Violating
Exponent.



Dimensional Analysis at QCP

[ p [0 a
(] Q |
[0 p a B

Anomalous Coupling
(AK) to E&M Fields.
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Scaling and th€uprates

If we try to explain scaling in theuprates
IS nonzero® needed?

Is there a simple physical observable whose dimension
IS zero unles® is nonzero?

] Q — a c¢ thermal conductivity

,] Q — % C electric conductivity
|

[i)] [—,J C %0 Lorenz ratio



Lorenz Ratio

Thermalconductivity receives contributions
from all degrees of freedom includipggonons

Expect system to be:QCP + neutral heat bath

I

(can carry spin, but no charg

|Isolate: Hall Lorenz ratio.



WiedemansFranz Law Violation
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Scaling analysis aCuprates

(Sean Hartnoll, AK):

Can a simple scaling analysis based on

3 exponentsz, 0 and® give an acceptable
phenomenology of the normal phase of the
cuprate8



INnputs

Need 3 experimentally well establisnazhlings
to pin down the three exponents.

1) Lorenz Ratio linearin T

a  G%o




2) LinearResistivity
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3) Hall Angle

160 y v '
| Ti,Ba,CuQ,, . single crystal
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Prediction 1Magnetoresistance
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Scaling implies:

3" 0
X —
1) Y

Perfectly agrees with experimental data!



Prediction 2: Thermoelectric

Typically measured aSeebeck
|

La,_,Sr,CuO, “Yk X 114 Y 7
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(Nishikawa et al, 1994)



Prediction 2: Thermoelectric

Ten years later data looks
much cleaner!

The publishedinearfit clearly
doesn’t capture h

Does this look like const/"Ye

0 100 200 300 400 500 600 70
T(K)

(Kim et al, 2004)



Prediction 2: Thermoelectric

Use Mathematica to
/ pick out points along
the x=0.25 curve and attempt

our own fit!

0 100 200 300 400 500 600 70
T(K)

(Kim et al, 2004)



SeebeclCoefficient
SE——— .
157 1 fits data head on!
10; and
< |
> dono6t .
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Summary, scaling

Scaling theory works for transport

* New exponentb needed by Lorenz data

« Other transport (Nernst) consistent but
needs more high T data

« Thermonot scaling,; ext
component

« (Can be tested in other materials
(pnictides



Summary.

Holography

Solvable models adtrong
coupling dynamics



