Very boosted Higgs in gluon fusion

Ennio Salvioni UC Davis

LHC Lunch October 30, 2013

based on work to appear with: C.Grojean, M.Schlaffer and A.Weiler

Introduction (of self)

- Undergraduate and Master's in Padova (Italy).
- Ph.D. formally granted from Padova, but have been at CERN almost all the time, advisor C.Grojean.

Research on pheno of composite Higgs models: Higgs physics, searches for resonances ('top partners', heavy vectors)

Introduction (of self)

- Undergraduate and Master's in Padova (Italy).
- Ph.D. formally granted from Padova, but have been at CERN almost all the time, advisor C.Grojean.

Research on pheno of composite Higgs models: Higgs physics, searches for resonances ('top partners', heavy vectors)

Highlight: celebrating the Higgs discovery

Course de la Marmite, Geneva, December 1st, 2012 (2nd prize for best group costume!)

Introduction of talk

Expect deviations in $hgg, h\gamma\gamma$ couplings

e.g. Low, Rattazzi, Vichi, 0907.5413, Arvanitaki and Villadoro, 1112.4835

Higgs production via gluon fusion

in terms of dimension-6 operators:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} \partial_\mu (H^{\dagger}H) \partial^\mu (H^{\dagger}H) + c_y \frac{y_t}{\Lambda^2} H^{\dagger}H \overline{q}_L \widetilde{H} t_R + \text{h.c.} + c_g \frac{\alpha_s}{12\pi\Lambda^2} H^{\dagger}H G^A_{\mu\nu} G^{\mu\nu A}$$

$$c_t = 1 - \left(\frac{c_H}{2} + c_y\right) \frac{v^2}{\Lambda^2}, \qquad k_g = c_g \frac{v^2}{\Lambda^2}$$

Higgs production via gluon fusion

$$\mu_{\rm incl} = \frac{\sigma(pp \to h)}{\sigma(pp \to h)_{\rm SM}} \simeq (c_t + k_g)^2$$

degeneracy between 'long-distance' and 'short-distance' contributions

In the SM:

$$\frac{m_{H}(\text{GeV})}{125} \frac{\frac{\sigma_{NLO}(m_{t})}{\sigma_{NLO}(m_{t}\to\infty)}}{1.061} \rightarrow \mathcal{M}_{m_{t}} \simeq \mathcal{M}_{\infty} \left(1 + \frac{7}{30} \frac{m_{h}^{2}}{4m_{t}^{2}}\right)$$
200 1.185

How to break the degeneracy in the future?

Look at Higgs production in association with tops:

Here I'll discuss another possibility: (very) boosted Higgs in gluon fusion

$$pp \to h+j$$

Very boosted Higgs in gluon fusion

Higgs recoiling against a large - p_T jet

Estimate of measurement

To break the degeneracy in (c_t, k_g) plane, **combine** measurements of inclusive and boosted rates

For boosted measurement, use ratio

$$\mathcal{R} = \frac{\sigma(p_T > 650 \,\mathrm{GeV})}{\sigma(p_T > 150 \,\mathrm{GeV})}$$

to reduce theory uncertainty (QCD-NLO corrections to Higgs $p_{\rm T}$ spectrum are not known for finite m_t)

Assume decay $h \rightarrow \tau \tau$, take efficiencies from 'ditau-jet tagging' analysis of Katz et al. (1011.4523), based on 'mutual isolation' of objects

$$\epsilon_{\rm tot} = {\rm BR}(h \to \tau \tau) \left(\sum_{i \in \tau_{\ell} \tau_{\ell}, \tau_{\ell} \tau_{h}, \tau_{h} \tau_{h}} {\rm BR}(\tau \tau \to i) \epsilon_{i} \right) \simeq 2 \times 10^{-2}$$

(only first estimate; detailed study in other channels is in progress)

Breaking the degeneracy

Combine measurements using simple procedure:

$$\chi^{2}(c_{t}, k_{g}) = \left(\frac{\mathcal{R}(c_{t}, k_{g}) - \mathcal{R}^{*}}{\delta \mathcal{R}}\right)^{2} + \left(\frac{\mu_{\text{incl}}(c_{t}, k_{g}) - \mu_{\text{incl}}^{*}}{\delta \mu_{\text{incl}}}\right)^{2}$$
assuming 10% syst uncertainty
on all measurements + stat uncertainty
on $N_{\text{events}}^{p_{T} > 650 \text{ GeV}}, N_{\text{events}}^{p_{T} > 150 \text{ GeV}}$

$$\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$$

$$\chi^{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$$

$$\mathcal{R} = \frac{\sigma(p_{T} > 650 \text{ GeV})}{\sigma(p_{T} > 150 \text{ GeV})}$$

$$\mu_{\text{incl}} = \frac{\sigma(p_{P} \rightarrow h + X)}{\sigma(p_{P} \rightarrow h + X)_{\text{SM}}} \simeq (c_{t} + k_{g})^{2}$$

$$\frac{0.3}{0.6}$$

$$\frac{1}{0.8}$$

$$\frac{1}{0.6}$$

Breaking the degeneracy /2

Explicit models

1) Higgs as a composite pseudo-Goldstone boson

2) Supersymmetry

Explicit models

1) Higgs as a composite pseudo-Goldstone boson

2) Supersymmetry

The Higgs as a composite p-NGB

- Differently from Technicolor, strong sector does not break EW symmetry directly, but delivers as NGB the Higgs doublet *H*. This in turn acquires a (radiative) potential, and breaks EW symmetry
- Higgs doublet *H* emerges as fully composite pNGB, while SM vectors and fermions are introduced as external, elementary fields.
- Vectors coupled to strong sector by gauging $SU(2)_L imes U(1)_Y \subset \mathcal{H}$

linear couplings to currents $\ {\cal L}^g_{UV} = g_{el} W^{el}_\mu J^\mu_{cmp}$

- Similarly for fermions: write $\mathcal{L}_{UV}^f = y_L \overline{q}_L \mathcal{O}$ with \mathcal{O} fermionic composite operator, and similarly for right-handed quarks Kaplan, 1991
- So all physical states are partially composite

The Higgs as a composite p-NGB/2

- SM fermion mass $m_f \sim g_\rho \frac{y_L}{g_\rho} \frac{y_R}{g_\rho} v$ for flavor-anarchic strong sector, light quarks mostly elementary; third generation sizably composite
- Partial compositeness gives an attractive flavor picture: "RS-GIM" mechanism, FCNC's suppressed by small mixings: $\left(\epsilon_{L,R} = \frac{y_{L,R}}{q_o}\right)$

(some tension remains, in particular in Kaon mixing)

Csaki, Falkowski and Weiler, 0804.1954

 $\sim \epsilon_L^i \epsilon_R^j \epsilon_L^k \epsilon_R^l \frac{g_\rho^2}{m_\rho^2} \left(\overline{f}_L^i f_R^j \overline{f}_L^k f_R^l \right) \,,$

- Only breaking of the global symmetry comes from couplings to elementary states one-loop Higgs potential, form essentially dictated by structure of linear mixings
- Naive expectation is $v \sim f \equiv m_{
 ho}/g_{
 ho}$; need mild tuning to obtain $v \ll f$, as required by the S parameter: $\hat{S} \sim m_W^2/m_{
 ho}^2$ $v^2/f^2 \sim 0.1$ is enough (tuning of ~10%)

A light Higgs wants light top partners

- Largest breaking of global symmetry associated with top quark
 Higgs potential typically dominated by
 loops of top + "top partners"
- Connection between Higgs mass and mass of resonances: e.g., for $\mathcal{G}/\mathcal{H} = SO(5)/SO(4)$ (MCHM) and $q_L, t_R \sim \mathbf{5} = \mathbf{4} \oplus \mathbf{1}$

$$\begin{split} m_h^2 \simeq \frac{N_c}{\pi^2} \frac{m_t^2}{f^2} \frac{m_1^2 m_4^2}{m_4^2 - m_1^2} \log \frac{m_4^2}{m_1^2} \\ \bullet \quad \text{For not too large } f \text{ (mild tuning),} \\ \text{at least one resonance multiplet} \end{split}$$

must be light

• Example: for $f\sim 800\,{
m GeV}$ find $m_{
m lightest}\lesssim 1.2\,{
m TeV}$

e.g. Matsedonskyi et al., 1204.6333; Pomarol et al., 1205.6434

Sketch of the expected spectrum

Loop-induced Higgs couplings

- Contribution of resonances to loop-induced couplings encoded by ops. of the form $H^{\dagger}HG^{A}_{\mu\nu}G^{\mu\nu}A$: break shift symmetry, extra-suppressed by powers of $g_{\rm SM}/g_{\rho}$. Giudice et al., hep-ph/0703164
- Naively, for light top partners ($g_
 ho \sim g_{
 m SM}$) effects should be important.
- However, it turns out that loops of resonances cancel out against corrections to $ht\bar{t}$ coupling Falkowski, 0711.0828; Lov Azatov & Galloway, 1110.5

Falkowski, 0711.0828; Low & Vichi, 1010.2753 Azatov & Galloway, 1110.5646

Insensitivity to top partners of inclusive rate

• The cancellation is general, and follows from partial compositeness structure:

where m_t^0 is the top mass

Azatov and Galloway, 2011

• In most viable models, m_t^0 generated by only one SO(4) invariant

 $\mathsf{MCHM}_{5} \qquad m_{t}^{0} \propto U_{Ii}(\hat{Q}_{t_{L}}^{\dagger})_{I}(\hat{Q}_{t_{R}})_{J}U_{Ji} \sim \sin 2h/f \Longrightarrow c_{t} + k_{g} = \frac{1-2\xi}{\sqrt{1-\xi}}$

Boosted Higgs resolves top partners

 C_l

Explicit models

1) Higgs as a composite pseudo-Goldstone boson

2) Supersymmetry

Supersymmetry

Top + stops give

$$\frac{\sigma(pp \to h)}{\sigma(pp \to h)_{\rm SM}} = (1 + \Delta_t)^2$$

$$\Delta_t \simeq \frac{m_t^2}{4} \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{(A_t - \mu/\tan\beta)^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right)$$

Supersymmetry /2

- Such light stops may or may not be excluded by direct LHC searches, depending on assumptions on spectra (e.g., neutralino mass)
- Still, it is interesting to ask whether boosted Higgs can be sensitive to light and mixed stops, independently of assumptions on decay

Point	$m_{\tilde{t}_1}$ [GeV]	$m_{\tilde{t}_2}$ [GeV]	$A_t \; [\text{GeV}]$	Δ_t
P_1	171	440	490	0.0026
P_2	192	1224	1220	0.013
P_3	259	1212	0	0.12
P_4	226	484	532	0.015

boosted Higgs breaks degeneracy

Conclusions

- Degeneracy between long-distance and short-distance contribution in inclusive Higgs production rate
- Boosted regime in gluon fusion can resolve the degeneracy. Interesting complement to 'standard' process $pp \rightarrow t\bar{t}h$
- We looked at $h \to \tau \tau$ decay channel just as a first estimate. Detailed study of phenomenology is in progress.
- Application is particularly interesting in models where the Higgs is a composite pseudo-Goldstone: inclusive rate is insensitive to resonances, boosted Higgs can resolve them
- Works also for light and mixed stops in SUSY.

'Ditau-jet' tagging

For $p_T = 650 \,\text{GeV}$, the taus have typical angular separation $\Delta R \sim 2m_h/p_T \sim 0.4$ single tau-tag fails

Introduce 'mutual isolation'.

For example, for **semi-leptonic** ditaus:

- find a lepton which fails isolation within $\Delta R = 0.4$ cone
- find hardest hadronic track inside cone
- draw small (0.07) tau-candidate cone around this track
- check if lepton passes isolation when removing the tau candidate (use only tracker + EM calo)
- if lepton passes, apply standard hadronic tau-tag, ignoring lepton for requirement of tau isolation.

Similarly for two hadronic taus.

Validity of EFT

Gluon fusion in the MCHM, summary

$$c_g^{(t)} = 1 - \Delta_g^{(t)}(y_r/y_{r'})\xi + \mathcal{O}(\xi^2)$$

$$y_r \equiv \sum_{i=1}^{n_r} \frac{F_{r(i)}^L F_{r(i)}^R}{M_{r(i)}}$$

$\mathcal{Q}_L \setminus \mathcal{Q}_R$	1	5	10	14
5	1/2	3/2	1/2	$\frac{5}{2} \frac{1 - \frac{24}{25} \frac{y_1}{y_4}}{1 - \frac{4}{5} \frac{y_1}{y_4}}$
10	X	1/2	3/2	3/2
14	3/2	$\frac{9}{2} \frac{1 - \frac{10}{9} \frac{y_1}{y_4}}{1 - 2 \frac{y_1}{y_4}}$	3/2	$\frac{11}{2} \frac{1 - \frac{64}{55} \frac{y_1}{y_4} - \frac{6}{11} \frac{y_9}{y_4}}{1 - \frac{8}{5} \frac{y_1}{y_4}}$

Montull, Riva, ES, Torre, 2013

Electroweak precision tests

Electroweak precision tests /2

<u>light blue:</u> region allowed assuming an extra $\Delta \widehat{T} = +10^{-3}$