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What do we know?

 unknown unknown

    known unknown

    known known3



Colliders: true alchemy

We can create new 
forms of matter, 
even if we have 
little or no idea 
of what we are 

looking for!

SM

SM

?

?
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Interactions

Important assumption:
Requires some 
interaction with SM

SM

SM
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DM @ Colliders
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DM @ Colliders
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Look everywhere

1302.3619
Mono-jet most 
powerful for qqXX 

Each mode has 
unique models 
where it is a 
discovery mode. 
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Outline

A. Mono-W
B. Mono-Z
C. Mono-Higgs
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Mono-W
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Mono-W theory

1208.4361
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Mono-jet

jet

Missing 
Momentum

q/g
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Mono-heavy jet

sub-jet

sub-jet

fat jet

W/Z
Missing 

Momentum

1309.4017 (PRL)

Ning Zhou, UCI14



mono-W, etc
Fat jet pT >250
two subjets giving mjet =[50,120]
No e,mu,gamma
<= 1 additional narrow jets
MET >350 or 500

1309.4017 (PRL)
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Limits
1309.4017 (PRL)
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XX->WW

1403.6734
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XX->WW

"Indirect" is an excluded region which is a combination of exclusions from 
the LAT line search, the LAT dwarf bounds and (at higher m_chi) the 
VERITAS Segue bounds. It is assumed that this DM makes up 100% of 
cosmological DM, no matter what its annihilation cross section is.1403.6734
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Mono-Z

1404.0051
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EFTs

1404.0051

21 Andy Nelson, UCI



Simplified models

1404.0051
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Selection
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Selection
Two OS SF leps
mll in [76,106]
veto jets, 3rd lep
MET angle cuts
               < 0.5



Data

1404.0051
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Limits....

1404.0051
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Limits....

1404.0051
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Limits....

1404.0051
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Mono-Higgs

1312.2592
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Models
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Models: EFT

Scalar wimp

Fermion wimp
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Vertices

Off-shell s-channel Higgs

di-Higgs 4-point vertex

(1) h->XX limited by invisible Higgs for mx<mh/2
(2)For large coupling, h->XX grows, suppresses SM H decays!31



Other EFTs

Scalar wimp

Fermion wimp

Allow ZhXX-like vertices
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Simplified models: vector

with and
without 

Z-Z’ mixing
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Simplified models: scalar

Box implemented as
effective vertex in madgraph
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MET spectra
mx=1 GeV

mx=1 TeV

EFTs Simp. models35



Gamma-gamma
Selection
- two photons
- mγγ in [110-130]
- MET > 100, 250  (8,14 TeV)

Backgrounds
- h→γγ + fake MET
- γγ + fake MET
- Zγγ, Z→vv
- Zh, Z→vv  + Wh, W→lv 
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Comparison

Assuming

h→SM 
rates are

unchanged
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Comparison

Assuming

h→SM 
rates are

unchanged
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Parameter limits

Note: 
for mx<mh/2, no valid limits.
Large Lambda  boosts h→XX, suppresses h→visible
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Parameter limits
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DM References + Plans
ATLAS
7 TeV γ+MET  (1209.4625)
W→jj +MET  (1309.4017)
Invisible Higgs (1402.3244)
Z+MET (1404.0051)

W→lv +MET (soon)

VBF Invisible Higgs (forthcoming)

8 TeV γ+MET (forthcoming)

dijets (forthcoming)

Higgs+MET (forthcoming)

Pheno
monoZ       (1212.3352)
DM combo (1302.3619)
Fermi/LHC  (1307.5064)
DM future   (1307.5327)
H+MET       (1312.2592)
Indirect WW (1403.6734) 

Compressed spectra (forthcoming)

mono-Z’ (forthcoming)
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Searching for new physics
Model

Search strategySp
ec

ifi
c

G
en

er
al
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Traditional approach

Bet on a specific theory
Optimize analysis to squeeze out maximal sensitivity to new physics.

param 1

pa
ra

m
 2 (param 3-N fixed at arbitrary choices)

Model

Search strategySp
ec

ifi
c

G
en

er
al
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Model independent search

Discard the model
compare data to standard model

Model

Search strategySp
ec

ifi
c

G
en

er
al

“Never listen to theorists.
Just go look for it.”
--A. Pierce, 2010
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Compromise

Admit the need for a model
New signal requires a coherent physical explanation, 

even trivial or effective

Generalize your model
Construct simple models that describe classes of new physics which can be 
discovered at the LHC.

What are we good at discovering? 

Model

Search strategySp
ec

ifi
c

G
en

er
al
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Compromise

Admit the need for a model
New signal requires a coherent physical explanation, 

even trivial or effective

Generalize your model
Construct simple models that describe classes of new physics which can be 
discovered at the LHC.

What are we good at discovering?   Resonances!

Model

Search strategySp
ec

ifi
c

G
en

er
al
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Is this being done?

W

Z
W’
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Is this being done?

W

Z
W’

mll = mZ

mjj = mW
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What about this?

W’
mll != mZ

mjj != mW
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Missed resonances?

Easy-to-find resonances 
may exist in our data and 

nobody has looked!
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Missed resonances?

Easy-to-find resonances 
may exist in our data and 

nobody has looked!
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Topological models
UCI Physics 247 

Final project
arXiv: 1401.1462
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Topological models
For a given final state (eg lljj) construct

all models with resonances. Then look for them!
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Connections to EFT, Simp. Models
M

as
s 

sc
al

e

Completeness

Simplified 
models

Effective
Operators

Full
Theories
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Connections to EFT, Simp. Models
M

as
s 

sc
al

e

Completeness

Topo 
models

Simplified 
models

Effective
Operators

Full
Theories
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Mono-Z’

mjj = mW or mZ mll = mZ 
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Mono-Z’

mjj = mW or mZ mll = mZ 
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What about other values?  



Mono-....

Z’

X1

X2

X1

Z’
Signature
Heavy resonance 
  + MET
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How to find NP

The data can tell us which hypothesis is preferred via a likelihood ratio:
  LSM+X             P(data | SM+X)
  LSM  P(data | SM)

Standard Model
SM+X
Collider Data

some feature

pr
ob

ab
ili
ty
 d

en
si
tyIsolate some

feature in which
two theories
SM, SM+X
can be best
distinguished.
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e.g.
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But...

fe
at
ur
e 

2

feature 1

Standard Model
XReality is more

complicated.

The full space can be
very high dimensional.

Calculating likelihood in
d-dimensional space
requires ~100d MC events.
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ML tools
fe
at
ur
e 

2

feature 1

Standard Model
X

Classifier output

de
ns

ity

Neural networks
can learn these 

shapes in high-dim
and summarize
in a 1D output
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Neural Networks
Essentially a functional fit with many parameters

...

...
Function

Each neuron’s output
is a function of the

weighted sum of inputs.

Goal
 find set of weights

which give most useful function

Learning
 give examples, back-propagate

 error to adjust weightsInput
Hidden

Output
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Neural Networks
Essentially a functional fit with many parameters

...

...
Problem:

Networks with > 1 layer are
very difficult to train.

Consequence:
Networks are not good

at learning non-linear functions.
(like invariant masses!)

In short:
Can’t just throw 4-vectors at NN.

Input
Hidden

Output
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Search for Input
ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too 
many inputs

Painstaking search 
through input 
feature space.
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Search for Input
ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too 
many inputs

Painstaking search 
through input 
feature space.

Also true for 

BDTs, SVNs,  etc
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Deep networks
...

...

Input
Hidden

Output

...

Hidden

...

Hidden

...

Hidden

New tools
let us 
train
deep 

networks.

How well
do they work?
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Real world applications
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Paper

arXiv: 1402.4735
In revision at Nature Comm.

71



Benchmark problem

Can deep networks
automatically discover
useful variables?

Signal

Background
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4-vector inputs

21 Low-level vars
jet+lepton mom. (3x5)

missing ET (2)
jet btags (4)

Not much
separation

visible in 1D 
projections
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4-vector inputs
7 High-level vars

m(WWbb)
m(Wbb)
m(bb)

m(bjj)
m(jj)
m(lv)
m(blv)
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4-vector inputs
7 High-level vars

m(WWbb)
m(Wbb)
m(bb)

m(bjj)
m(jj)
m(lv)
m(blv)
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4-vector inputs
7 High-level vars

m(WWbb)
m(Wbb)
m(bb)

m(bjj)
m(jj)
m(lv)
m(blv)
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        Standard NNs
Results
Adding hi-level 
 boosts performance
Better: lo+hi-level.

Conclude:
NN can’t find
    hi-level vars.

Hi-level vars
  do not have all info

77



Standard NNs
Results
Adding hi-level 
 boosts performance
Better: lo+hi-level.

Conclude:
NN can’t find
    hi-level vars.

Hi-level vars
  do not have all info

Also true for 

BDTs, SVNs,  etc
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Deep Networks
Results
Lo+hi = lo.

Conclude:
DN can find
    hi-level vars.

Hi-level vars
  do not have all info
  are unnecessary
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Deep Networks
Results
DN > NN

Conclude:
DN does better
 than human 
 assisted NN
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The AIs win
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Results

Identified example benchmark where traditional
 NNs fail to discover all discrimination power.

Adding human insight helps traditional NNs.

Deep networks succeed without human insight.
  Outperform human-boosted traditional NNs.
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Why?

DN not as
reliant on signal
features. Cuts into 
background space.
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2nd case: SUSY

84

Can 
Deep Networks

help us
find SUSY

in the data?



Low-level variables
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High-level variables

86

Axial-MET
Met-rel
MT2

Razor
Super-razor



SUSY results

87

DN doesn’t need help

Outperforms human
 assisted NN

Margin is smaller
  -> high level variables
     are less helpful
     and less needed!



Preliminary: h->tautau
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Preliminary: h->tautau

89



Preliminary: h->tautau
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Summary
Dark matter:
 broad-based attack on all LHC signals

Topological models:
 Strategy to build complete set of
 models with discoverable resonances

Deep networks:
 Networks can take 4-vectors, find powerful 
 discriminants
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