FERMION PORTAL DARK MATTER

Joshua Berger SLAC UC Davis Theory Seminar

w/Yang Bai: 1308.0612, 1402.6696

March 10, 2014

A HOLE IN THE SM

What else can we learn about Dark Matter?

THE SEARCH IS ON

THE SEARCH IS ON

THE SEARCH IS ON

WHAT'S IN THE BLOB?

- Irrelevant operator?
- Mediators from UV?
- Somewhere in between!

WAIT, WHY NOT EFT?

Busoni, De Simone, Morgante, Riotto

- Behavior changes for light mediator
- Collision energy
 » Mediator mass

A SIMPLIFIED FRAMEWORK

- Aim for minimal UV bias
- Renormalizable interactions with SM, aka Portal
- Portals of old:
 - Higgs portal: $(H^{\dagger}H)(\phi^{*}\phi)$
 - Gauge portal: $F^{\mu\nu} F'_{\mu\nu}$
 - Neutrino portal: $\bar{L}_L H \chi_R$

THE FERMION PORTAL

- Two categories:
 - Part 1 Quark portal: $\bar{q} \chi \phi$
 - Part 2 Lepton portal: $\bar{I} \chi \phi$

See also: Chang, Edezhath, Hutchinson, Luty, 1307.8120 An, Wang, Zhang, 1308.0592 DiFranzo, Nagao, Rajaraman, Tait, 1308.2679

QUARK PORTAL

FOUR CASES

- Depending on Lorentz representation of DM
 - Dirac fermion DM (Scalar mediator) ~ limit of MSSM
 - Majorana fermion DM (Scalar mediator)
 - Complex scalar DM (Fermionic mediator)
 - Real scalar DM (Fermionic mediator)

THE INTERACTIONS

- Fermionic DM: $\mathscr{L} = \lambda_i \bar{q}_i \chi \phi_i + h.c.$
 - χ : DM, ϕ_i : Scalar triplet mediator
- Scalar DM: $\mathscr{L} = \lambda_i \bar{q}_i \psi_i X + h.c.$
 - X: DM, ψ_i : Fermionic triplet mediator
- One flavor at a time: DM exp't constraints only

CONSTRAINTS OVERVIEW

- Direct detection
 - Dirac & Complex: Spin independent
 - Majorana: Spin dependent
- Collider
 - Constraints from both Jets + MET and Monojets
- Abundance via "WIMP miracle"

FERMION PORTAL AS WIMP

For weak-scale mediator, DM can be thermal relic

$$\langle \sigma v \rangle = s + p v^2$$

- Dirac DM: s-wave annihilation allowed
- Majorana, Complex DM: p-wave suppression

THERMAL ABUNDANCE

 $\Omega_{\chi}h^2 = 0.1199 \pm 0.0027$

COLLIDER PRODUCTION

EVENT SHAPE

400

 E_T^{miss} (GeV)

500

600

700

0.15

0.10

0.05

0.00

200

300

DIRAC DM LIMITS

direct detection extremely powerful

MAJORANA DM LIMITS

Scattering off proton

coannihilation

DD resonant enhancement near degeneracy

MAJORANA DM LIMITS

Scattering off neutron

COMPLEX DM LIMITS

thermal relic for smaller masses (p-wave suppression)

QUARK PORTAL WRAP UP

- Quark portal provides a simple framework for DM phenomenology studies
- Parameter space being complementarily probed by both collider searches & DD
- Specific kinematic features may help at colliders

LEPTON PORTAL

SOME NEW CASES

- Consider coupling to each generation in turn
- Now: strong, but different constraints on all
- Assume flavor diagonal couplings

SOME NEW CONSTRAINTS

- DD from loop-generated photon coupling
- Collider from dilepton + MET
- ID from high energy positrons
- $(g-2)_{\mu}$ contraint (or explanation?)

REMINDER: THERMAL RELIC PARAMETER SPACE

- Story is the same as for quark portal
- Dirac DM: s-wave annihilations
- Majorana, Complex DM: p-wave annihilations

DD@1LOOP

- *x* Dim 5:
 - · Breaks chiral sym.
 - Dim 6:
 - Several operators

THE OPERATORS

$$\mathcal{O}_1 = [\overline{\chi}\gamma^{\mu}(1-\gamma^5)\partial^{\nu}\chi + \text{h.c.}]F_{\mu\nu}$$

Dirac

$$\mathcal{O}_2 = [i\overline{\chi}\gamma^{\mu}(1-\gamma^5)\partial^{\nu}\chi + \text{h.c.}]F^{\alpha\beta}\epsilon_{\mu\nu\alpha\beta}$$

Agrawal, Blanchet, Chacko, Kilic

C,P even: charge radius, magnetic dipole; C,P odd: anapole Majorana $\mathcal{O}_1 = [-\overline{\chi}\gamma^{\mu}\gamma^5\partial^{\nu}\chi + h.c.]F_{\mu\nu}$ Only anapole allowed Complex $\mathcal{O} = \partial_{\mu}X^{\dagger}\partial_{\nu}XF^{\mu\nu}$

Only charge radius allowed

FERMION CASE

$$c_{1} = \frac{\lambda^{2} e}{64\pi^{2} m_{\phi}^{2}} \left(\frac{1}{2} + \frac{2}{3} \log \frac{m_{e}^{2}}{m_{\phi}^{2}} \right), \quad c_{2} = \frac{\lambda^{2} e}{256\pi^{2} m_{\phi}^{2}}$$
$$\sigma_{XN} = c_{1}^{2} e^{2} Z^{2} \frac{\mu_{XN}^{2}}{A^{2} \pi}$$

- $c_1 \gg c_2$ from log enhancement
- Majorana case: only v-suppressed anapolecharge coupling

SCALAR CASE

$$C = -\frac{\lambda^2 e}{64\pi^2 m_{\psi}^2} \left(1 + \frac{2}{3} \log \frac{m_e^2}{m_{\psi}^2}\right)$$
$$\sigma_{XN} = C^2 e^2 Z^2 \frac{\mu_{XN}^2}{A^2 \pi}$$

 Unsuppressed charge radius-charge coupling

COLLIDER CONSTRAINTS

$$F(M_{T2}) = \frac{N_0}{[\eta M_{T2}^2 - M_W^2]^2 + \eta^2 M_{T2}^4 \Gamma_W^2 / M_W^2}$$

CURRENT LIMITS

POSITRON FLUX @ AMS

- Parametrize the transfer function to go from injection spectrum to flux
- Three different sets of "standard" astrophysical assumptions
- Compare bin-by-bin to total positron flux and excluded if there is a 2σ excess in any bin

AMS-02 LIMITS

INDIRECT DETECTION ELECTRON PORTAL

INDIRECT DETECTION MUON PORTAL

MUON g-2

COMBINED FERMION RESULTS

COMBINED SCALAR RESULTS

LEPTON PORTAL WRAP UP

- Lepton portal models have a rich array of signatures, with parameter space waiting to be explored
- All three methods of DM search (+ g-2) provide important constraints

CONCLUSIONS

STATUS REPORT

- Effective theories may not be sufficient to make predictions for all DM searches
- The fermion portal framework is one possible simple alternative
- It exhibits complementarity between various searches for both quark and lepton couplings

FUTURE PROGRESS

- More complete study of collider constraints
- Distinctive features in interaction spectra
- From experiment: More data from LUX,
 AMS-02 = pulsars?, new g-2, LHC13+, ILC?