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A Standard Model-like Higgs particle has been
discovered by the ATLAS and CMS experiments at CERN

We see evidence
of this particle

in multiple channels.

We can reconstruct
its mass and we know
that is about 125 GeV. 

The rates are consistent
with those expected 

in the Standard Model.

Tuesday, November 19, 2013



Large Variations of Higgs couplings are still possible

But we cannot determine the Higgs couplings very accurately

As these measurements become more precise, they constrain possible 
extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated 
extensions of the Standard Model, like SUSY.
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In supersymmetric theories, there is one Higgs doublet that behaves like the

SM one.

HSM = Hd cos β +Hu sin β, tan β = vu/vd

The orthogonal combination may be parametrized as

H =

�
H + iA

H
±

�

whereH, H
±
and A represent physical CP-even, charged and CP-odd scalars

(non standard Higgs).

Strictly speaking, the CP-even Higgs modes mix and none behave exactly

as the SM one.

h = − sinα Re(H
0
d) + cosα Re(H

0
u)

In the so-called decoupling limit, in which the non-standard Higgs bosons

are heavy, sinα = − cos β and one recovers the SM as an effective theory.
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Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass 

*the stop masses and mixing 
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Figure 2. Comparison of the diagrammatic two-loop O(m2
t h

2
t αs) result for mh, to leading order

in mt/MS [eqs. (46) and (47)] with the “mixed-scale” one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in fig. 1. “Mixed-scale” indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at different

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2
g̃ + m2

t )
1/2 = 1 TeV for the cases of tan β = 1.6 and tanβ = 30, respectively.
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Standard Model-like Higgs Mass

Carena, Haber, Heinemeyer, Hollik,Weiglein,C.W.’00

Xt = At − µ/ tanβ, Xt = 0 : No mixing; Xt =
√

6MS : Max. Mixing

Long list of two-loop computations:  Carena, Degrassi, Ellis, Espinosa, Haber, Harlander, Heinemeyer, Hempfling, 
Hoang, Hollik, Hahn, Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, C.W., Weiglein, Zhang, Zwirner

mt = 180 GeV.
For mt = 173 GeV,
the maximum mh

shifts to 127 GeV.

SM-like MSSM Higgs Mass 

At~2.4 MS 

At=0 

2 -loop corrections:      

Many contributions to two loop corrections computations:  
Brignole, M.C., Degrassi,  Diaz, Ellis, Haber, Hempfling, Heinemeyer, Hollik, Espinosa,  Martin, 
 Quiros, Ridolfi, Slavich,  Wagner, Weiglein, Zhang, Zwirner, …  

M.C, Haber, Heinemeyer,  
Hollik,Weiglein,Wagner’00 

! 

mh "130 GeV
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Case of heavy Stops
Impact of higher loops 

Recalculation of RG prediction including up to 4 loops in 
RG expansion. 

 Agreement with S. Martin’07  and Espinosa and 
Zhang’00, Carena, Espinosa, Quiros,C.W.’00,
Carena, Haber, Heinemeyer,  Weiglein, Hollik and C.W.’00,
in corresponding limits.

Two loops results agree w FeynHiggs and CPsuperH 
results

G. Lee, C.W’13
(See also S. Martin’07,                                                             
P. Kant, R. Harlander, L. Mihalla, M. Steinhauser’10
J. Feng, P. Kant, S. Profumo, D. Sanford.’13, )
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To simplify the expression, we have excluded the yb, yτ , g1, g2 contributions beyond two-loop

order.

To convert the running mass into the pole mass, we use the one-loop formula
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where B0 is the one-loop Passarino-Veltman integral
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Non-Standard Higgs Production

Associated Production

Gluon Fusion

gAbb � gHbb �
mb tanβ

(1 + ∆b)v
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mτ tanβ

v

QCD:  S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, hep-ph/0603112
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Branching Ratios and Widths of Non-Standard Higgs Decays into Staus
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FIG. 6: Production rate of τ+τ− induced by the presence of heavy CP-even and CP-odd scalars,

with mA � 1 TeV, normalized to the rate obtained in the maximal mixing scenario used by the

CMS collaboration [78].

significantly alleviate the experimental constraints on mA coming from the decay to taus.

However, note that large values of Aτ > 1 TeV lead to problems with vacuum stability in

this region of parameters.

V. LIGHT STAUS AND HIGGS SEARCHES

Light staus remains the smoking gun signal of the MSSM scenario considered in this

paper. In Ref. [5], we studied the possibility of searching for them in the channel (pp →

ν̃τ τ̃1 → W τ τ̄ + 2χ0) at the LHC using a straight cut and count method. We specifically

analyzed the final state signature consisting of one lepton, 2 hadronic taus and missing

energy. We showed that this is a challenging search channel for both the 8 TeV and the 14

TeV runs, due to low statistics.

Here we will briefly mention another possibility of probing our framework at the LHC.

We note that the final state mentioned above is the same as the one arising in the Higgs

search channel (pp → Wh) followed by (h → τ τ̄). Therefore, it is interesting to see whether
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FIG. 5: Left : Branching ratios of the heavy Higgs bosons, H and A. Dashed red lines: BR(A →

τ̃1τ̃2), solid blue lines: BR(H → τ̃1τ̃1), solid green lines: BR(H → τ̃2τ̃2). Right : Total width of the

heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

decay rate into staus. The right panel shows the corresponding increase in the total width

with increasing Aτ and fixed mτ̃2 , which implies a decrease of the branching ratio of the

heavy Higgs decay into τ leptons. On the other hand, for a fixed value of Aτ , the value of

µ increases with mτ̃2 , which leads to an increase in ∆b and a more negative ∆τ . Since the

width of the decay into bottom quarks is the dominant one, this causes the total width to

decrease. However, note that negative ∆τ leads to an increase of the width of the decay

into τ leptons, and hence to an increase of the branching ratio of the decay of the heavy,

non-standard Higgs bosons into these particles. On the other hand, the production cross

section of non-standard Higgs bosons is inversely proportional to (1 +∆b)2 and hence there

is a compensating effect on the total rate of these Higgs bosons decaying into taus, Eq. (17).

Fig. 6 shows the variation of the production rate of taus as a function of mτ̃2 and Aτ with

respect to the maximal mixing scenario [53] used by ATLAS and CMS [78]. We use the

same set of parameters as for Fig. 5. For a fixed value of Aτ , as a result of the compensation

of effects discussed above, only a small variation of the rate of ττ production is observed

in the region of parameters under analysis. On the other hand, for a given value of mτ̃2

and increasing values of Aτ , the ττ production rate decreases due to an increase of the

width of the decay into stau leptons. Therefore, only for large values of Aτ can we hope to
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Decay branching
ratio of heavy non-standard 

Higgs boson to staus

Total heavy Higgs
boson width

Decay branching
ratio into taus,

compared to the 
mhmax scenario.

M. Carena, S. Gori, N. Shah, C. W. and L.T. Wang, arXiv:1303.4414 
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τ̃1τ̃2), solid blue lines: BR(H → τ̃1τ̃1), solid green lines: BR(H → τ̃2τ̃2). Right : Total width of the

heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

where the term proportional to (M
2
W +M

2
Z) is the approximate contribution from the decay

into light charginos and neutralinos. Similar to the case with heavy staus, Eq. (14), the

branching ratio is increased due to negative values of ∆τ and positive values of ∆b. However,

comparing Eqs. (14) and (17), we see that this increase is partially compensated for by the

stau decays, quantified by the last term in Eq. (17). Let us stress that Eq. (17) is only valid

when the stau, chargino and neutralino masses are much smaller than mA and should be

modified by the appropriate phase space factors if this is not the case.

As before, the production cross section is proportional to the product of the branching

ratio times the bottom Yukawa squared, giving

σ(pp → (H,A) → τ+τ−) ∝ m
2
b tan

2 β��
3
m2

b
m2

τ
+

(M2
W+M2

Z)(1+∆b)2

m2
τ tan2 β

�
(1 +∆τ )

2 + (1 +∆b)
2
�
1 +

A2
τ

m2
A

�� .

(18)

The ττ production rate again increases due to negative ∆τ and decreases due to positive

∆b. However in addition, there is also a decrease in the rate due to the decays into the light

staus.

Let us now compare the τ branching ratio in the light stau scenario with the one that

is obtained for heavy staus and small values of ∆b � 0.25 and ∆τ � 0, as happens at

23
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σ(bb̄A)×BR(A→ bb̄) � σ(bb̄A)SM
tan2 β

(1 + ∆b)
2 ×

9
(1 + ∆b)

2 + 9

σ(bb̄, gg → A)×BR(A→ ττ) � σ(bb̄, gg → A)SM
tan2 β

(1 + ∆b)
2 + 9

• Searches at the Tevatron and the LHC are induced by production channels 
associated with the large bottom Yukawa coupling.

• There may be a strong dependence on the parameters in the bb search 
channel, which is strongly reduced in the tau tau mode.

Searches for non-standard Higgs bosons
M. Carena, S. Heinemeyer, G.Weiglein,C.W, EJPC’06

Validity of this approximation confirmed by  NLO computation by D. 
North and M. Spira, arXiv:0808.0087
Further work by Mhulleitner, Rzehak and Spira, 0812.3815

Tuesday, November 19, 2013

Below	
  the	
  top	
  threshold	
  or	
  at	
  moderate	
  or	
  large	
  tanβ	
  (last	
  term	
  associated	
  with	
  light	
  staus)	
  :	
  



How to  test the
region of low tanbeta
and moderate  mA ?

Decays of non-standard
Higgs bosons into paris

of standard ones, charginos
and neutralinos may be 

a possibility.

Can change in couplings help 
there ?

It depends on radiative corrections

See
Carena, Haber, Logan, Mrenna ’01

H,A → ττ

In the MSSM, non-standard Higgs may be produced
via its large couplings to the bottom quark, and

searched for in its decays into bottom quarks and tau leptons

Tuesday, November 19, 2013



Small differences in final analysis... Small excess at 200 GeV 
and tanβ of order 10 ?

Large mixing will affect the SM-like Higgs behavior.
Can we control these mixing effects ?

Bounds used Final results

Tuesday, November 19, 2013
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and the mass-squared matrix for the CP -even scalars can be expressed as

M =





M11 M12

M12 M22



 ≡ m2
A





s2β −sβcβ

−sβcβ c2β



 + v2





L11 L12

L12 L22



 , (12)

where

L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (13)

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (14)

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β . (15)

There are two simple facts to keep in mind:

Mii > 0 , and m2
h ≤ Mii ≤ m2

H , for i = 1, 2 , (16)

where the first condition follows from the requirements that DetM > 0 and TrM > 0, while

the second follows from ”level repulsion” of eigenvalues of symmetric matrices.

Next we are going to solve for the mixing angle in the CP -even sector in terms ofmh = 125

GeV and two of the three entries of M2
h,H. Let’s define the mixing angle α





H

h



 =





cα sα

−sα cα









φ0
1

φ0
2



 ≡ R(α)





φ0
1

φ0
2



 , (17)

where we choose −π/2 ≤ α ≤ π/2, in general, so that both sα and cα are single-valued.

However in MSSM one can show that −π/2 ≤ α ≤ 0 at tree-level, which nonetheless does

not hold once radiative corrections are included. Then we have

RT (α)





m2
H 0

0 m2
h



R(α) =





M11 M12

M12 M22



 . (18)

Then from Eq. (18) we can solve for

sα =
M12

√

(M12)2 + (M11 −m2
h)

2
, (19)

m2
H =

M11(M11 −m2
h) + (M12)2

M11 −m2
h

. (20)

From Eq. (19) we see that the sign of sα is determined by the sign of M12, which is why

in MSSM at tree-level one can choose −π/2 ≤ α ≤ 0. Also the conditions in Eq. (16)

guarantees the positivity of m2
H in Eq. (20).

3

We follow the notation in Ref. [1] for the scalar potential of the most general two-Higgs-

doublet extension of the SM:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) +

1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

{

1

2
λ5(Φ

†
1Φ2)

2 + [λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)]Φ

†
1Φ2 + h.c.
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, (1)

where

Φi =





φ+
i

1√
2
(φ0

i + ia0i )



 . (2)

Notice that in the case of unbroken SUSY we have

λ1 = λ2 =
1

4
(g21 + g22) =

m2
Z

v2
, (3)

λ3 =
1

4
(g21 − g22) = −

m2
Z

v2
+

1

2
g22 , (4)

λ4 = −
1

2
g22 , (5)

λ5 = λ6 = λ7 = 0 . (6)
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where

v2 = v21 + v22 ≈ 246 GeV , tβ ≡ tan β =
v2
v1

. (8)

We choose 0 ≤ β ≤ π/2 so that tβ ≥ 0 and write v1 = v cos β ≡ vcβ and v2 = v sin β ≡ vsβ.

The five mass eigenstates are two CP -even scalars H and h, with mh ≤ mH , one CP -odd

scalar A, and a charged pair H±. The mass parameters m11 and m22 can be eliminated by
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m2
11 − tβm

2
12 +

1

2
v2c2β(λ1 + 3λ6tβ + λ̃3t

2
β + λ7t

3
β) = 0 , (9)

m2
22 − t−1

β m2
12 +

1

2
v2s2β(λ2 + 3λ7t

−1
β + λ̃3t

−2
β + λ6t

−3
β ) = 0 , (10)

where λ̃3 = λ3 + λ4 + λ5. It then follows that [1]

m2
A =

2m2
12

s2β
−

1

2
v2(2λ5 + λ6t

−1
β + λ7tβ) , (11)

2

We follow the notation in Ref. [1] for the scalar potential of the most general two-Higgs-

doublet extension of the SM:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) +
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†
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†
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†
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We will assume CP conservation and that the minimum of the potential is at

〈Φi〉 =
1√
2





0
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

 , (7)

where

v2 = v21 + v22 ≈ 246 GeV , tβ ≡ tan β =
v2
v1

. (8)

We choose 0 ≤ β ≤ π/2 so that tβ ≥ 0 and write v1 = v cos β ≡ vcβ and v2 = v sin β ≡ vsβ.

The five mass eigenstates are two CP -even scalars H and h, with mh ≤ mH , one CP -odd

scalar A, and a charged pair H±. The mass parameters m11 and m22 can be eliminated by

imposing the minimization condition [1]:

m2
11 − tβm

2
12 +

1

2
v2c2β(λ1 + 3λ6tβ + λ̃3t

2
β + λ7t

3
β) = 0 , (9)

m2
22 − t−1

β m2
12 +

1

2
v2s2β(λ2 + 3λ7t

−1
β + λ̃3t

−2
β + λ6t

−3
β ) = 0 , (10)

where λ̃3 = λ3 + λ4 + λ5. It then follows that [1]

m2
A =

2m2
12

s2β
−

1

2
v2(2λ5 + λ6t

−1
β + λ7tβ) , (11)

2

and the mass-squared matrix for the CP -even scalars can be expressed as

M =





M11 M12

M12 M22



 ≡ m2
A





s2β −sβcβ

−sβcβ c2β



 + v2





L11 L12

L12 L22



 , (12)

where

L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (13)

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (14)

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β . (15)

There are two simple facts to keep in mind:

Mii > 0 , and m2
h ≤ Mii ≤ m2

H , for i = 1, 2 , (16)

where the first condition follows from the requirements that DetM > 0 and TrM > 0, while

the second follows from ”level repulsion” of eigenvalues of symmetric matrices.

Next we are going to solve for the mixing angle in the CP -even sector in terms ofmh = 125

GeV and two of the three entries of M2
h,H. Let’s define the mixing angle α





H

h



 =





cα sα

−sα cα









φ0
1

φ0
2



 ≡ R(α)





φ0
1

φ0
2



 , (17)

where we choose −π/2 ≤ α ≤ π/2, in general, so that both sα and cα are single-valued.

However in MSSM one can show that −π/2 ≤ α ≤ 0 at tree-level, which nonetheless does

not hold once radiative corrections are included. Then we have

RT (α)





m2
H 0

0 m2
h



R(α) =





M11 M12

M12 M22



 . (18)

Then from Eq. (18) we can solve for

sα =
M12

√

(M12)2 + (M11 −m2
h)

2
, (19)

m2
H =

M11(M11 −m2
h) + (M12)2

M11 −m2
h

. (20)

From Eq. (19) we see that the sign of sα is determined by the sign of M12, which is why

in MSSM at tree-level one can choose −π/2 ≤ α ≤ 0. Also the conditions in Eq. (16)

guarantees the positivity of m2
H in Eq. (20).

3

Alignment in General two Higgs Doublet Models

In the MSSM, at tree-level, only the first four 
couplings are non-zero and are governed by D-
terms in the scalar potential.  At loop-level, all of 

them become non-zero via  the trilinear and quartic 
interactions with third generation sfermions.       
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Couplings of SM Higgs to Fermions and Gauge Bosons

Down-type Fermions 

body decay channel into (t̃ → bχ̃+ → bW
+χ̃0

1), both from ATLAS [75–77] and CMS

[78]. However, in general the signal acceptance is rather low. This is because, in

comparison with the scenarios considered by the LHC searches, our case predicts

different kinematics for the final state particles. In particular, both ATLAS and CMS

searches assume stop decays into an on-shell chargino, and mainly focus on a region

of parameter space where (mχ̃+ − mχ̃0
1
) < mW . In this case, the chargino decays

into the LSP and an off-shell W boson. On the other hand, in our model the decay

(t̃1 → Wbχ̃0
1) proceeds through a 3-body decay mediated by an off-shell chargino or

a top quark. The W boson is on-shell in this region of stop masses. Therefore, the

leptons produced from the decay of such an on-shell W are in general more energetic.

Additionally the missing energy will be smaller in the case of a 3-body decay.

In agreement with this, recent phenomenological analyses suggest [59, 62] that the

most constraining searches are not from dedicated stop searches, but from using LHC

analyses with b-jet final states and in particular the CMS b-jet, Razor, MT2 analyses.

Such searches could place strong limits on this scenario in the entire mass range, unless

BR(t̃ → Wbχ̃0
1) is significantly suppressed. Stops with masses larger than ∼ 140 GeV

are therefore ruled out.

To summarize, due to the opening up of the new (t̃ → τ̃+1 ντb) decay mode, light stops

could evade the current experimental bounds in a narrow mass window, 120GeV � mt̃1 �
140 GeV. At the same time, current SM measurements of the tt̄ production in τ final states

are already very close to directly probing this region of parameter space. A dedicated search

could therefore probe this possible interesting light stop signal.

IV. BOTTOM AND TAU HIGGS DECAYS

A. Higgs Mixing Effects and the Bottom and Tau Higgs Branching Ratios

In the supersymmetric limit, the bottom quark and the tau lepton couple only to the

down-type Higgs, Hd, with couplings hb,τ , respectively. After supersymmetry breaking, both

fermions also couple to the up-type Higgs, Hu, via loop-induced couplings, ∆hb,τ . Hence,

the couplings of these fermions to the lightest CP-even Higgs are given by [34]

ghbb,hττ = −hb,τ sinα +∆hb,τ cosα, (5)

17

where α is the CP-even Higgs mixing angle and (-sinα) and cosα are the projections on h

from the real neutral components of Hd and Hu, respectively. The b and τ masses are given

by [28–31]

mb,τ = hb,τvd

�
1 + tan β

∆hb,τ

hb,τ

�
,

≡ hb,τvd (1 +∆b,τ ) . (6)

Hence,

ghbb,hττ = − mb,τ sinα

v cos β(1 +∆b,τ )

�
1− ∆b,τ

tan β tanα

�
. (7)

Close to the decoupling limit, which is when the CP-odd Higgs mass is very large, and at

large values of tanβ, sinα is close to (− cos β) and cosα � sin β � 1. The ratio (sinα/ cos β)

is then (tanα tan β), to a very good approximation, and the couplings can be written as:

ghbb,hττ ∼ mb,τ

v

�
1 +

| sinα/ cos β|− 1

1 +∆b,τ

�
. (8)

Note that when (sinα → − cos β), the above expression reproduces the SM values. We

can also see that the suppression or enhancement of the couplings with respect to the

SM will depend on whether | sinα/ cos β| is greater than or less than 1. On the other

hand, independent of the value of | sinα/ cos β|, we see that larger deviations from the SM

couplings are given by smaller values for (1 + ∆b,τ ). This implies that positive (negative)

values of ∆b,τ would lead to values closer to (further away from) the SM. As we have shown

in Ref. [26], positive (negative) values of ∆b (∆τ ) are favored to maximally enhance the

Higgs to diphoton rate while fulfilling the requirement of vacuum stability. Therefore, we

expect that ghbb will be closer to the SM value than ghττ for the same set of parameters.

As regards to the ratio of the couplings, since ∆b �= ∆τ , this is no longer given by

(mb/mτ ), as at tree level, but rather by

ghbb

ghττ
=

mb(1 +∆τ ) (1−∆b/(tan β tanα))

mτ (1 +∆b) (1−∆τ/(tan β tanα))
. (9)

If we assume that the loop effects are small, and that the couplings admit an expansion on

∆b and ∆τ , the ratio of the couplings, normalized to their SM values, can be approximated

by

�
ghbb

ghττ

�

SM

∼ 1− (∆b −∆τ )

�
1−

����
cos β

sinα

����

�
. (10)

18

Up-type Fermions

ghtt =
mt cosα

v sinβ

Gauge Bosons

cosα

sinβ
� sin(β − α)

The BR can still be affected by variations of the bottom 
and tau couplings.

ghWW,hZZ � sin(β − α)

− sinα

cosβ
= sin(β − α)− tanβ cos(β − α)
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CP-even Higgs Mixing Angle and Alignment

sinα =
M2

12�
M4

12 + (M2
11 −m2

h)
2

− tanβ M2
12 =

�
M2

11 −m2
h

�
sinα = − cosβ

Condition independent of the CP-odd Higgs mass.

seen by inspecting Table 2 in Ref. [5]. It is important to observe that sβ−α = ±1 results in

an overall sign difference in the couplings of the SM-like Higgs and, hence, has no physical

consequences.

Similar arguments can be made in the case in which it is the heavy Higgs that behaves

as the SM Higgs. For this to occur,

sβ−α = 0 (29)

and therefore cβ−α = ±1. In the following, we shall concentrate in the most likely case that

the lightest CP-even Higgs satisfy the alignement condition. The heavy Higgs case can be

treated in an analogous way.

A. Derivation of the conditions for alignment

there’s only one subsection in this section. do we need to keep it as a separate subsection?

IL)

It is instructive to first derive the alignment limit in the usual decoupling regime with

a slightly unusual approach, by considering the eigenvalue equation of the CP-even Higgs

mass matrix, Eq. (18), which after plugging in the mass matrix in Eq. (9) becomes



 s2β −sβcβ

−sβcβ c2β







 −sα

cα



 = − v2

m2
A



 L11 L12

L12 L22







 −sα

cα



+
m2

h

m2
A



 −sα

cα



 . (30)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than that

of the SM-like Higgs, m2
A � v2,m2

h. Then we see at leading order in v2/m2
A and m2

h/m
2
A the

right-hand side of Eq. (30) can be ignored and the eigenvalue equation reduces exactly to

the alignment limit, namely


 s2β −sβcβ

−sβcβ c2β







 −sα

cα



 = 0 , (31)

which gives identical result to the well-known decoupling limit [3], cβ−α = 0.

One of the main results of this work is to find the generic conditions to obtain alignment

without decoupling. The decoupling limit, where the low-energy spectrum contains only the

SM and no new light scalars, is only a subset of the more general alignment limit in Eq. (31).

In particular, quite generically, there exists regions of parameter space where one attains the

8
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alignment limit with new light scalars not far above mh = 125 GeV. The key observation is

that, while decoupling reaches alignment by neglecting the right-hand side of Eq. (30), the

alignment can be obtained if the right-hand side of Eq. (30) vanishes identically:

v2



 L11 L12

L12 L22







 −sα

cα



 = m2
h



 −sα

cα



 . (32)

If a solution for the tβ can be found, then the alignment limit would occur for arbitrary

values of mA and does not require non-SM-like scalars to be heavy! More explicitly, subject

to Eq. (31), we can re-write the above matrix equation as two algebraic equations:

(C1) : m2
h = v2L11 + tβv

2L12 = v2
�
λ1c

2
β + 3λ6sβcβ + λ̃3s

2
β + λ7tβs

2
β

�
, (33)

(C2) : m2
h = v2L22 +

1

tβ
v2L12 = v2

�
λ2s

2
β + 3λ7sβcβ + λ̃3c

2
β + λ6t

−1
β c2β

�
. (34)

Recall that that λ̃3 = λ3 + λ4 + λ5. In the above Lij is known once a model is specified

and mh is measured to be 125 GeV. Notice that (C1) depends on all quartic couplings in

the scalar potential except λ2, while (C2) depends on all quartics but λ1. When the model

parameters satisfy Eqs. (33) and (34), the lightest CP-even Higgs behaves exactly like a SM

Higgs boson even if the non-SM-like scalars are light. A detailed analysis on the physical

solutions is presented in the next Section.

IV. ALIGNMENT IN GENERAL 2HDM

The condition (C1) and (C2) may be re-written as cubic equations in tβ, with coefficients

that depend on mh and the quartic couplings in the scalar potential,

(C1) : (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t2β = v2(3λ6tβ + λ7t

3
β) , (35)

(C2) : (m2
h − λ2v

2
) + (m2

h − λ̃3v
2
)t−2

β = v2(3λ7t
−1
β + λ6t

−3
β ) , (36)

Alignment without decoupling occurs only if there is (at least) a common physical solution

for tβ between the two cubic equations.
3
From this perspective it may appear that alignment

without decoupling is a rare and fine-tuned phenomenon. However, as we will show below,

there are situations where a common physical solution would exist between (C1) and (C2)

without fine-tuning.

3 Since tβ > 0 in our convention, a physical solution means a real positive root of the cubic equation.

9

Alignment Conditions

• If fulfilled not only alignment is obtained, but also the right Higgs 
mass,                     , with                  and 

• For                         the conditions simplify, but can only be fulfilled if  

• Conditions not fulfilled in the MSSM, where both 

λSM = λ1 cos
4 β + 4λ6 cos

3 β sinβ + 2λ̃3 sin
2 β cos2 β + 4λ7 sin

3 β cosβ ++λ2 sin
4 β

m2
h = λSMv2

λ6 = λ7 = 0

A. Alignment for vanishing values of λ6,7

As a warm up exercise it is useful to consider solutions to the alignment conditions

(C1) and (C2) when λ6 = λ7 = 0 and λ1 = λ2, which can be enforced by the symmetries

Φ1 → −Φ2 and Φ1 → Φ2, then (C1) and (C2) collapse into quadratic equations

(C1) → (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t2β = 0 , (37)

(C2) → (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t−2

β = 0 , (38)

from which we see a physical solution exists for tβ = 1, whenever

λSM =
λ1 + λ̃3

2
(39)

where we have expressed the SM-like Higgs mass as

m2
h = λSMv

2 . (40)

From Eq. (39) we see the above solution leading to tβ = 1 is obviously a special one, since

it demands λSM to be the average value of λ1 and λ̃3.

For the purpose of comparing with previous studies, let’s relax the λ1 = λ2 condition

while still keeping λ6 = λ7 = 0. Recall that the Glashow-Weinberg condition [7] on the

absence of tree-level FCNC requires a discrete symmetry, Φ1 → −Φ1, which enforces at the

tree-level λ6 = λ7 = 0. Then the two quadratic equations have a common root if and only

if the determinant of the Coefficient Matrix of the two quadratic equations vanishes,

Det



 m2
h − λ̃3v2 m2

h − λ1v2

m2
h − λ2v2 m2

h − λ̃3v2



 = (m2
h − λ̃3v

2
)
2 − (m2

h − λ1v
2
)(m2

h − λ2v
2
) = 0 . (41)

Then the positive root can be expressed in terms of (λ1, λ̃3),

t(0)β =

�
λ1 − λSM

λSM − λ̃3

. (42)

We see from Eqs. (41) and (42), that t(0)β can exist only if {λSM,λ1,λ2, λ̃3} have one of

the two orderings

λ1 ≥ λSM ≥ λ̃3 and λ2 ≥ λSM ≥ λ̃3 , (43)

10

or

λ1 ≤ λSM ≤ λ̃3 and λ2 ≤ λSM ≤ λ̃3 , (44)

It should be emphasized that the existence of the solution t(0)β is generic, in the sense that

once one of the conditions in Eqs. (43) and (44) is statisfied, then Eq. (42) leads to the

alignment solution t(0)β for a given (λ1, λ̃3). However, Eq. (41) must be also satisfied to solve

for the desired λ2 that would make t(0)β a root of (C2). More specifically, the relations

λ2 − λSM =
λSM − λ̃3�

t(0)β

�2 =
λ1 − λSM�

t(0)β

�4 (45)

must be fulfilled. Therefore, the alignment solution demands a specific fine-tuned relation

between the quartic couplings of the 2HDM. For instance, it is clear from Eqs. (42) and (45

that, if all quartic couplings are O(1), t(0)β ∼ O(1) as well unless λ̃3 and λ2 are tuned to be

very close to λSM or λ1 is taken to be much larger than λSM. For examples, t(0)β ∼ 5 could

be achieved for (λ1, λ̃3,λ2) ∼ (1., 0.23, 0.261), or for (λ1, λ̃3) ∼ (5., 0.07, 0.263).

Our discussions so far apply to scenarios of alignment limit studied, for instance, in

Refs. [4, 5], both of which set λ6 = λ7 = 0. The generic existence of fine-tuned solutions

may also shed light on why alignment without decoupling, on the one hand, has remained

elusive for so long and, on the other hand, appeared in different contexts considered in

previous studies.

B. Large tanβ alignment in 2HDMs

The symmetry Φ1 → −Φ1 leading to λ6 = λ7 = 0 is broken softly by m12. Thus a

phenomenologically more interesting scenario is to consider small but non-zero λ6 and λ7,

which we turn to next.

We study solutions to the alignment conditions (C1) and (C2) under the assumptions,

λ6,λ7 � 1 . (46)

Although general solutions of cubic algebraic equations exist, much insight could be gained

by first solving for the cubic roots of (C1) in perturbation,

t(±)
β = t(0)β ±

3

2

λ6

λSM − λ̃3

±
λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ2

6,λ
2
7) , (47)

t(1)β =
λSM − λ̃3

λ7
− 3λ6

λSM − λ̃3

− λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ2

6,λ
2
7) . (48)
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or

λ1, λ̃3 < λSM

λ3 + λ4 + λ5 = λ̃3λSM � 0.26
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Then at leading order in η, the Higgs couplings become

ghV V ≈
�
1− 1

2
t−2
β η2

�
gV , gHV V ≈ t−1

β η gV , (44)

ghdd ≈ (1− η) gf , gHdd ≈ tβ(1 + t−2
β η)gf , (45)

ghuu ≈ (1 + t−2
β η) gf , gHuu ≈ −t−1

β (1− η)gf . (46)

We see η characterizes the departure from the alignment limit of not only ghdd but also gHuu.

On the other hand, the deviation in the ghuu and gHdd are given by t−2
β η, which is doubly

suppressed in the large tβ regime. Moreover, terms neglected above are of order η2 and are

never multiplied by positive powers of tβ, which could invalidate the expansion in η when

tβ is large.

There are some interesting features regarding the pattern of deviations. First, whether

the coupling to fermions is suppressed or enhanced relative to the SM values, is determined

by the sign of η: ghdd and gHuu are suppressed (enhanced) for positive (negative) η, while

the trend in ghuu and gHdd is the opposite. In addition, as η → 0, the approach to the SM

values is the fastest in ghV V and the slowest in ghdd. This is especially true in the large tβ

regime, which motivates focusing on precise measurements of ghdd in type II 2HDMs.

Our parametrization of cβ−α = t−1
β η can also be obtained by modifying Eq. (39), which

defines the alignment limit, as follows:


 s2β −sβcβ

−sβcβ c2β







 −sα

cα



 = t−1
β η



 −sβ

cβ



 . (47)

The eignevalue equation for mh in Eq. (40) is modified accordingly,

v2



 L11 L12

L12 L22







 −sα

cα



 = m2
h



 −sα

cα



−m2
A
t−1
β η



 −sβ

cβ



 . (48)

From the above, taking η � 1 and expanding to first order in η, we obtain the “near-

alignment conditions”,

(C1�) : m2
h
= v2L11 + tβv

2L12 + η
�
tβ(1 + t−2

β )v2L12 −m2
A

�
, (49)

(C2�) : m2
h
= v2L22 + tβ

−1v2L12 − η
�
t−1
β (1 + t−2

β )v2L12 −m2
A

�
. (50)

We will return to study these two conditions in the next section, after first analyzing solutions

for alignment without decoupling in general 2HDMs.
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More explicitly, since sα = −cβ in the alignment limit, we can re-write the above matrix

equation as two algebraic equations:
3

(C1) : m2
h = v2L11 + tβv

2L12 = v2
�
λ1c

2
β + 3λ6sβcβ + λ̃3s

2
β + λ7tβs

2
β

�
, (41)

(C2) : m2
h = v2L22 +

1

tβ
v2L12 = v2

�
λ2s

2
β + 3λ7sβcβ + λ̃3c

2
β + λ6t

−1
β c2β

�
. (42)

Recall that λ̃3 = (λ3 + λ4 + λ5). In the above mh is the SM-like Higgs mass, measured to

be about 125 GeV, and Lij is known once a model is specified. Notice that (C1) depends

on all the quartic couplings in the scalar potential except λ2, while (C2) depends on all the

quartics but λ1. If there exists a tβ satisfying the above equations, then the alignment limit

would occur for arbitrary values of mA and does not require non-SM-like scalars to be heavy!

Henceforth we will consider the coupled equations given in Eqs. (41) and (42) as required

conditions for alignment. When the model parameters satisfy them, the lightest CP-even

Higgs boson behaves exactly like a SM Higgs boson even if the non-SM-like scalars are light.

A detailed analysis of the physical solutions will be presented in the next Section.

B. Departure from Alignment

Phenomenologically it seems likely that alignment will only be realized approximately,

rather than exactly. Therefore it is important to consider small departures from the align-

ment limit, which we do in this subsection.

Since the alignment limit is characterized by cβ−α = 0, it is customary to parametrize the

departure from alignment by considering a Taylor-expansions in cβ−α [7, 8], which defines the

deviation of the ghV V couplings from the SM values. However, this parametrization has the

drawback that deviations in the Higgs coupling to down-type fermions are really controlled

by tβ cβ−α, which could be O(1) when tβ is large. Therefore, we choose to parametrize the

departure from the alignment limit by a parameter η which is related to cβ−α by

cβ−α = t−1
β η , sβ−α =

�
1− t−2

β η2 . (43)

3 The same conditions can also be derived using results presented in Ref. [8].
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Deviations from Alignment

The couplings of down fermions are not only the
ones that dominate the Higgs width but also tend

to be the ones which differ at most from the SM ones

−Sign(M2
12)(M

2
22 − m2

h)/cβ and B = |M2
12|/sβ. Further, mh is the mass of the lightest

CP-even Higgs boson and M2
ii −m2

h > 0, i = {1, 2} by Eq. (20). Therefore Eq. (72) implies

A ≥ 0 and B ≥ 0 (74)

at the alignment limit.

Now in the near-alignment limit, where the alignment is only approximate, one can derive

ghdd =
A

B

�
1− (1−A2/B2)c2β

gf (75)

=

�
1− s2β

�
1− A

B

�
+O

�
(1−A/B)2

��
gf , (76)

which, when comparing with Eq. (45), implies

η = s2β

�
1− A

B

�
= s2β

B −A

B
. (77)

Therefore, the ghdd coupling is enhanced (suppressed) if B−A < 0 (> 0). It is easy to verify

that the above equation is identical to the near-alignment condition (C1�) in Eq. (49). The

condition (C2�) could again be obtained using Eq. (22).

It is useful to analyze Eq. (76) in different instances. For example, when λ6 = λ7 = 0,

one obtains

ghdd �



1 + sβ

�
λSM − λ̃3s2β − λ1c2β

�
v2

B



 gf . (78)

Hence, for λ̃3 > λSM > λ1, a suppression of ghdd will take place for values of tβ larger than

the ones necessary to achieve the alignment limit. On the contrary, for λ1 > λSM > λ̃3,

larger values of tβ will lead to an enhancement of ghdd.

On the other hand, for λ7 �= 0 and large values of tβ, one obtains

ghdd �



1 + sβ

�
λSM − λ̃3 − λ7tβ

�
v2

B



 gf , (79)

which shows that for λSM > λ̃3 and λ7 positive, ghdd is suppressed at values of tβ larger than

those necessary to obtain the alignment limit, and vice versa.

One can in fact push the preceding analysis further by deriving the condition giving rise

to a particular deviation from alignment. More specifically, the algebraic equation dictating

the contour ghdd/gf = r, where r �= 1, can be obtained by using Eq. (75):

m2
A =

1

R(β)− 1

A− B

sβ
+

m2
h

s2β
− v2λ5 − λ1v

2t−2
β − 2λ6v

2t−1
β , (80)
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C. Departure from Alignment

So far we have analyzed solutions for the alignment conditions (C1) and (C2) in general

2HDMs. However, it is likely that the alignment limit, if realized in Nature at all, is

only approximate and the value of tβ does not need to coincide with the value at the

exact alignment limit. It is therefore important to study the approach to alignment and

understand patterns of deviations in the Higgs couplings in the “near-alignment limit,”

which was introduced in Section III B.

Although we derived the near-alignment conditions (C1�) and (C2�) in Eqs. (49) and

(50) using the eigenvalue equations, it is convenient to consider the (near-)alignment limit

from a slightly different perspective. Adopting the sign choice (I) in Eq. (16) and using the

expression for the mixing angle, α, in Eq. (21), we can re-write the ghdd and ghuu couplings

as follows

ghdd = −sα
cβ

gf =
A�

A2c2β + B2s2β

gf , (68)

ghuu =
cα
sβ

gf =
B�

A2c2β + B2s2β

gf . (69)

where

A = −M2
12

cβ
=

�
m2

A − (λ3 + λ4)v
2
�
sβ − λ7v

2sβtβ − λ6v
2cβ , (70)

B =
M2

11 −m2
h

sβ
=

�
m2

A + λ5v
2
�
sβ + λ1v

2 cβ
tβ

+ 2λ6v
2cβ −

m2
h

sβ
. (71)

Again it is instructive to consider first taking the pseudo-scalar mass to be heavy: mA → ∞.

In this limit we have A → m2
Asα and B → m2

Asα, leading to −sα/cβ → 1 and cα/sβ → 1. We

recover the familiar alignment-via-decoupling limit. On the other hand, alignment without

decoupling could occur by setting directly

A = B , (72)

where, explicitly,

B −A =
1

sβ

�
−m2

h + λ̃3v
2s2β + λ7v

2s2βtβ + 3λ6v
2sβcβ + λ1v

2c2β

�
= 0 , (73)

is nothing but the alignment condition (C1) in Eq. (41). The alignment condition (C2)

would be obtained if the representation in Eq. (22) is used instead, leading to A =
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For small departures from alignment, the parameter η can be determined     
as a function of the quartic couplings and the Higgs masses

,
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FIG. 2: Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM values

in the case of low µ (L1j ∼ 0), as obtained from Eq. (96), and �d � 0.

We can reach the same conclusion by using Eq. (21) for sα in this regime,

sα =
−(m2

A +m2
Z)sβcβ�

(m2
A +m2

Z)
2s2βc

2
β +

�
m2

As
2
β +m2

Zc
2
β −m2

h

�2 , (96)

which, for mA
>∼ 2mh and moderate tβ implies

− sα
cβ

� m2
A +m2

Z

m2
A −m2

h

. (97)

This clearly demonstrates that in this case the deviation of (−sα/cβ) from 1 depends only on

mA and is independent of tβ. In other words, alignment is only achieved in the decoupling

limit, m2
A � m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime λ5,6,7 are very small implying

B � m2
A −m2

h, and B −A � −(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of −sα/cβ in the mA − tanβ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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MSSM at large values of µ

 

For nonvanishing values of these couplings,  a new 
condition of alignment at large             is obtained 

Alignment for                       may be obtained, making 
difficult the test of the “wedge” by coupling variations.

At large values of µ, corrections to the quartic
couplings λ5,6,7 become significant.f

tanβ

tanβ =
λSM − λ̃3

λ7
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where as before ∆Lij denote variation under radiative corrections. We have further sepa-

rated out the corrections to the L12 component into ∆L12 and ∆L̃12, which contribute with

different tβ factors, namely

∆L12 = λ7, ∆L̃12 = ∆ (λ3 + λ4) , ∆L11 = λ5, ∆L22 = λ2. (74)

In the above, we have only kept terms which are relevant for moderate or large values of

tβ, and we have included ∆L22 for future use. In particular, since cβ � 0 in the alignment

limit, we have droped the λ1 term that is proportional to c2β and the λ6cβ term since λ6 is

already a small quantity, being generated by radiative corrections. Note that generally the

effect of ∆L̃12 on the matrix element L12 will be suppressed for tβ � 1, however, it can lead

to a relevant correction to the tree-level contribution since it has the same tβ dependance,

and be also competitive to the radiatively generated λ7 contribution.

Regarding the approach to the alignment limit for large tβ � 1, and hence sβ � 1, the

condition in Eqs. (33) and (34) now read

m2
h = −m2

Z + v2
�
∆L11 +∆L̃12 + tβ∆L12

�
, (75)

m2
h = m2

Z + v2
�
∆L22 + c2β∆L̃12 + cβ∆L12

�
. (76)

Observe that since for moderate or large values of tβ, c2β � −1 and sβ � 1, the second

expression above just shows that the Higgs mass is strongly governed by λ2, while the first

expression shows that one reaches the alignment limit for values of tβ given by

tβ � m2
h +m2

Z − v2(∆L11 +∆L̃12)

v2∆L12
=

m2
h − v2λ̃3

v2λ7
. (77)

The radiative corrections to the matrix elements ∆L11, ∆L12 and ∆L̃12, which depend on

the quartic couplings λ̃3 and λ7, have been computed previously in the literature [48]. The

expressions of the radiatively corrected quartic couplings are included in the Appendix A.

For small differences between the values of the two stops, sbottoms and stau masses, one

obtains (references? )

v2∆L12 �
v2

32π2

�
h4
t

µÃt

M2
SUSY

�
AtÃt

M2
SUSY

− 6

�
+ h4

b

µ3Ab

M4
SUSY

+
h4
τ

3

µ3Aτ

M4
τ̃

�
, (78)

v2∆L̃12 �
v2

16π2

�
h4
t

µ2

M2
SUSY

�
3− A2

t

M2
SUSY

�
+ h4

b

µ2

M2
SUSY

�
3− A2

b

M2
SUSY

�
+ h4

τ

µ2

3M2
τ̃

�
3− A2

τ

M2
τ̃

��
.

(79)
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Check above equation. Moreover,

v2∆L11 � − v2

32π2

�
h4
tµ

2A2
t

M4
SUSY

+
h4
bµ

2A2
b

M4
SUSY

+
h4
τµ

2A2
τ

3M4
τ̃

�
, (80)

where, for simplicity, we have ignored two-loop corrections. Hence, from the above, we

see that in the MSSM both v2∆L11 and v2∆L̃12 tend to be much smaller than m2
h. The

matrix element correction v2∆L11 is always negative, but v2∆L̃12 can be positive or negative

depending on the magnitude of A2
f/M

2
SUSY/τ̃ . Since the corrections to ∆L12 ≡ λ7 are small

compared to its tree-level (but tree-level value is zero. do you mean leading order value?

IL)value, one can write the large tβ alignment condition in the MSSM as

tan β � λSM − λ̃tree
3 −∆λ̃3

λ7
=

120− 32π2
�
∆L11 +∆L̃12

�

32π2∆L12
(81)

where we have made us of the fact that all contributions to λ7 in Eq. (78) are proportional to

1/(32π2) ∼ O(1/300) and rescaled both the denominator and numerator by a factor of 32π2.

Therefore, in order to obtain sensible values of tβ consistent with a perturbative description

of the theory, 0 < tβ � 100, it is necessary that 32π2∆L12 be positive and � 1. (don’t

you need the numerator to be positive at the same time? IL) Since at large values of tβ all

the relevant Yukawa couplings are of order one, at least in one of the stop, sbottom or stau

sectors, the condition |µAf |/M2
SUSY > 1 must be fulfilled, where f = b, τ or t .

Observe that for moderate values of |At| <
√
6MSUSY, the top contributions become

positive for negative values of At and positive for negative ones. The opposite signs are

obtained for |At| >
√
6MSUSY. Interestingly enough, the radiative corrections to λ2 (and

therefore to mh) are maximized at |At| �
√
6MSUSY and therefore one can get consistency

with the measured mass for values of |At| larger or smaller than
√
6MSUSY. On the other

hand, the sbottom and stau contributions to λ7 become relevant at large values of tβ and

are positive for µAb,τ > 0.

Figure 1 shows coutour plots for the quantity 32π2∆L12 for different values of the µ

parameter and positive/negative values of the parameters At. The bottom and Yukawa

coupling are set to zero and 1 in Figures 1(i) and 1(ii), respectively. Moreover, in Figures

1(i) and 1(ii) all Af/MSUSY parameters were taken to be equal, while in Figure 1(iii) opposite

signs were taken for the stop with respect to the sbottom and stau Af parameters. Figure

(1iv) shows the effect of taking large values of the stobbom and stau trilinear terms Ab,τ =

5MSUSY while varying only the stop At parameter.
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where as before ∆Lij denote variation under radiative corrections. We have further sepa-
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1/(32π2) ∼ O(1/300) and rescaled both the denominator and numerator by a factor of 32π2.

Therefore, in order to obtain sensible values of tβ consistent with a perturbative description

of the theory, 0 < tβ � 100, it is necessary that 32π2∆L12 be positive and � 1. (don’t

you need the numerator to be positive at the same time? IL) Since at large values of tβ all

the relevant Yukawa couplings are of order one, at least in one of the stop, sbottom or stau

sectors, the condition |µAf |/M2
SUSY > 1 must be fulfilled, where f = b, τ or t .

Observe that for moderate values of |At| <
√
6MSUSY, the top contributions become

positive for negative values of At and positive for negative ones. The opposite signs are

obtained for |At| >
√
6MSUSY. Interestingly enough, the radiative corrections to λ2 (and

therefore to mh) are maximized at |At| �
√
6MSUSY and therefore one can get consistency

with the measured mass for values of |At| larger or smaller than
√
6MSUSY. On the other

hand, the sbottom and stau contributions to λ7 become relevant at large values of tβ and

are positive for µAb,τ > 0.

Figure 1 shows coutour plots for the quantity 32π2∆L12 for different values of the µ

parameter and positive/negative values of the parameters At. The bottom and Yukawa

coupling are set to zero and 1 in Figures 1(i) and 1(ii), respectively. Moreover, in Figures

1(i) and 1(ii) all Af/MSUSY parameters were taken to be equal, while in Figure 1(iii) opposite

signs were taken for the stop with respect to the sbottom and stau Af parameters. Figure

(1iv) shows the effect of taking large values of the stobbom and stau trilinear terms Ab,τ =

5MSUSY while varying only the stop At parameter.
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Impact and Size of Loop Corrections

Considering

The condition of alignment reads

where the loop corrections are approximately given by
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Figure 8: The MA–tan β plane in the τ -phobic Higgs scenario. The color coding is the same
as in Fig. 3.

Figure 9: Modification of the decay rate for the lightest CP-even Higgs boson into bottom
quarks (rbb, left) and τ -leptons (rττ , right) in the τ -phobic Higgs scenario, where rbb and rττ
are defined in analogy to rgg in Eq. (25).

3.6 The low-MH scenario

As it was pointed out in Refs. [8, 11, 12], besides the interpretation of the Higgs-like state
at ∼ 125.5 GeV in terms of the light CP-even Higgs boson of the MSSM it is also possible,
at least in principle, to identify the observed signal with the heavy CP-even Higgs boson of
the MSSM. In this case the Higgs sector would be very different from the SM case, since
all five MSSM Higgs bosons would be light. The heavy CP-even Higgs boson would have a

21

3.5 The τ -phobic Higgs scenario

Besides the loop effects on the Higgs vertices described in the previous sections, also propaga-
tor-type corrections involving the mixing between the two CP-even Higgs bosons of the
MSSM can have an important impact. In particular, this type of corrections can lead to rel-
evant modifications of the Higgs couplings to down-type fermions, which can approximately
be taken into account via an effective mixing angle αeff (see Ref. [63]). This modification
occurs for large values of the At,b,τ parameters and large values of µ and tan β.7

The scenario that we propose can be regarded as an update of the small αeff scenario
proposed in Ref. [17]. The parameters are:

τ -phobic Higgs :

mt = 173.2 GeV,

MSUSY = 1500 GeV,

µ = 2000 GeV,

M2 = 200 GeV,

XOS
t = 2.45MSUSY (FD calculation),

XMS
t = 2.9MSUSY (RG calculation),

Ab = Aτ = At ,

mg̃ = 1500 GeV,

Ml̃3
= 500 GeV . (28)

The relatively low value of Ml̃3
= 500 GeV and the large value of µ give rise to rather

light staus also in the τ -phobic Higgs scenario, in particular in the region of large tan β.
The corrections from the stau sector have an important influence on the Higgs couplings
to down-type fermions in this scenario. Furthermore, in this scenario decays of the heavy
CP-even Higgs boson into light staus, H → τ̃+1 τ̃−1 , occur with a large branching fraction in
the region of large tan β and sufficiently high MA. For example, for MA = 800 GeV and
tanβ = 45, we obtain BR(H → τ̃+1 τ̃

−
1 ) = 67%.

Figure 8 shows the bounds on the MA–tan β parameter space in the τ -phobic Higgs
scenario. As in the light stau scenario, the most important modification with respect to the
mmod

h scenarios is a larger exclusion at low values of tanβ induced by a decrease of the decay
rate into charginos and neutralinos.

Figure 9 shows the modification of the decay rate for the lightest CP-even Higgs boson
into bottom quarks (rbb) and τ -leptons (rττ ), both defined analogously to rgg, see Eq. (25).
The variations are most important at large values of tanβ, and they increase for smaller
values of MA, where the LHC exclusion limit from MSSM Higgs searches becomes very
significant. Still, as can be seen from the figure, modifications of the partial Higgs decay
width into τ+τ− larger than 20%, and of the decay width into bottom quarks larger than
10% may occur within this scenario.

7Large values of At,b,τ and µ are in principle constrained by the requirement that no charge and color
breaking minima should appear in the potential [64], or at least that there is a sufficiently long-lived meta-
stable vacuum. However, a detailed analysis of this issue is beyond the scope of this paper, and we leave it
for a future analysis.
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Figure 4: Upper row: The MA–tanβ plane in the mmod+
h (left) and the mmod−

h scenario
(right). The exclusion regions are shown as in Fig. 3, while the color coding in the allowed
region indicates the average total branching ratio of H and A into charginos and neutralinos.
In the lower row M2 = 2000 GeV is used, and the color coding for the branching ratios of H
and A into charginos and neutralinos is as in the upper row. The regions excluded by the
LHC searches are shown in light red in these plots. For comparison, the excluded regions
for the case M2 = 200 GeV (as given in the plots in the upper row) is overlaid (solid red).

in the whole allowed parameter space of the scenario, with the exception of a small region
with rather small MA. The branching ratios for the decays of H and A into charginos and
neutralinos reach values in excess of 70% for small and moderate values of tan β.

The impact of the corresponding reduction of the branching ratios of H,A into τ+τ−

and bb̄ on the excluded region can be read off from the plots in the lower row of Fig. 4.
In those plots we have set M2 = 2000 GeV, which suppresses the decays of H and A into

14

Figure 4: Upper row: The MA–tanβ plane in the mmod+
h (left) and the mmod−

h scenario
(right). The exclusion regions are shown as in Fig. 3, while the color coding in the allowed
region indicates the average total branching ratio of H and A into charginos and neutralinos.
In the lower row M2 = 2000 GeV is used, and the color coding for the branching ratios of H
and A into charginos and neutralinos is as in the upper row. The regions excluded by the
LHC searches are shown in light red in these plots. For comparison, the excluded regions
for the case M2 = 200 GeV (as given in the plots in the upper row) is overlaid (solid red).

in the whole allowed parameter space of the scenario, with the exception of a small region
with rather small MA. The branching ratios for the decays of H and A into charginos and
neutralinos reach values in excess of 70% for small and moderate values of tan β.

The impact of the corresponding reduction of the branching ratios of H,A into τ+τ−

and bb̄ on the excluded region can be read off from the plots in the lower row of Fig. 4.
In those plots we have set M2 = 2000 GeV, which suppresses the decays of H and A into

14

Decays of  the non-standard Higgs bosons into EWKinos in the

3.2 The mmod

h
scenario

As explained in the discussion of Fig. 1, the mass of the light CP-even Higgs boson in the
mmax

h scenario is in agreement with the discovery of a Higgs-like state only in a relatively
small strip in the MA–tanβ plane at rather low tan β. This was caused by the fact that the
mmax

h scenario was designed to maximize the value of Mh, so that in the decoupling region
this scenario yieldsMh values that are higher than the observed mass of the signal. Departing
from the parameter configuration that maximizes Mh, one naturally finds scenarios where in
the decoupling region the value of Mh is close to the observed mass of the signal over a wide
region of the parameter space. A convenient way of modifying the mmax

h scenario in this way
is to reduce the amount of mixing in the stop sector, i.e. to reduce |Xt/MSUSY| compared to
the value of ≈ 2 (FD calculation) that gives rise to the largest positive contribution to Mh

from the radiative corrections. This can be done for both signs of Xt.
Accordingly, we propose an “mmod

h scenario” which is a modification of the mmax
h scenario

consisting of a reduction of |Xt/MSUSY|. We define two variants of this scenario, the mmod+
h

and the mmod−
h scenario, which differ by their sign (and absolute value) of Xt/MSUSY. While

the positive sign of the product (µM2) results in general in better agreement with the (g−2)µ
experimental results, the negative sign of the product (µAt) yields in general (assuming
minimal flavor violation) better agreement with the BR(b → sγ) measurements (see Ref. [54]
for a recent analysis of the impact of other rare B decay observables, most notably Bs →
µ+µ−). The parameter settings for these two scenarios are:

mmod+
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = 1.5MSUSY (FD calculation),

XMS
t = 1.6MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (21)

mmod−
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = −1.9MSUSY (FD calculation),

XMS
t = −2.2MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (22)
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Branching Ratios and Widths of Non-Standard Higgs Decays into Staus
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FIG. 6: Production rate of τ+τ− induced by the presence of heavy CP-even and CP-odd scalars,

with mA � 1 TeV, normalized to the rate obtained in the maximal mixing scenario used by the

CMS collaboration [78].

significantly alleviate the experimental constraints on mA coming from the decay to taus.

However, note that large values of Aτ > 1 TeV lead to problems with vacuum stability in

this region of parameters.

V. LIGHT STAUS AND HIGGS SEARCHES

Light staus remains the smoking gun signal of the MSSM scenario considered in this

paper. In Ref. [5], we studied the possibility of searching for them in the channel (pp →

ν̃τ τ̃1 → W τ τ̄ + 2χ0) at the LHC using a straight cut and count method. We specifically

analyzed the final state signature consisting of one lepton, 2 hadronic taus and missing

energy. We showed that this is a challenging search channel for both the 8 TeV and the 14

TeV runs, due to low statistics.

Here we will briefly mention another possibility of probing our framework at the LHC.

We note that the final state mentioned above is the same as the one arising in the Higgs

search channel (pp → Wh) followed by (h → τ τ̄). Therefore, it is interesting to see whether
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heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

decay rate into staus. The right panel shows the corresponding increase in the total width

with increasing Aτ and fixed mτ̃2 , which implies a decrease of the branching ratio of the

heavy Higgs decay into τ leptons. On the other hand, for a fixed value of Aτ , the value of

µ increases with mτ̃2 , which leads to an increase in ∆b and a more negative ∆τ . Since the

width of the decay into bottom quarks is the dominant one, this causes the total width to

decrease. However, note that negative ∆τ leads to an increase of the width of the decay

into τ leptons, and hence to an increase of the branching ratio of the decay of the heavy,

non-standard Higgs bosons into these particles. On the other hand, the production cross

section of non-standard Higgs bosons is inversely proportional to (1 +∆b)2 and hence there

is a compensating effect on the total rate of these Higgs bosons decaying into taus, Eq. (17).

Fig. 6 shows the variation of the production rate of taus as a function of mτ̃2 and Aτ with

respect to the maximal mixing scenario [53] used by ATLAS and CMS [78]. We use the

same set of parameters as for Fig. 5. For a fixed value of Aτ , as a result of the compensation

of effects discussed above, only a small variation of the rate of ττ production is observed

in the region of parameters under analysis. On the other hand, for a given value of mτ̃2

and increasing values of Aτ , the ττ production rate decreases due to an increase of the

width of the decay into stau leptons. Therefore, only for large values of Aτ can we hope to
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where the term proportional to (M
2
W +M

2
Z) is the approximate contribution from the decay

into light charginos and neutralinos. Similar to the case with heavy staus, Eq. (14), the

branching ratio is increased due to negative values of ∆τ and positive values of ∆b. However,

comparing Eqs. (14) and (17), we see that this increase is partially compensated for by the

stau decays, quantified by the last term in Eq. (17). Let us stress that Eq. (17) is only valid

when the stau, chargino and neutralino masses are much smaller than mA and should be

modified by the appropriate phase space factors if this is not the case.

As before, the production cross section is proportional to the product of the branching

ratio times the bottom Yukawa squared, giving

σ(pp → (H,A) → τ+τ−) ∝ m
2
b tan

2 β��
3
m2

b
m2

τ
+

(M2
W+M2

Z)(1+∆b)2

m2
τ tan2 β

�
(1 +∆τ )

2 + (1 +∆b)
2
�
1 +

A2
τ

m2
A

�� .

(18)

The ττ production rate again increases due to negative ∆τ and decreases due to positive

∆b. However in addition, there is also a decrease in the rate due to the decays into the light

staus.

Let us now compare the τ branching ratio in the light stau scenario with the one that

is obtained for heavy staus and small values of ∆b � 0.25 and ∆τ � 0, as happens at
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FIG. 1: Feynman diagram for a neutralino scattering off a heavy nucleus through a CP-even Higgs
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5

The one loop coupling of a down quark to the neutral higgs field is given by

L = fdd̄LdRH
0
d
+ �dfdd̄LdRH

0∗
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+ h.c., (9)

which modifies the higgs coupling to down quarks. Then Eq8 becomes
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where �d ≈ 2αs
3π M3µC0(m02,m2

R
, |M3|2) [26], m̄d ≡ md

1+�d tanβ
and

C0(X, Y, Z) =
y

(x− y)(z − y)
log(y/x) +

z

(x− z)(y − z)
log(z/x). (11)

�d is suppressed if the first and second generation squarks are heavy. Thus, in the rest of

our analysis, �d is set to zero. Following ref [27], Ni3 and Ni4 are proportional to

Ni3 ∼ (mχ cos β + µ sin β) (12)

Ni4 ∼ (mχ sin β + µ cos β). (13)

Also, barring the case in which mA is of the order of mh, for this analysis, we can take the

decoupling limit values of mH and sinα, namely, mH ≈ mA, and sinα ≈ − cos β. In this

case, the amplitude becomes
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We can do a similar exercise for a neutralino scattering off an up-type quark, which gives
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Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as
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where fTu = 0.017± 0.008, fTd = 0.028± 0.014, fTs = 0.040± 0.020 and fTG ≈ 0.91 are the

quark form factors [28, 29] defined as

< p|mqqq̄|p >≡ mpfTq. (17)
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quark form factors [31, 32] defined as
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. Using equations (14) and (15), then the SI scattering cross section is proportional to

σSI

p
∼

�
(Fd + Fu)(mχ + µ sin 2β)
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+ µ tan β cos 2β(−Fd + Fu/tan
2 β)

1

m2
H
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, (18)

with Fu ≡ fu +2× 2
27fTG ≈ 0.15 and Fd = fTd + fTs +

2
27fTG ≈ 0.14, The first term denotes

the contribution of the lightest Higgs and its cancellation leads to the traditional blind spot

scenarios [28]. The second term is the contribution of the heavy Higgs and as mentioned

before for values of |µ|>∼ mχ and large tan β may become of the same order as the SM-like

Higgs one.

The tree-level scattering cross section due to the light and heavy CP-even Higgs exchange

cancel against each other when

(Fd + Fu)(mχ + µ sin 2β)
1

m2
h

� Fd µ tan β cos 2β
1

m2
H

, (19)

which we call generalized blind spots. Taking into account the values of Fu and Fd given

above, and for moderate or large values of tan β, the blind spot can be simplified as

2 (mχ + µ sin 2β)
1

m2
h

� − µ tan β
1

m2
H

(20)

Similar to the case in which the heavy Higgs decouples, for intermediate values of mA the

suppression due to the blind spots only happens when µ < 0. Indeed, negative values of µ

have two effects on the scattering amplitudes : On one hand, they suppress the coupling

of the lightest neutralino to the lightest CP-even Higgs boson. On the other hand, they

lead to a negative interference between the light and heavy Higgs exchange amplitudes. For

sufficiently low values of mA (large values of tan β) the heavy Higgs exchange contribution

may become dominant. On the other hand, for large values of mA the SM contribution

becomes dominant and the main contribution from exchange of a heavy Higgs comes from

the interference with the SM-like one and is only suppressed by 1/m2
A
.
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A
.

5

The one loop coupling of a down quark to the neutral higgs field is given by

L = fdd̄LdRH
0
d
+ �dfdd̄LdRH

0∗
u

+ h.c., (9)

which modifies the higgs coupling to down quarks. Then Eq8 becomes

(10)
ad ∼

m̄d(g1Ni1 − g2Ni2)

cos β

�
Ni4 sinα cosα

�
1− �d/tanα

m
2
h

− 1 + �d tanα

m
2
H

�

+Ni3

�
sin2

α(1− �d/tanα)

m
2
h

+
cos2 α(1 + �d tanα)

m
2
H

��
,

where �d ≈ 2αs
3π M3µC0(m02,m2

R
, |M3|2) [26], m̄d ≡ md

1+�d tanβ
and

C0(X, Y, Z) =
y

(x− y)(z − y)
log(y/x) +

z

(x− z)(y − z)
log(z/x). (11)

�d is suppressed if the first and second generation squarks are heavy. Thus, in the rest of

our analysis, �d is set to zero. Following ref [27], Ni3 and Ni4 are proportional to

Ni3 ∼ (mχ cos β + µ sin β) (12)

Ni4 ∼ (mχ sin β + µ cos β). (13)

Also, barring the case in which mA is of the order of mh, for this analysis, we can take the

decoupling limit values of mH and sinα, namely, mH ≈ mA, and sinα ≈ − cos β. In this

case, the amplitude becomes

ad ∼
md

cos β

�
cos β(mχ + µ sin 2β)

1

m
2
h

− µ sin β cos 2β
1

m
2
H

�
. (14)

We can do a similar exercise for a neutralino scattering off an up-type quark, which gives

au ∼ mu

sin β

�
sin β(mχ + µ sin 2β)

1

m
2
h

+ µ cos β cos 2β
1

m
2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

�
�

q=u,d,s

fTq

aq

mq

+
2

27
fTG

�

q=c,b,t

aq

mq

�
mp, (16)

where fTu = 0.017± 0.008, fTd = 0.028± 0.014, fTs = 0.040± 0.020 and fTG ≈ 0.91 are the

quark form factors [28, 29] defined as

< p|mqqq̄|p >≡ mpfTq. (17)
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. Using equations (14) and (15), then the SI scattering cross section is proportional to

σSI

p
∼

�
(Fd + Fu)(mχ + µ sin 2β)

1

m2
h

+ µ tan β cos 2β(−Fd + Fu/tan
2 β)

1

m2
H

�2
, (18)

with Fu ≡ fu +2× 2
27fTG ≈ 0.15 and Fd = fTd + fTs +

2
27fTG ≈ 0.14, The first term denotes

the contribution of the lightest Higgs and its cancellation leads to the traditional blind spot

scenarios [28]. The second term is the contribution of the heavy Higgs and as mentioned

before for values of |µ|>∼ mχ and large tan β may become of the same order as the SM-like

Higgs one.

The tree-level scattering cross section due to the light and heavy CP-even Higgs exchange

cancel against each other when

(Fd + Fu)(mχ + µ sin 2β)
1

m2
h

� Fd µ tan β cos 2β
1

m2
H

, (19)

which we call generalized blind spots. Taking into account the values of Fu and Fd given

above, and for moderate or large values of tan β, the blind spot can be simplified as

2 (mχ + µ sin 2β)
1

m2
h

� − µ tan β
1

m2
H

(20)

Similar to the case in which the heavy Higgs decouples, for intermediate values of mA the

suppression due to the blind spots only happens when µ < 0. Indeed, negative values of µ

have two effects on the scattering amplitudes : On one hand, they suppress the coupling

of the lightest neutralino to the lightest CP-even Higgs boson. On the other hand, they

lead to a negative interference between the light and heavy Higgs exchange amplitudes. For

sufficiently low values of mA (large values of tan β) the heavy Higgs exchange contribution

may become dominant. On the other hand, for large values of mA the SM contribution

becomes dominant and the main contribution from exchange of a heavy Higgs comes from

the interference with the SM-like one and is only suppressed by 1/m2
A
.
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FIG. 2: SI scattering cross section as a function of mA for tanβ = 50(up left), tanβ = 30(up right)

and tanβ = 10(down left), µ ∼ −2M1 and tanβ = 30, µ ∼ −4M1(down right). The blue dots are

for the µ > 0 case, and red dots are for µ < 0 case. The green shaded area are excluded by the

CMS H,A → ττ searches. The orange line is the LUX limit, and the blue line is the projected

Xenon 1T limit

.

suppressed when mA is large, but can be sizable, and can be probed by future experiments

like Xenon1T in the intermediate mA region as shown in Figure3. For a small value of tan β,

like tan β = 5, these experiments can probe the region allowed by CMS H,A → ττ searches.

The cross section is not sensitive to tanβ, since the coupling is enhanced by tan β, while the

higgsino component is suppressed roughly by tanβ.

We also analyze the relic density. Considering a thermally produced neutralino DM, the

annihilation cross section is too small for Bino-like DM, which leads to over abundance, while

the annihilation is too efficient for pure wino or Higgsino-like DM, which results in under

abundance unless the LSP is heavier than 1 TeV [33, 34] or 2.7 TeV [34, 35], respectively.
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FIG. 3: SI scattering cross section at the traditional blind spots where mχ + µ sin 2β = 0 for

tanβ = 50(up left), tanβ = 30(up right), tanβ = 10(down left) and tanβ = 5(down right). The

green shaded area are excluded by CMS H,A → ττsearches.

Only a well-tempered neutralino [36–39], a fine tuned mixture of Bino, Wino and Higgsino,

can be consistent with the WMAP results Ωh2 = 0.1138 ± 0.0045[40]. There are two ways

of annihilating excess Bino-like LSP to the correct relic density. One is to bring the mass

of at least one of the sfermions down, so that there will be additional contribution from

the exchange of a light sfermion to provide the right relic density. The parameter region

where this happens is often called the bulk region. Also, in the region where M1 ∼ mA/2,

which is often called A-funnel, the LSP can annihilate resonantly into a heavy higgs, and

the annihilation can be efficient enough to give the right relic density.

In Figure4, we show the values of M1 � M2/2 and µ that give the right relic density

for various values of tan β in the regions allowed by LEP[41]. The CP-odd Higgs mass mA

is chosen to be consistent with the CMS H,A → ττ searches. The co-annihilation can be

seen from the almost vertical lines near mA/2 for tan β =10 and tan β =30. The tail of the

Spin	
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  at	
  TradiConal	
  	
  Blind	
  Spots	
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III. NUMERICAL STUDY

To perform a numerical study of the SI scattering cross section when all sfermions are

heavy, the relevant parameters are the Bino mass M1, the Wino mass M2, the Higgsino mass

µ, the CP odd Higgs mass mA and tan β. In the traditional blind spot scenario, at moderate

or large values of tan β the blind spot condition, mχ + µ sin 2β = 0, can only be satisfied if

|µ| is very large, which makes the obtention of the right thermal relic density very difficult.

The generalized blind spots, instead, may be obtained for smaller values of |µ|, which may

be consistent with the ones necessary to obtain a thermal DM density.

In order to analyze the parameters consistent with the generalized blind spots, we first

look at the parameter space away from the traditional blind spot, µ ∼ −2M1. We use

ISAJET [33] to calculate the spectrum and the SI scattering cross section for different

values of tan β and mA, which agrees with MicrOMEGA 2.4.5 [34] almost perfectly. We

assume gaugino mass unification, so at the weak scale M2 ∼ 2M1. As a first example, we

take M1 ≈ 220GeV and −µ � M2 ≈ 440GeV .

The SI scattering cross section as a function of mA for various values of tan β can be seen

in Fig. 2. For a certain value of tan β, mA is constrained by the CMS bounds coming from

H → ττ searches [35], as shown in the green shaded area, where we have assumedMSUSY = 1

TeV. The blue dots are for negative µ, and the suppression due to the blind spots shown in

Eq. (19) can be seen at mA ≈ 950 GeV for tan β = 50, mA ≈750 GeV for tan β = 30 and

mA ≈ 500 GeV for tan β = 10. These values agree well with the predictions of Eq. (20).

For comparison, in Figure 2 we also show the results for positive values µ = 440 GeV (red

dots), and there are no blind spots behavior as expected.

When mA is very large, the contribution from a heavy Higgs is suppressed and the

scattering cross section is approximately equal to the one associated with the lightest Higgs

exchange contribution. At moderate values of tanβ even at the decoupling limit, the SI

cross section is suppressed when µ < 0, compared to µ > 0 cases. For moderate values of

|µ|, the suppression is stronger for small tan β. Indeed, the difference between the results

for positive and negative values of µ in this regime is associated with different values of the

neutralino coupling to the lightest Higgs, σSI
p ∼ (mχ + µ sin 2β) 1

m2
h
.

In Figure 2, we also include the LUX limit (orange line) for a WIMP of mass

mχ � 220 GeV, and the projected limit from Xenon1T (purple line). For the M1 and

At	
  moderate	
  CP-­‐odd	
  
Higgs	
  masses	
  and	
  tanβ,	
  
tradiConal	
  Blind	
  Spot	
  	
  
scenarios	
  may	
  be	
  tested	
  	
  
by	
  future	
  Direct	
  DM	
  
detecCon	
  experiments.	
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FIG. 4: SI DDMD cross section in the µ − M1 plane for various values of tanβ and mA. The

purple dots are where the calculated relic density agrees with the WMAP value. The blue lines

show the blind spot calculated from Eq 19, and the red lines show the traditional blind spot where

mχ + µ sin 2β = 0.

of µ. For moderate or large values of tanβ, and values of mA not much larger than the

current limits on this quantity coming from direct searches for non-standard Higgs bosons,

the generalized blind spot scenario may occur at values of |µ/M1,2| of order one, which can

lead to relic densities consistent with the observed ones. Therefore, the generalized blind

spots may become very relevant for particle physics phenomenology.
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Conclusions	
  

•  Among	
  the	
  future	
  studies	
  in	
  HEP,	
  some	
  of	
  the	
  most	
  important	
  are	
  related	
  
to	
  the	
  search	
  for	
  new	
  Higgs	
  bosons,	
  Dark	
  Ma9er	
  and	
  precision	
  Higgs	
  
couplings	
  

•  Alignment	
  puts	
  these	
  Higgs	
  searches	
  in	
  a	
  new	
  perspecCve.	
  	
  	
  Τhanks,	
  Jack	
  !	
  

•  	
  InteresCng	
  complementarity	
  in	
  the	
  MSSM	
  between	
  direct	
  searches	
  and	
  
precision	
  measurement	
  

•  Direct	
  Dark	
  Ma9er	
  detecCon	
  may	
  be	
  affected	
  by	
  the	
  presence	
  of	
  blind	
  
spots,	
  which	
  have	
  an	
  influence	
  in	
  the	
  whole	
  allowed	
  MSSM	
  parameter	
  
space	
  for	
  negaCve	
  values	
  of	
  μ.	
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