Goldstone meets Higgs

© the LHC

Javi Serra

UC Davis Joint Theory Seminar, March 18, 2013

What does the recently discovered 125 GeV Higgs imply for models of strong dynamics?

... besides

$$
\mathcal{L}_{e f f}(\mu<\Lambda)
$$

$$
\begin{array}{ccc}
\mathcal{L}_{e f f}(\mu<\Lambda) & \\
\underline{\mathbf{d}<4} & \underline{\mathbf{d}=\mathbf{4}} & \underline{\mathbf{d}>\mathbf{4}} \\
\epsilon \Lambda^{2}|H|^{2} & \bar{\psi} \not D_{\mu} \psi & \frac{c_{i j}}{\Lambda} l_{i} H H \ell_{j} \\
F_{\mu \nu}^{2} / g^{2} & \frac{c_{i j k l}}{\Lambda^{2}} \bar{\psi}_{i} \psi_{j} \bar{\psi}_{k} \psi_{l} \\
Y_{i j} \bar{\psi}_{i} H \psi_{j} & \frac{1}{\Lambda^{2}} H^{\dagger} W_{\mu \nu} H B^{\mu \nu} \\
\lambda|H|^{4} & \vdots
\end{array}
$$

Nature seems to suggest the point-like limit of the SM:

$$
\begin{aligned}
& \Lambda \rightarrow M_{P l} \\
& \epsilon \rightarrow 10^{-34}
\end{aligned}
$$

it would be unprecedent!

Natural EFT

With an elementary scalar \& Quantum EFT:

$$
\Lambda \rightarrow M_{P l}
$$

With an elementary scalar \& Quantum EFT:

$$
\Lambda \rightarrow M_{P l}
$$

energy $\uparrow \frac{\Lambda}{\frac{\Lambda^{2}}{\frac{\mathbf{d}<4}{2}|H|^{2}}}$ No hierarchy is generated

$$
\Lambda \rightarrow M_{P l}
$$

- anthropic reasoning
- beyond EFT
- ???

Natural EFT with Symmetries and Dynamics

$$
\Lambda \sim \mathrm{TeV}
$$

a) Most dangerous operators can be protected by symmetries.
b) Dynamical mechanisms allow to split Higgs sector.

It is for Experiment to decide if there is New Physics at the TeV

$$
\Lambda_{U V} \gg \Lambda_{I R}
$$

Natural Hierarchy from Scale Invariance:

A) No strongly relevant operators: $\quad \mathcal{L} \supset \lambda \mathcal{O}, \quad[\mathcal{O}]=4-\epsilon$

$$
\begin{gathered}
\lambda(\mu)=\lambda_{0}\left(\frac{\Lambda_{U V}}{\mu}\right)^{\epsilon} \\
\lambda\left(\Lambda_{I R}\right) \sim 1, \Lambda_{I R} \sim \Lambda_{U V} \lambda_{0}^{1 / \epsilon}
\end{gathered}
$$

Dimensional Transmutation

Natural Hierarchy from Scale Invariance:

B) If relevant operators, protected by symmetry:

- Compositeness: $\quad H \sim\langle\psi \bar{\psi}\rangle$ the Higgs is composite fermion masses protected by Chiral sym. new states at $4 \pi v \sim 2 \mathrm{TeV}$
- Supersymmetry: $H \sim \psi$ the Higgs is chiral scalar masses protected by Chiral sym. new states at $g v \sim 100 \mathrm{GeV}$

- Supersymmetry: $H \sim \psi$ the Higgs is chiral
scalar masses protected by Chiral sym. new states at $g v \sim 100 \mathrm{GeV}$

The Strongly Coupled (Composite) Sector

The emergent picture of the Composite world:

Absence of physics beyond the SM:

Discovery of a 125 GeV Higgs:

Absence of physics beyond the SM:
Discovery of a 125 GeV Higgs:

$$
m_{h} \ll \Lambda_{I R}
$$

The Higgs doublet must be a (pseudo-)Goldstone boson of the new strong dynamics

Georgi, Kaplan '84 Arkani-Hamed, Cohen, Katz, Nelson '02
Banks '84 Agashe, Contino, Pomarol '04

$$
\text { E.g.: } \quad V(\phi) \simeq-m_{\rho}^{2} \phi^{2}+g_{\rho}^{2} \phi^{4}, \quad \phi=5 \in \mathrm{SO}(5)
$$

$$
\begin{aligned}
\langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
f
\end{array}\right), \quad f \sim \frac{m_{\rho}}{g_{\rho}} \longrightarrow & \mathrm{SO}(5) / \mathrm{SO}(4) \\
& 4 \mathrm{~GB} \prime \mathrm{~s}: H=\binom{h_{1}+i h_{2}}{h+i h_{3}} \\
& H \rightarrow H+\alpha \longrightarrow V_{\text {tree }}(H)=0
\end{aligned}
$$

$$
\text { E.g.: } \quad V(\phi) \simeq-m_{\rho}^{2} \phi^{2}+g_{\rho}^{2} \phi^{4}, \quad \phi=5 \in \mathrm{SO}(5)
$$

$$
\begin{aligned}
&\langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
f
\end{array}\right), \quad f \sim \frac{m_{\rho}}{g_{\rho}} \longrightarrow(5) / \mathrm{SO}(4) \\
& \text { 4 GB's: } H=\binom{h_{1}+i h_{2}}{h+i h_{3}} \\
& H \rightarrow H+\alpha \longrightarrow V_{\text {tree }}(H)=0
\end{aligned}
$$

Phenomenological requirements on $\mathcal{G} / \mathcal{H}$:
i) $\quad \mathcal{G} \supset \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \quad$ weakly gauged
ii) $\mathcal{H} \supset \mathrm{SO}(4) \cong \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \quad$ custodial symmetry
iii) $\mathcal{G} / \mathcal{H} \supset 4=(2,2) \quad$ Higgs doublet

Loops:

$$
V(H) \simeq 0+\xi \frac{g_{S M}^{2}}{16 \pi^{2}} m_{\rho}^{2}|H|^{2}+\frac{g_{S M}^{2}}{16 \pi^{2}} g_{\rho}^{2}|H|^{4}+O\left(H^{6}\right)
$$

$$
\langle h\rangle \sim \sqrt{\xi} \frac{m_{\rho}}{g_{\rho}}=\sqrt{\xi} f \lesssim v=246 \mathrm{GeV} \quad \xi=\frac{v^{2}}{f^{2}}=O(1)
$$

$$
\langle h\rangle \sim \sqrt{\xi} \frac{m_{\rho}}{g_{\rho}}=\sqrt{\xi} f \lesssim v=246 \mathrm{GeV} \quad \xi=\frac{v^{2}}{f^{2}}=O(1)
$$

Electroweak (Higgs) precision observables:

As in SUSY, the top is expected to give the largest contribution:

$$
m_{h}^{2} \sim \frac{N_{C} m_{t}^{2} m_{T}^{2}}{\pi^{2} f^{2}} \sim(125 \mathrm{GeV})^{2}\left(\frac{m_{T}}{700 \mathrm{GeV}}\right)^{2}\left(\frac{500 \mathrm{GeV}}{f}\right)^{2} \sim(125 \mathrm{GeV})^{2}\left(\frac{g_{T}}{1.5}\right)^{2}
$$

As in SUSY, the top is expected to give the largest contribution:

$m_{h}^{2} \sim \frac{N_{C} m_{t}^{2} m_{T}^{2}}{\pi^{2} f^{2}} \sim(125 \mathrm{GeV})^{2}\left(\frac{m_{T}}{700 \mathrm{GeV}}\right)^{2}\left(\frac{500 \mathrm{GeV}}{f}\right)^{2} \sim(125 \mathrm{GeV})^{2}\left(\frac{g_{T}}{1.5}\right)^{2}$
mass

Top-partners must be parametrically lighter
(approximate Chiral sym.)

Expected subleading contribution to the potential, but enter $\boldsymbol{W} \boldsymbol{W}$ scattering:

Bellazzini et al.'12
$m_{h}=125 \mathrm{GeV}, \Lambda=3,5 \mathrm{TeV}, a^{2}+3 / 4 a_{\rho}{ }^{2}=1$

However also contribute to \boldsymbol{S}-parameter:

$$
\begin{aligned}
& \text { ~~~ } \sim^{\rho} \sim \frac{m_{W}^{2}}{m_{\rho}^{2}} \\
& \hat{S} \lesssim 10^{-3} \rightarrow m_{\rho} \gtrsim 2.5 \mathrm{TeV}
\end{aligned}
$$

Bellazzini et al. '12

$$
\mathcal{L}_{\text {mixing }}=y \bar{\psi} \mathcal{O}_{\psi}
$$

$$
d\left[\mathcal{O}_{\psi}\right] \simeq 2+M_{\psi} \rightarrow y(\mu<f) \simeq y\left(\mu_{0}\right)\left(\frac{f}{\mu_{0}}\right)^{M_{\psi}-\frac{1}{2}}
$$

Contino, DaRold, Pomarol '07

Light top-partners byproduct of composite top (IR localized)

Deconstruction:

Redi, Tesi '12

"Weinberg Sum Rules":

as in QCD:
$\sum^{\gamma \gamma} \quad m_{\pi^{+}}^{2}-m_{\pi^{0}}^{2} \simeq \frac{3 \alpha}{2 \pi} m_{\rho}^{2} \log 2 \simeq(37 \mathrm{MeV})^{2}$
$\pi^{+} \sum_{---\pi^{+}}$Exp.: $(\mathbf{3 5} \mathbf{M e V})^{\mathbf{2}}$
in CH :

Pomarol, Riva '12

$$
V(h)=\frac{3 y_{t}^{2} m_{T}^{2}}{16 \pi^{2}}\left(a h^{2}+b h^{4} / f^{2}+\ldots\right)
$$

Instead of $a, b \sim O(1):$

$$
a \lesssim \begin{array}{cc}
\frac{m_{h} \text { tuning tuning }}{} & \underline{\left(\frac{500 \mathrm{GeV}}{m_{T}}\right)^{2}}
\end{array} \quad b \lesssim\left(\frac{2}{g_{T}}\right)^{2}
$$

$$
V(h)=\frac{3 y_{t}^{2} m_{T}^{2}}{16 \pi^{2}}\left(a h^{2}+b h^{4} / f^{2}+\ldots\right)
$$

Instead of $a, b \sim O(1):$

$$
a \lesssim\left(\frac{m_{h} \text { tuning }}{\substack{\text { ftuning } \\
m_{T}}} \begin{array}{cc}
)^{2} & b \lesssim\left(\frac{2}{g_{T}}\right)^{2}
\end{array}\right.
$$

but there are unknown factors and model dependence:

$$
\begin{array}{cc:c}
\mathcal{L}_{\text {mixing }}=y \bar{\psi} \mathcal{O}_{\psi} \\
\mathbf{r}\left(\mathcal{O}_{\psi}\right)=\mathbf{5}_{L}+\mathbf{5}_{R} \quad a \sim O\left(y_{t}^{2} / g_{T}^{2}\right), b \sim O\left(y_{t}^{4} / g_{T}^{4}\right) \\
\mathbf{r}\left(\mathcal{O}_{\psi}\right)=1 \mathbf{1 4}_{L}+\mathbf{1}_{R} \quad a, b \sim O\left(y_{t}^{2} / g_{T}^{2}\right)
\end{array}
$$

Electroweak Precision Tests:

$$
\Delta \hat{T} \gtrsim 10^{-3} \rightarrow m_{T} \lesssim 2 \mathrm{TeV}
$$

Flavor: $\quad \epsilon_{K}, B_{d, s}-\bar{B}_{d, s}, \ldots$

Pomarol, JS 08

Barbieri et al. ${ }^{\text {'12 }}$

	doublet	triplet	bidoublet
\oplus	4.9	1.7	$1.2 *$
$U(3)_{\mathrm{LC}}^{3}$	4.6	5.3	4.3
$U(3)_{\mathrm{RC}}^{3}$	-	-	3.3
$U(2)_{\mathrm{LC}}^{3}$	4.9	0.6	0.6
$U(2)_{\mathrm{RC}}^{3}$	-	-	$1.1 *$

$$
q=+\frac{5}{3},+\frac{2}{3} \quad \tau=+\frac{5}{3},+\frac{2}{3},-\frac{1}{3}
$$

Double production

Single production

Mrazek, Wulzer "1

same sign dileptons!

$$
q=+\frac{5}{3},+\frac{2}{3} \quad q=+\frac{5}{3},+\frac{2}{3},-\frac{1}{3}
$$

Double production

Single production

Mrazek, Wulzer "1
same sign dileptons!

G	H	N_{G}	NGBs rep.[H] $=$ rep.[SU(2) $\times \mathrm{SU}(2)]$
SO(5)	SO(4)	4	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$5=(1,1)+(2,2)$
SO(6)	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$4_{+2}+\overline{4}_{-2}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2 , 2})$
SO(7)	G_{2}	7	$7=(1,3)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$10_{0}=(3,1)+(1,3)+(2,2)$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
SU(5)	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}_{-5}+\overline{\mathbf{4}}_{+5}=2 \times(\mathbf{2 , 2})$
SU(5)	$\mathrm{SO}(5)$	14	$14=(3,3)+(2,2)+(1,1)$

Minimal Composite Higgs Model

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$5=(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}-\mathbf{2}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}_{\mathbf{0}}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}-5+\overline{\mathbf{4}}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

Beyond the Minimal Composite Higgs Model

Gripaios et al. '09
Galloway et al. '10
Interesting fact: Minimal coset from constituent fermions

$$
\left\langle\Psi_{\mathrm{a}} \Psi_{\mathrm{b}}\right\rangle \cong \mathrm{SU}(4) / \mathrm{Sp}(4) \rightarrow 5=4+1=(2,2)+(1,1)_{\text {extra singlet! }}
$$

$$
\mathrm{SO}(6) / \mathrm{SO}(5) \rightarrow H+\eta
$$

a) Mass of singlet very model dependent: $\mathrm{SO}(2)$ explicit breaking?
b) Discrete symmetry $\eta \rightarrow-\eta$ might be an exact symmetry.

Singlet could be DM!
Frigerio et al. "12

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2 , 2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2 , 2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$4_{+\mathbf{2}}+\overline{\mathbf{4}}-\mathbf{2}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$7=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0} 0=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}_{-5}+\overline{\mathbf{4}}+\mathbf{5}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

many more...

Simplest Solution: Agashe, Contino, Sundrum '05
 Frigerio, JS, Varagnolo '12

b) Composite R-handed top

$$
R \equiv\left(b_{1}-b_{2}\right) /\left(b_{2}-b_{3}\right) \simeq 1.45
$$

$$
\text { Exp.: } 1.395
$$

Add explicit breaking

$$
\begin{aligned}
& \mathcal{L} \supset \lambda \mathcal{O}, \quad[\mathcal{O}]=4-\epsilon \\
& \frac{d \lambda}{d \log \mu}=\beta(\lambda) \neq 0
\end{aligned} \rightarrow V(\chi)=\chi^{4} F(\lambda(\chi))
$$

F_{0} still matters for the dilaton mass

F at the minimum: $\quad F(\lambda)=F_{0}+\sum_{n} a_{n} \lambda(f)^{n}$
Minimization condition: $\quad V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0$
Dilaton mass: $\quad m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))$
F_{0} still matters for the dilaton mass
F at the minimum: $\quad F(\lambda)=F_{0}+\sum_{n} a_{n} \lambda(f)^{n}$
Minimization condition: $\quad V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0$
Dilaton mass: $\quad m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))$

QCD

"tuned" QCD

$$
\Delta \gtrsim 2 \Lambda / m_{d i l} \simeq 50\left(\frac{f}{246 \mathrm{GeV}}\right)
$$

loophole

$$
\begin{gathered}
\beta=\epsilon\left(\lambda+b \lambda^{2}+\ldots\right) \ll 1 \\
\lambda^{*}: F\left(\lambda^{*}\right) \sim O(\beta), V^{\prime}\left(\lambda^{*}\right)=0, m_{d}^{2} \sim O(\beta)
\end{gathered}
$$

Realizable in a warped extra-d:
not like Goldberger-Wise
Goldberger, Wise '99

Still one needs to accomplish: $v / f \simeq 1$

loophole

$$
\begin{gathered}
\beta=\epsilon\left(\lambda+b \lambda^{2}+\ldots\right) \ll 1 \\
\lambda^{*}: F\left(\lambda^{*}\right) \sim O(\beta), V^{\prime}\left(\lambda^{*}\right)=0, m_{d}^{2} \sim O(\beta)
\end{gathered}
$$

Realizable in a warped extra-d:
not like Goldberger-Wise
Goldberger, Wise '99

Still one needs to accomplish: $v / f \simeq 1$

Goldstone-Higgs couplings

© the LHC

More data on EWSB than ever!

$$
\begin{array}{r}
\mathcal{L}_{(0)}=\frac{h}{v}\left[c_{V}\left(2 m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}+m_{Z}^{2} Z_{\mu} Z^{\mu}\right)-c_{t} \sum_{f=u, c, t} m_{f} \bar{f} f-c_{b} \sum_{f=d, s, b} m_{f} \bar{f} f-c_{\tau} \sum_{f=e, \mu, \tau} m_{f} \bar{f} f\right] \\
\mathcal{L}_{(2)}=-\frac{h}{4 v}\left[2 c_{W W} W_{\mu \nu}^{\dagger} W^{\mu \nu}+c_{Z Z} Z_{\mu \nu} Z^{\mu \nu}+2 c_{Z \gamma} A_{\mu \nu} Z^{\mu \nu}+c_{\gamma \gamma} A_{\mu \nu} A^{\mu \nu}-c_{g g} G_{\mu \nu}^{a} G_{\mu \nu}^{a}\right] \\
c_{W W}=c_{\gamma \gamma}+\frac{g_{L}}{g_{Y}} c_{Z \gamma}, \quad c_{Z Z}=c_{\gamma \gamma}+\frac{g_{L}^{2}-g_{Y}^{2}}{g_{L} g_{Y}} c_{Z \gamma}
\end{array}
$$

Standard Model

$$
\begin{gathered}
c_{V}=c_{t}=c_{b}=c_{\tau}=1 \\
c_{\gamma \gamma}=c_{Z \gamma}=c_{g g}=0
\end{gathered}
$$

SO(5)/SO(4)

$$
\begin{gathered}
c_{V}=\sqrt{1-v^{2} / f^{2}} \\
c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} \\
c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}}
\end{gathered}
$$

dilaton

$$
\begin{gathered}
c_{V}=\frac{v}{f} \\
c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right)
\end{gathered}
$$

SO(5)/SO(4)

dilaton

$$
\begin{aligned}
c_{V}=\sqrt{1-v^{2} / f^{2}} & c_{V}=\frac{v}{f} \\
c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} & c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right.}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} & c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E)}\right. \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}} & c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right)
\end{aligned}
$$

SO(5)/SO(4)

dilaton

$$
\begin{array}{cc}
c_{V}=\sqrt{1-v^{2} / f^{2}} & c_{V}=\frac{v}{f} \\
c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} \\
c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} & c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}} & c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(1+b_{f}\right) \\
\left.c_{I R}^{(2)}-b_{U V}^{(2)}\right)
\end{array}
$$

SO(5)/SO(4)

dilaton

$$
\begin{array}{cc}
c_{V}=\sqrt{1-v^{2} / f^{2}} & c_{V}=\frac{v}{f} \\
c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} & c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} & c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
c_{Z \gamma} & \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}}
\end{array}
$$

SO(5)/SO(4)

dilaton

$$
\begin{aligned}
& c_{V}=\sqrt{1-v^{2} / f^{2}} \\
& c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} \\
& c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} \\
& c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \\
& \text { C } \\
& c_{V}=\frac{v}{f} \\
& c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
& c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right.}{16 \pi^{2}} \sqrt{\frac{v}{f}}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
& \text { suppression } \quad c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right) \\
& \text { (m.i.) }
\end{aligned}
$$

SO(5)/SO(4)

$$
c_{V}=\sqrt{1-v^{2} / f^{2}}
$$

$$
\begin{gathered}
c_{f}=\frac{1-(1+n) v^{2} / f^{2}}{\sqrt{1-v^{2} / f^{2}}} \\
c_{\gamma \gamma, g g} \sim \frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \underbrace{c_{Z \gamma}}_{\frac{y_{t}^{2}}{g_{\rho}^{2}}} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v^{2}}{f^{2}} \\
\begin{array}{c}
\text { Goldstone } \\
\text { suppression }
\end{array}
\end{gathered}
$$

dilaton

$$
\begin{gathered}
c_{V}=\frac{v}{f} \\
c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
c_{Z \gamma} \sim \frac{g^{2}}{18 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right) \\
\begin{array}{c}
\text { Scale } \\
\text { anomaly }
\end{array}
\end{gathered}
$$

EW precision tests \& Higgs couplings:

EW precision tests \& Higgs couplings:

SO(5)/SO(4)

Falkowsky, Riva, Urbano '13

EW precision tests \& Higgs couplings:

SO(6)/SO(5) $\quad h \rightarrow \eta \eta=\mathbb{E}_{T}$

EW precision tests \& Higgs couplings:

dilaton

h to photons from composite resonance:

h to photons from composite resonance:

h to photons from extra Goldstone's:

$$
\begin{aligned}
& m_{\Pi}^{2} \sim \frac{g_{\rho}^{2}}{16 \pi^{2}} g_{S M}^{2} f^{2} \quad \& g_{\Pi}^{2} \sim \frac{g_{\rho}^{2}}{16 \pi^{2}} g_{S M}^{2} \quad \rightarrow \quad c_{\gamma} \sim \tilde{c}_{\gamma} \frac{g_{\rho}^{2}}{g_{S M}^{2}}
\end{aligned}
$$

$$
\mathrm{SO}(8) / \mathrm{SO}(7) \cong \mathrm{SO}(7) / \mathrm{G}_{2} \quad \rightarrow \quad \mathbf{7}=(\mathbf{2}, \mathbf{2})+(\mathbf{3}, \mathbf{1})=H+\omega
$$

Sigma-model: $\quad \frac{f^{2}}{2} \partial_{\mu} \Sigma^{T} \partial^{\mu} \Sigma=\frac{f^{2}}{2}\left\{(\partial h)^{2}+(\partial \omega)^{2}+\frac{(h \partial h+\omega \partial \omega)^{2}}{1-h^{2}-\omega^{2}}\right\}$
Potential: $\quad V=m_{1}^{2} h^{2}+m_{2}^{2} \omega^{2}+\lambda_{1} h^{4}+\lambda_{2} \omega^{4}+\lambda_{3} h^{2} \omega^{2}$

$$
\mathrm{SO}(8) / \mathrm{SO}(7) \cong \mathrm{SO}(7) / \mathrm{G}_{2} \quad \rightarrow \quad 7=(\mathbf{2}, \mathbf{2})+(\mathbf{3}, \mathbf{1})=H+\omega
$$

Sigma-model: $\quad \frac{f^{2}}{2} \partial_{\mu} \Sigma^{T} \partial^{\mu} \Sigma=\frac{f^{2}}{2}\left\{(\partial h)^{2}+(\partial \omega)^{2}+\frac{(h \partial h+\omega \partial \omega)^{2}}{1-h^{2}-\omega^{2}}\right\}$
Potential: $\quad V=m_{1}^{2} h^{2}+m_{2}^{2} \omega^{2}+\lambda_{1} h^{4}+\lambda_{2} \omega^{4}+\lambda_{3} h^{2} \omega^{2}$

Nature has given us a light higgs for EWSB

\checkmark If a composite Higgs, the expectation is that it behaves as a Goldstone boson.
\checkmark A 125 GeV composite Higgs implies light and weakly coupled top resonances, with masses around the current bound 700 GeV .
\uparrow Light W and Z resonances are disfavored by EW precision data and Higgs couplings measurements.
\uparrow We have clear predictions for composite Higgs couplings (deviations), which we should look for.
\uparrow Extra Goldstone's might play an important role and deserve further study.

Thank you for your attention

