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Quantum Field Theories
are ubiquitous and extremely efficient tool to describe 

Nature:

✓Particle physics 
✓Condensed matter 
✓Cosmology 
✓ Hydrodynamics 
✓…

one may say QFTs play the same role as numbers used to play

but we don’t really know yet what QFTs really are



Brief history of numbers:
is the history of asking questions

✓Natural 
✓Integers 
✓Rational 
✓ Algebraic 
✓      ⇡ , e

counting
solving algebraic equations

more interesting questions

it’s easy to run into infinities on the way, especially if the 
wrong question is asked 

most real numbers won’t answer any question 
(c.f. generic effective QFT)



we are done with numbers…

What is the space of QFT’s?

it feels we are only starting to learn how to ask interesting 
questions here

a related outstanding question

What are gravitational theories? 



Wilson provided us with a very useful tool to organize our 
thinking about the space of QFT’s:

Wilsonian Renormalization Group Flow



UV Complete QFT = 
RG flow from a UV fixed point to an IR fixed point

Fixed points: Scale (conformal) invariant theories
Classic example: Quantum Chromodynamics (an asymptotically free theory) 

GRAVITY IS DIFFERENT 
Memory of the Planck scale never fades away



The principal goal of this talk:

Describe a simple class of scaleful theories 
and 

discuss their physics



This is how these theories should have been found:

What are possible integrable reflectionless massless 
theories in two dimensions?

S = e2i�(s)1

Everything is determined  by a two-particle phase shift:

What is the simplest QFT?



Unitarity+Analyticity+Crossing:

This argument relies only on world-sheet Lorentz invariance and shift symmetry and thus
applies to a broad class of e↵ective string theories. For the critical D = 26 theory similarities
with the models discussed in [22], [23] go further. Scattering in these models is purely elastic
(reflectionless). The S-matrix is diagonal and is completely determined by the phase shift
e2i�(s) in 2 ! 2 scattering.

This is exactly what one expects given the finite volume spectrum (4). This spectrum im-
plies that the states with a fixed number of particles are exact eigenstates of the Hamiltonian,
implying the absence of particle production. Furthermore, di↵erent SO(D � 2) multiplets
with the same number of particles are exactly degenerate, implying the absence of annihila-
tions (and, by crossing symmetry, reflections). Intuitively, the latter property implies that
a string initially oscillating in one direction will keep oscillating in this direction forever.
As demonstrated in [18] this property holds at tree-level in the Nambu–Goto theory for a
relativistic string in any number of dimensions, but is violated away from the critical number
of dimensions at one-loop.

As explained in [22], the requirements of unitarity, crossing symmetry and analyticity
restrict the phase shift for the purely diagonal massless scattering to take the form

e2i�(s) =
Y

j

µj + s

µj � s
eiP (s) , (5)

where P (s) is an odd polynomial in s and µj are located in the lower half of the complex
plane, and either lie on the imaginary axis or come in pairs symmetric with respect to it.
The expression (5) holds for Im s > 0. For s in the lower half of the complex plane the same
expression applies with s replaced by �s.

The standard expectation is that P (s) = 0, so that the scattering amplitude is exponen-
tially bounded. Exponential boundedness plus analyticity is commonly taken as the only
sharp definition of locality in quantum theories. In agreement with this expectation, the
goldstino model of [22] does have P = 0 and realizes the simplest possible amplitude of this
type of the form

e2i�Gold

(s) =
iM2 � s

iM2 + s
, (6)

where M is the scale of supersymmetry breaking.
If the critical NG theory indeed has a well-defined S-matrix it should also be of the form

(5) (times a unit matrix in “flavor” space), but what are the corresponding µj and P?
Fortunately, it is straightforward to answer this question. Indeed, the exact spectrum of

the theory at finite volume is known and is given by equation (4). Deducing the scattering
amplitudes from the finite volume spectrum is a routine problem in lattice calculations, and
the corresponding techniques were developed in [6]. Theories in one spatial dimension were
specifically considered in [7]. For the sake of completeness let us sketch a semi-rigorous
argument leading to the desired result.

Consider a two particle eigenstate of the Hamiltonian on a cylinder with a zero total
KK momentum, i.e. with N = Ñ in the string case (see (4)). On the one hand, in the
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Expectation from Locality: P (s) = 0

Im s > 0



e2i�(s) =
iM2 � s

iM2 + s

A candidate simplest QFT:

This is the “solution” of a theory. It would be nice to recover 
physics…

A tool:

TBA (Thermodynamic Bethe Anzats): 
A machine to calculate the finite 

volume spectrum from the S-matrix

f(T ) = TE0(1/T ) =
⇡

6
cUV T

2 as T ! 1



Corresponds to integrable RG flow between 
tricritical Ising model in the UV and Ising model in 

the IR 
(equivalently, N=1 Wess-Zumino model in the UV 

and free fermion in the IR)

Goldstino (Volkov-Akulov) Theory

L =  @̄ +  ̄@ ̄ � 1

M2
( @ )( ̄@̄ ̄) + . . .

A simple example of  “Asymptotic Safety”: 
naively non-renormalizable theory flows into a 

strongly coupled UV fixed point, no new stuff added

e2i�(s) =
iM2 � s

iM2 + s
turns out to be:
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Expectation from Locality: P (s) = 0

Im s > 0

+`2s



Let us look at (D-2) bosons with 

✴Polynomially bounded on the physical sheet 
✴No poles anywhere. A cut all the way to infinity 
with an infinite number of broad resonances 
✴Scale survives all the way to the UV !

e2i�(s) = eis`
2/4



E(N, Ñ) =

s
4⇡2(N � Ñ)2

R2
+

R2

`4
+

4⇡

`2

✓
N + Ñ � D � 2
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◆

One can reconstruct the entire finite volume 
spectrum using Thermodynamic Bethe Ansatz

This is a light-cone quantized bosonic string



eis =

Z
DXe�SNG(X)

an extension of the Euler formula:

A new type of RG flow behavior: 
Asymptotic Fragility 
Integrable theory of gravity



Integrable QG rather than QFT

Gravitational shock waves:

Eikonal phase shift:
ei2�eik(s) = ei`

2s/4

`2 / GNb4�d

Dray,’t Hooft ’85 
Amati, Ciafaloni,Veneziano ’88



✴Theory of gravitational shock waves. 
✴No UV fixed pоint and central charge. 
✴Maximal achievable (Hagedorn) temperature. 
✴Integrable cousins of black holes.  
✴Minimal length. 
✴No local off-shell observables.  
✴Big Bang solutions. 

Some properties of the theory

SNG = �`2
Z

d2�
q

� det (⌘↵� + @↵Xi@�Xi)

classical action: 



Time Delay

c.f. �tH = `4PlE
3
cms for Hawking evaporation in 4d

�tcms =
1

2
`2sEcms

�t

Equivalence Principle at work 

is the same for a single hard particle and for a bunch of soft ones

String uncertainty principle

This probability density exhibits two interesting properties. First, the spatial spread of the
scattered packet has increased. It is natural to call this the stringy uncertainty principle. It is
consistent with the evidence that no local observables exist and prevents one from measuring
space-time events with a resolution better than the string length `s. This can be made more
precise by inspection of the two-particle probability distribution after the collision. One finds
that this stringy uncertainty principle can be written in a more suggestive Lorentz-invariant
form

�xL�xR � `2s . (62)

The second distinctive feature of the probability distribution is the large time delay for
macroscopic objects experienced by the outgoing wave packet

�t = p̄R`
2
s . (63)

This is in agreement with the black hole interpretation of the amplitude (1). The Hawking
temperature of two-dimensional black holes is independent of the mass, resulting in an evap-
oration time linear in the mass. It is worth stressing that time delays that grow indefinitely
with energy are highly unusual in conventional quantum field theories.

With the black-hole interpretation, it may be surprising that the evaporation time (63)
for the left-mover depends only on the energy of the right-mover and not on the total center
of mass energy of the collision. However, this is perfectly consistent with the black hole
interpretation and Lorentz invariance. To see this, note that the two-momentum of a created
black hole is

kBH = (p̄R + p̄L, p̄R � p̄L) .

The black hole thus moves with respect to the lab frame with velocity

v =
p̄R � p̄L
p̄R + p̄L

.

The time delays measured by the detectors are related to the evaporation time as measured
in the lab frame by

�tlab =
�tL,R
1± v

=
1

2
`2s(p̄R + p̄L) ,

where the upper/lower sign should be used for the time delay measured by left/right detector.
The evaporation time in the rest frame of the black hole is then simply

�tcms = `2s
p
p̄Lp̄R =

1

2
`2sEcms ,

confirming that the evaporation time is simply linear in the mass consistent with the black
hole interpretation.

To make the case for the black hole interpretation of the S-matrix (1) even stronger, note
that there is an equivalence principle at work. Let us replace the right-moving particle with
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�x

2
out

= �x

2
in

+
`

4
s

�x

2
in

for identical packets

 Integrable Black Hole Precursors



Classical Origin of the Time Delay

formation and its consequent evaporation, as described by the Hawking calculation, which
represents the leading quantum (one-loop) correction to the classical solution.

Note that any purely left-moving configurationX i
cl(⌧+�) presents an exact solution of the

Nambu–Goto equations. A natural string configuration to study the (semi)classical origin of
the time delay (63) is then a large left-moving kink X i

cl(⌧ + �) acting as a background. For
simplicity, we consider a configuration with a single non-zero flavor X i

cl(⌧ +�), and suppress
the flavor superscript in what follows.

One then sends a small right-moving perturbation across this kink, and calculates the
time it takes to reach the other side. In the probe approximation this amounts to studying
right-moving null geodesics in the induced metric (65), corresponding to Xcl(⌧ + �)

ds2 = (�1 +X 02
cl )d⌧

2 + 2X 02
cld⌧d� + (1 +X 02

cl )d�
2 . (66)

The null geodesic equation results in

�̇(⌧) =
�X 02

cl (⌧ + �(⌧))± 1

X 02
cl (⌧ + �(⌧)) + 1

. (67)

The lower sign corresponds to a left-mover, whose propagation is una↵ected by the presence
of the background. The upper sign corresponds to a right-mover, which experiences a time
delay

�t =

Z 1

�1
d⌧ (1� �̇) =

Z 1

�1
d⌧

2X 02
cl (⌧ + �0(⌧))

X 02
cl (⌧ + �0(⌧)) + 1

=

Z 1

�1
dzX 02

cl (z) . (68)

Here �0(⌧) is a solution of the geodesic equation (67), and we used equation (67) when
changing the integration variable from ⌧ to z = ⌧ + �0(⌧). We recognize

Z 1

�1
dzX 02

cl (z) = `2s�E ,

where �E is the energy of the classical solution Xcl relative to the vacuum energy. The time
delay obtained in the classical theory (68) thus exactly coincides with the one derived in the
quantum theory (63). This is an important di↵erence with a realistic quantum theory of
gravity – as a consequence of integrability there is no actual horizon and particle production
and the black hole “evaporation” happens classically.

In spite of this deficiency, we feel that this class of solutions is close in other respects
to actual black holes. For instance, it follows from (67) that for X 02

cl > 1 there is a region
inside the kink where both left- and right-movers propagate towards the left. We see that
the classical origin of the time delay (63) is very intuitive—a right-mover gets carried away
towards left by the kink, see Figure 1. In the presence of non-integrable perturbations,
when the energy transfer between left and right-movers becomes possible, one expects the
emergence of an actual horizon.

The CGHS model [12] supports this expectation. The field equations, with quantum
backreaction taken into account, look a lot like the equations of the bosonic string in the
Polyakov formalism with additional interactions included. Purely left-moving excitations of
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Figure 1: This figure shows the structure of light-cones indicated by the green and orange
arrows in the background of a left-moving kink in the static gauge. The blue and red lines
show geodesics of a left- and right-moving particle, respectively.

matter fields (which are analogous to our X i) solve the field equations, but do give rise to a
black hole horizon. It appears plausible that the S-matrix (1) provides a reasonable zeroth
order approximation for the process of black hole evaporation in models of this type.

Note, that for a right-moving bump excited in the same target space direction as the
left-moving one (and perhaps in one other transverse direction) the classical string solutions
generically develop cusp singularities. These singularities are not shielded by any horizon.
The development of classical singularities is another consequence of the absence of power
counting renormalizability. In power counting renormalizable theories singularities usually
do not occur if one starts with a regular initial data [32, 33]. They do occur for the string
worldsheet theory but get resolved at the quantum level by the S-matrix (1).

At the end of section 4, we mentioned that our S-matrix is related to a trivial S-matrix
by a gauge transformation which acts non-trivially at infinity. We are now in a position to
provide a physical interpretation for one natural choice of coordinates related to the static
gauge coordinates by a gauge transformation of this kind. To this end, it is helpful to write
the metric (66) in a form that makes its null Killing vector manifest

ds2 = �d⌧+d⌧� +X 02
cl (⌧

+)(d⌧+)2 , (69)

where ⌧± = ⌧ ± �. We then see that in coordinates t, x related to ⌧± by

⌧+ = t+ x and ⌧� = t� x+

Z t+x

�1
dz X 02

cl (z) , (70)
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exactly reproduces the quantum answer

�t =

Z 1

�1
dzX 02

cl = `2E



Hagedorn Temperature

UV central charge from

T�1f(T ) = E0(T
�1) ' ⇡cUV

6
T at T ! 1

we have

operates in the thermodynamic limit. To appreciate the di↵erence, note, for example, that
any modification of the spectrum by terms decaying faster than 1/R at large R would result
in the same S-matrix. Such a finite volume spectrum does not pass the TBA cross-check,
indicating that it is incompatible with the Lorentz symmetry.

Before moving on let us make one brief remark. We were not too careful in our definition
and evaluation of (18) and simply stated that the saddle point approximation amounted to
the minimization of the free energy. It seems plausible that in a more careful treatment
excited states appear directly as subleading saddle points. This is beyond the scope of this
paper, but might lead to a more satisfactory derivation of the thermodynamic Bethe Ansatz
for excited states.

3.3. Hagedorn equation of state

For any relativistic theory the finite volume ground state energy determines the equation of
state, the free energy as a function of temperature according to equation (12). The unusual
property of the equation of state for the string is that the free energy becomes complex above
certain critical temperature

TH =
1

`s

s
3

⇡(D � 2)
.

To understand the physical meaning of this let us calculate some basic thermodynamic
properties of the system. To reproduce the standard field theory calculation, for this purpose
we subtract the cosmological constant from the free energy so that the new free energy
vanishes in the limit of zero temperature

F (T ) =
L

`2s

s

1� T 2

T 2
H

� L

`2s
. (37)

Let us now calculate the heat capacity cv in the vicinity of the critical temperature TH .
Using the relation between the energy density ⇢, pressure p and entropy density s

p = �⇢+ sT ,

the first law of thermodynamics
dp = sdT

and the relation of the pressure to the free energy p = �F/L, we find

cv = T
@2p

@T 2
=

TTH

`2s(T
2
H � T 2)3/2

⇠ (TH � T )�3/2 . (38)

We see that both the heat capacity and its integral
R
cvdT diverge at the critical temperature.

This indicates that TH is really the maximum physical temperature, it is impossible to reach
it by supplying a finite amount of energy to the system. Of course, all this is just the
familiar Hagedorn behavior of string theory, and indeed this critical temperature TH is equal
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f(T ) =
1

`2s
(
q

1� T 2/T 2
H � 1)

cv ' (TH � T )�3/2

to the Hagedorn temperature. However, seen as a property of a “conventional” relativistic
two-dimensional field theory it appears quite unusual.

The knowledge of the exact equation of state allows to calculate further physical proper-
ties of the system. In particular, with the free energy (37), the energy density can be written
as a function of the pressure

⇢ =
p

1� `2sp
. (39)

The Hagedorn behavior sets in near p = 1/`2s, where the energy density diverges in agreement
with (38). One finds that the sound velocity,

cs =

✓
@⇢

@p

◆�1/2

= 1� `2sp , (40)

vanishes when the temperature approaches TH .
We have subtracted the cosmological constant for the purpose of our thermodynamic

calculations to calculate the energy density and pressure a putative static-gauge observer
on the string would measure on the walls of his box filled with gas. It is also interesting to
consider the result of the calculation including the cosmological constant. This changes the
energy density and the pressure by a constant shift with opposite sign

⇢T = ⇢+
1

`2s
and pT = p� 1

`2s
.

While the heat capacity remains unchanged, the speed of sound as a function of the pressure
becomes

cs = �`2spT .

and the relation between the energy density and pressure is of the form of the Chaplygin gas

⇢T = � 1

`4spT
, (41)

At temperatures far below the Hagedorn temperature, pT ⇡ �1/`2s so that ⇢T ⇡ �pT ⇡ 1/`2s.
However, as the temperature approaches TH , the pressure from the gas nearly cancels the
pressure from the cosmological constant so that pT ⇡ 0 and the unusual behavior of the
Chaplygin gas equation of state becomes important.

Let us remark in passing that equations (37)-(41) are valid even if one introduces a
chemical potential µ with the critical temperature TH now determined from

TH =
1

`s

r
⇡

2(D � 2)Li2(eµ/TH )
.

Returning to our original goal of extracting the value of the central charge from the UV
behavior of the Casimir energy, we have failed. The vacuum energy becomes complex at
small R, and even if one neglects this and formally expands it around R = 0 there is no
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Absence of  local observables

perturbatively: theory is non-renormalizablecorresponding counterterm, for example,

⇥
@↵X

i
⇤
ren

= @↵X
i � `2s

8⇡✏
@↵

�
@�@�X

i@�Xj@�Xj
�
.

This operator mixing is allowed by the symmetries and does not contribute to on-shell
scattering, so there is no contradiction with the previous arguments.

The presence of this mixing indicates that as far as the o↵-shell quantities are concerned
the critical Nambu–Goto theory is just like any other non-renormalizable theory. One can
calculate Green’s functions of local operators order-by-order in the derivative expansion at
the expense of introducing a finite number of new parameters at any given order. The
expansion breaks down above the cuto↵ scale `�1

s . This is just another way of saying that
the theory does not predict o↵-shell observables. Note that even in renormalizable (and
free) theories one encounters additional infinities when trying to define composite operator.
However, there any given operator mixes only with a finite number of other operators, as
follows from dimensional analysis. This is di↵erent for non-renormalizable theories, where
the coupling has a negative mass dimension. In particular, here we find mixing even for the
elementary fields @X.

While this is suggestive, it does not prove that o↵-shell observables do not exist. Most
of our arguments apply equally to the theory of the goldstino describing the flow between
the tricritical and the critical Ising model. There, however, even though the theory appears
non-renormalizable, cancellations are expected to persist even for o↵-shell quantities. This
can be seen from a complementary point of view which does not rely on the perturbative
expansion, but uses powerful techniques [28] which often allow to reconstruct local correlators
from the exact S-matrix in two-dimensional integrable models. The idea is to express the
local correlators in terms of sums of products of form factors and to make use of the expected
analytic dependence of these form factors on momenta.

For the massless case, in particular the theory of the goldstino, the recipe is summarized
in [29]. It reduces to the following. A form-factor of a local operator O inserted at the origin
⌧ = � = 0, takes the following general form,

h0|O(0)|pL1, . . . , pLl; pR1, . . . , pRri = Qr,l({pL}; {pR})⇥
Y

1i<jl

1

pLi � pLj

Y

1i<jr

1

pRi � pRj

Y

1il 1jr

f(log(4`2spLipRj)) , (46)

where pLi, pRj are the sets of positive left- and right-mover’s momenta. The coe�cient
functions Qr,l are separately symmetric in pLi and pRj, and analytic everywhere, possibly
apart from pLi, pRi = 0,1. The function f(�) is a minimal solution of the Riemann–
Hilbert problem determined by the phase shift (1), i.e. it has no poles or zeros in the strip
0 < Im� < 2⇡ and satisfies

f(�) = e2i�NG(4`�2

s e�)f(� + 2⇡i) . (47)

The coe�cient functions Qr,l satisfy a set of recursion relations, whose explicit form is not
needed for our present discussion. One usually expects the function f to scale as a finite
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corresponding counterterm, for example,

⇥
@↵X

i
⇤
ren

= @↵X
i � `2s

8⇡✏
@↵

�
@�@�X

i@�Xj@�Xj
�
.
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free) theories one encounters additional infinities when trying to define composite operator.
However, there any given operator mixes only with a finite number of other operators, as
follows from dimensional analysis. This is di↵erent for non-renormalizable theories, where
the coupling has a negative mass dimension. In particular, here we find mixing even for the
elementary fields @X.

While this is suggestive, it does not prove that o↵-shell observables do not exist. Most
of our arguments apply equally to the theory of the goldstino describing the flow between
the tricritical and the critical Ising model. There, however, even though the theory appears
non-renormalizable, cancellations are expected to persist even for o↵-shell quantities. This
can be seen from a complementary point of view which does not rely on the perturbative
expansion, but uses powerful techniques [28] which often allow to reconstruct local correlators
from the exact S-matrix in two-dimensional integrable models. The idea is to express the
local correlators in terms of sums of products of form factors and to make use of the expected
analytic dependence of these form factors on momenta.

For the massless case, in particular the theory of the goldstino, the recipe is summarized
in [29]. It reduces to the following. A form-factor of a local operator O inserted at the origin
⌧ = � = 0, takes the following general form,

h0|O(0)|pL1, . . . , pLl; pR1, . . . , pRri = Qr,l({pL}; {pR})⇥
Y

1i<jl

1

pLi � pLj

Y

1i<jr

1

pRi � pRj

Y

1il 1jr

f(log(4`2spLipRj)) , (46)

where pLi, pRj are the sets of positive left- and right-mover’s momenta. The coe�cient
functions Qr,l are separately symmetric in pLi and pRj, and analytic everywhere, possibly
apart from pLi, pRi = 0,1. The function f(�) is a minimal solution of the Riemann–
Hilbert problem determined by the phase shift (1), i.e. it has no poles or zeros in the strip
0 < Im� < 2⇡ and satisfies

f(�) = e2i�NG(4`�2

s e�)f(� + 2⇡i) . (47)

The coe�cient functions Qr,l satisfy a set of recursion relations, whose explicit form is not
needed for our present discussion. One usually expects the function f to scale as a finite
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apart from pLi, pRi = 0,1. The function f(�) is a minimal solution of the Riemann–
Hilbert problem determined by the phase shift (1), i.e. it has no poles or zeros in the strip
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non-perturbatively: powerful techniques to reconstruct form-
factors from S-matrix

Riemann-Hilbert problem:

power of e� at large � as is the case in the goldstino theory (5) considered in [29]. Assuming
that the form-factors are exponentially bounded, then restricts the Qr,l’s to be rational
functions. Given a specific choice of an operator O, one can obtain further information
about the infrared p ! 0 asymptotics of Qr,l’s from perturbative calculations, allowing to
completely fix the Qr,l’s for a few values r, l. The rest is then found by solving the recursion
relations.

In our case the situation is di↵erent. The minimal solution of (47) for the phase shift (1)
takes the form

f(�) = exp
���e�/2⇡

�
(48)

At large positive � (which correspond to large momenta) this function decays faster than
the exponent as a function of the momenta. However, it grows faster than exponentially for
Im� = ⇡. Given this analytic behavior there is no reason to assume that the Qr,l’s have
polynomial growth. So at least in its standard form, this technique cannot determine the
form-factors in our case.

This still does not constitute a rigorous proof that o↵-shell local observables cannot be
defined in this 1+1 dimensional field theory, but is merely a manifestation of our inability to
extract them. However, further evidence supporting the claim that they do not exist comes
from thinking about all this from the perspective of the full interacting string theory. If
one succeeded in defining local o↵-shell observables in this theory, it would imply that it is
possible to introduce local external probes in string theory. This is strongly believed to be
impossible [20]. The same argument implies that in addition to the S-matrix (1) there is a
set of well-defined (non-local) observables which are o↵-shell from the point of view of our
1 + 1 dimensional theory. These are conventional string scattering amplitudes, constructed
through insertions of vertex operators. We leave the task of studying these in the static gauge
language for the future, but discuss the implications of the existence of these observables
from the world-sheet perspective in more detail in concluding section 7.

Before concluding this section, let us address one further subtlety regarding the definition
of local operators. One might argue that in light-cone gauge our theory is that of D� 2 free
bosons for which local observables certainly do exist. We will briefly explain why these are
in fact not local observables of our theory.

In any Lorentz-invariant theory, the definition of local observables includes that the
corresponding operators in the Heisenberg picture transform according to7

U(a,⇤)O(x)U�1(a,⇤) = O(⇤x+ a) . (49)

Here, as usual U(a,⇤) is the unitary operator representing a boost ⇤ generated by M and
a translation in space and time generated by P and H, respectively. For the theory to be
Lorentz invariant, we require that U(a,⇤) act in the same way on the Heisenberg picture in-
and out-states

U(a,⇤)|p1, p2, . . . ,±1i = e�i(a↵p↵
1

+a↵p↵
2

+... )

s
(⇤p1)0

p01

(⇤p2)0

p02
· · ·|⇤p1,⇤p2, . . . ,±1i . (50)

7For simplicity the formula is written for scalar operators, but our arguments will not depend on this.
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Theory does not want to answer this 
question 

“Asymptotic Fragility”



Big Bang Cosmology

Xcl(�
2 � ⌧2)

induced metric is of the FRW form

-4 -2 0 2 4

-2
-1

0
1
2

0

2

4

⌧2 � �2 � (sinhXcl)
2 = 0

ds2 = �dt2 + (t2 + 2t)d�2



This was an integrable QG coupled to 
 (D-2) massless bosons. 

Is there a generalization to other (non-integrable) 
theories?



Calculate S-matrix Sn(pi)

Gravitational dressing gives 

     Start with an arbitrary UV complete QFT               L( , H)

Ŝn(pi, `)



Ŝn(pi) = ei`
2/4

P
i<j pi⇤pjSn(pi)

Gravitational Dressing



Properties of gravitational dressing

✴Results in a well-to-do S-matrix 
✴Physical spectrum remains the same 
✴Low energy EFT description:

L( , H) +
X

�i>2

`�i�2Oi

L =
1

2
(@�)2 � 1

2
m2�2 +

`2

8

⇣
(@�)4 �m4�4

⌘
+ . . .

free massive scalar:

✴THIS CONSTRUCTION SHOULD NOT  
                        BE POSSIBLE ?!



No picture like that in this example. Energy scale does not 
correspond to a threshold. No scale invariance and               

no Wilsonian RG above the scale. 



An alternative definition of naturalness? 

Every  natural QFT is an answer to some 
interesting question. 

Perhaps we should learn to ask more 
questions. 

c.f. the following naturalness problem: 
31415926535897932384626433832795028841971693993… 
is this sequence of digits “natural”? 



Instead of Conclusions:

Identifying the simplest QM system—harmonic 
oscillator—was  immensely helpful for developing 

intuition about (weakly coupled) QFTs

It is very satisfactory that a building block of 
string theory presents itself a very simple (but 

non-trivial) gravitational system

Thank you!


