SUSY scenarios we're not looking for* but should be

Markus Luty UC Davis

SUSY at the Near Energy Frontier

11-13 November 2013 Fermi National Accelerator Laboratory

Disclaimer

Many important "loopholes" are covered in existing or planned searches

- RPV
- Reduced MET compressed spectra, "stealth" SUSY,...
- Long decay chains
- NLSP \rightarrow gravitino + X

This talk will discuss a few areas that may benefit from more attention

A personal selection, no attempt at completeness

Existing SUSY Searches

Compressed Spectra

Monday, November 11, 2013

ovember 11, 2013

R-Parity Violation

Simplicity vs. Naturalness

SM is the perfect effective theory...

... if <u>one</u> parameter is tuned

 $m_{H,\text{eff}}^2$ = function of more fundamental parameters

Naturalness = no tuning of parameters Simplicity = minimality of structure & assumptions

An Unnatural Story

In the early 1990s limits on the CMB quadrupole were pushing the limits of cold dark matter cosmology...

...and then came COBE

So what about the quadrupole?

Outline

- Tuned SUSY
- Natural SUSY
 - BMSSM Higgs
 - Displaced vertices
 - R-parity violation
 - Hidden sector dark matter

Tuned SUSY

Occam's razor:

"Entities must not be multiplied beyond necessity"

MSSM with one tuning is arguably the <u>simplest</u> explanation of particle physics data

Implications:

- SUSY most likely "just around the corner"
- Keep looking for standard SUSY signals

Natural SUSY

Crucial to test...

Requirements:

 $\begin{array}{l} \mu \lesssim 200 \; \mathrm{GeV} \\ m_{\tilde{t}} \lesssim 500 \; \mathrm{GeV} & \longleftrightarrow \end{array} \begin{array}{l} \mathsf{EWino \; searches,} \\ \mathrm{stop, \; sbottom \; searches} \end{array}$

But also: Higgs sector beyond MSSM

BMSSM Higgs

$$V_{\rm eff} = m_H^2 |H|^2 + \lambda |H|^4 \quad \Rightarrow (126 \text{ GeV})^2 = 2\lambda v^2$$

Need additional contributions to quartic

sector

Motivate searches for additional Higgs bosons with significant mixing to 126 GeV state

BMSSM Higgs Signals

Models have many parameters, but signals described by simplified models with few parameters

Novel feature: heavy Higgs fields can be far from decoupling limit

Example: $A \rightarrow Zh \rightarrow (II)(bb)$ or (TT)

Brownson, Kukartsev, Narain, Heintz, Stupak, Craig Snowmass 2013

BMSSM Higgs Signals

Also: $H \rightarrow ZZ \rightarrow (II)(II)$

Other examples deserving further study: $H/A \rightarrow tt$, bb, $\tau\tau$ $H \rightarrow hh$ $H \rightarrow A Z \rightarrow ZZh$

UDD destroys baryon asymmetry in early universe ⇒ requires low scale baryogenesis

Displaced RPV

NLSP = neutralino

NLSP = chargino

 \Rightarrow exploding track

BMSSM Dark Matter

Dark matter exists

It requires physics beyond the standard model

But can we learn it's identity?

In the absence of signals in direct detection and collider searches, look at plausible mechanisms beyond WIMPs

 \Rightarrow new signals?

Hidden Sector Dark Matter

 $\Delta \mathcal{L} = \epsilon \mathcal{O}_{\rm vis} \mathcal{O}_{\rm hidden}$

LSP in hidden sector \Rightarrow may be dark matter

LOSP (lightest ordinary supersymmetric particle) decays to dark matter, may be long-lived

• SuperWIMP (Feng, Rajaraman, Takayama 2003)

LOSP dominates universe, then decays

$$\Omega_X = \frac{m_X}{m_{\rm LOSP}} \Omega_{\rm LOSP}$$

X = gravitino or ...

Freeze-in Dark Matter

(Hall, Jedamzik, March-Russell, West 2009)

Relic density generated by LOSP decay X never in equilibrium \Rightarrow no inverse decays

$$\Omega_X \simeq \frac{10^{27}}{g_*^{3/2}(m_{\rm LOSP})} \frac{m_X \Gamma({\rm LOSP} \to X)}{m_{\rm LOSP}^2}$$
$$c\tau({\rm LOSP} \to X) \sim 0.5 \text{ m} \left(\frac{m_X}{\rm keV}\right) \left(\frac{m_{\rm LOSP}}{100 \text{ GeV}}\right)^{-2}$$

 $m_X \gtrsim \text{keV}$ (structure formation) \Rightarrow motivates highly displaced decays

Asymmetric Dark Matter

(Kaplan, ML, Zurek 2009)

$$\Delta W = \frac{1}{M^2} \underbrace{UDD}_{\text{visible}} \underbrace{X^2}_{\text{bidder}}$$

visible hidden

Transfers B-L asymmetry to dark matter

Freeze out:
$$T_f \gtrsim m_X \Rightarrow \Omega_X \sim \frac{m_X}{m_p} \Omega_B \Rightarrow m_X = 14 \text{ GeV}$$

Valid for $M \gtrsim \text{TeV}$ due to rapid decoupling for $T < m_{\tilde{q}}$

Displaced Optimism

Displaced vertices are exciting discovery mode...

...and open the possibility of fully reconstructing SUSY events

LOSP = charged: SUSY fully reconstructed LOSP = neutral: \vec{v}_{LOSP} from vertex position + timing Constraining/measuring dark matter mass possible

Conclusions

• Impressive breadth and depth of SUSY searches

• Both tuned and natural versions of SUSY are still plausible and important to test

• BMSSM Higgs and displaced vertices are important to search for

Decoupling Limit

Additional MSSM Higgs generically near decoupling limit

$$\begin{pmatrix} H \\ H_{\perp} \end{pmatrix} = \begin{pmatrix} \sin\beta & \cos\beta \\ \cos\beta & -\sin\beta \end{pmatrix} \begin{pmatrix} H_u \\ H_d^{\dagger} \end{pmatrix} \qquad \tan\beta = \frac{v_u}{v_d}$$

$$\underbrace{\langle H \rangle}{\checkmark} = \frac{\cdot}{\sqrt{2}} \qquad \langle H_{\perp} \rangle = 0$$

the Higgs field

126 GeV mass eigenstate $\simeq H_{\parallel}^0$

⇒ additional Higgs fields decouple from W, Z (but not fermions)

Simplified Models

Simplified models for BSM/BMSSM Higgs searches

- For SUSY interpretation, assume decoupling $H = H_u \sin \beta + H_d^{\dagger} \cos \beta$ H_{\perp} decoupled
- ⇒ SM Higgs with one additional parameter $\tan \beta$ governs couplings of *H* to fermions

...now add BMSSM Higgs

Higgs + Singlet

$$V_{\text{eff}} = m_H^2 |H|^2 + \lambda_H |H|^4 + \frac{1}{2} m_\Phi \Phi^2 + \frac{1}{4} \lambda_\Phi \Phi^4 + \frac{1}{2} \lambda_{\Phi H} S^2 |\Phi|^2$$

6 parameters: $m_1, m_2, v, \tan \beta, \cos \gamma, \langle \Phi \rangle$

$$\binom{h}{s} = \begin{pmatrix} \cos\gamma & \sin\gamma \\ -\sin\gamma & \cos\gamma \end{pmatrix}$$

<u>Model 1</u>: $\Phi = CP \text{ even} \quad m_1 = 126 \text{ GeV}$

Production and decay of h_2 governed by m_2, β, γ $h_2 \rightarrow ZZ, WW, \bar{t}t, h_1h_1$

 $\underline{\text{Model 2}}: \quad \Phi = \text{ CP odd PNGB}$ $h_1 \rightarrow aa \qquad a \rightarrow \overline{b}b, \ \tau^+\tau^-$

 $m_2 = 126 \text{ GeV}$ $\langle \Phi \rangle = 0$