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The Effective Field Theory of the Standard Model                                                    .

d<4 d=4 d>4
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The Effective Field Theory of the Standard Model                                                    .
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Nature seems to suggest the point-like limit of the SM:
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Natural EFT                                                                                                                .

With an elementary scalar & Quantum EFT:

d<4

d=4

d>4
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Natural EFT                                                                                                                .

With an elementary scalar & Quantum EFT:

No hierarchy is generated

energy

d<4

d=4

d>4
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OK!

Unnatural EFT                                                                                                            .

?

I am tuning!

d=4

- anthropic reasoning
- beyond EFT
- ???
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Natural EFT with Symmetries and Dynamics                                                            .

d=4

a) Most dangerous operators can be protected by symmetries.
b) Dynamical mechanisms allow to split Higgs sector.

Fine, 
for now..

H is different!

It is for Experiment to decide if there is New Physics at the TeV
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The ElectroWeak Hierarchy                                                                                        .
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The ElectroWeak Hierarchy                                                                                        .
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B) If relevant operators, protected by symmetry:
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The ElectroWeak Hierarchy                                                                                        .
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Barbieri et al. ’04

Pomarol et al. ’12

The Strongly Coupled (Composite) Sector                                                                  .
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FIG. 1: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charmless

semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral meson systems,

and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK (γ). Taken from

[6].

follow this approach in Sect. V and VI in two well-motivated SM extensions. In this and the next

section we follow the second strategy, which is less predictive but also more general.

Assuming the new degrees to be heavier than SM fields, we can integrate them out and describe

NP effects by means of a generalization of the Fermi Theory. The SM Lagrangian becomes the

renormalizable part of a more general local Lagrangian which includes an infinite tower of operators

with dimension d > 4, constructed in terms of SM fields, suppressed by inverse powers of an effective

scale Λ > MW :

Leff = LSM +
∑ c(d)i

Λ(d−4)
O(d)

i (SM fields). (3.1)

This general bottom-up approach allows us to analyse all realistic extensions of the SM in terms of a

limited number of parameters (the coefficients of the higher-dimensional operators). The drawback

of this method is the impossibility to establish correlations of NP effects at low and high energies:

the scale Λ defines the cut-off of the effective theory. However, correlations among different low-

6
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Figure 15.2: Contours of 68% probability in the (gV!,gA!) plane from LEP and SLD measurements. The
solid contour results from a fit to the LEP and SLD results assuming lepton universality. The shaded
region corresponds to the Standard Model prediction for mt = 178.0±4.3 GeV and mH = 300+700

−186 GeV.
The arrows point in the direction of increasing values of mt and mH. Varying the hadronic vacuum

polarisation by ∆α(5)
had(m2

Z) = 0.02761 ± 0.00036 yields an additional uncertainty on the Standard
Model prediction indicated by the corresponding arrow.
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•
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W,Z

lepton

lepton
R. Barbieri et al. / Nuclear Physics B 703 (2004) 127–146 137

Fig. 2. Constraints on the form factors Y and W in models where these are the only new physics effects. We

separately show the impact of EWPT and of LEP2.

need to accurately diagonalize the full mass matrix and find all the eigenvectors, be this a

finite or an infinite-dimensional (Kaluza–Klein) problem. Instead it is often more efficient

to find a convenient set of interpolating fields for the light states and integrate out all the

others. It should be stressed that the fields we integrate out are also not exact mass eigen-

states in general, as they mix with the chosen interpolating fields. But this does not matter

as long as the mass matrix reduced to the fields we integrate out is nonsingular. When

fermions couple to vector bosons like in Eq. (2), taking W̄ , B̄ as the low-energy fields is

the most convenient choice. With this choice, new physics effects are fully parametrized by

vector boson vacuum polarizations. Using the freedom of choosing the appropriate fields

one can drastically simplify the computations and focus directly on the relevant quantities.

For example one immediately sees the equivalence of the 4-fermion interactions mediated

by heavy gauge bosons with a suitable “universal” effect.

5.1. Gauge bosons in 5 dimensions

As a first example we will consider a model where the SM gauge bosons propagate in

a flat extra dimension assumed to be a S1/Z2 orbifold of length L = πR (0 ! y ! L).

The SM fermions and the Higgs are assumed to be confined on the same 4-dimensional

boundary, say, at y = 0.

Previous analyses obtained the following low-energy effective Lagrangian that de-

scribes how heavy KK excitations affect the low-energy interactions of the SM fields:

(14)Leff = LSM − R2
π2

6

(
J a

µJ a
µ + JB

µ JB
µ + JG

µ JG
µ

) +O
(
R4

)
,
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Figure 6. The χ distributions for 520 < mjj < 800 GeV, 800 < mjj < 1200 GeV,
1200 < mjj < 1600 GeV, 1600 < mjj < 2000 GeV, and mjj > 2000 GeV. Shown are
the QCD predictions with systematic uncertainties (narrow bands), and data points
with statistical uncertainties. The dashed line is the prediction for a QBH signal
for MD = 3 TeV and n = 6 in the highest mass bin. The distributions and QCD
predictions have been offset by the amount shown in the legend to aid in visually
comparing the shapes in each mass bin.

In the absence of any evidence for signals associated with new physics phenomena,

these distributions are used to set 95% confidence level (C.L.) exclusion limits on a

number of new physics hypotheses.

6.3. Exclusion Limits from Likelihood Ratios

Most of the dijet angular distribution analyses described below use likelihood ratios

for comparing different hypotheses and parameter estimation. Confidence level limits

are set using the frequentist CLs+b approach [48]. As an example, for the Fχ(mjj)

distributions the variable Q is defined as follows:

Q = −2 [lnL (Fχ(mjj)|H0)− lnL (Fχ(mjj)|H1)] , (5)

where H0 is the null hypothesis (QCD only), H1 is a specific hypothesis for new

physics with fixed parameters and L(Fχ(mjj)|H) is the binned likelihood for the Fχ(mjj)

distribution assuming H as the hypothesis. Pseudo-experiments are used to determine

the expected distribution for Q for specific hypotheses. The new physics hypothesis is
then varied to calculate a Neyman confidence level.
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Figure 3: Excluded region in the W -Y plane by the mjj > 2 TeV ATLAS dijet analysis.

At large momenta as compared to the masses of the gauge bosons, these operators induce e⇥ective

four-fermion operators, equivalent to those arising from integrating out a very heavy copy of the

corresponding gauge boson. Therefore our dijet analysis can be conveniently used to put bounds

on these parameters. We show in Fig. 3 our results in the W -Y plane. Although bounds from LEP

[20] are still stronger, this analysis shows that LHC will be competitive when running at a higher

energy. Regarding the Z-parameter our analysis gives the strongest bound up to date:

� 3⇥ 10�3 � Z � 6⇥ 10�4. (24)

4.4 Bounds on new interactions for the AFB of the top

The recent discrepancy between the measured AFB of the top and its SM prediction [11, 12] has

boosted the search for BSM that could explain it. Dijet angular distributions can be useful to

constrain these models. As an example, we consider the proposal of Refs. [28, 29] where the

measured value of the top asymmetry was explained by the following new interaction:

Leff =
c(8)A

�2
O(8)

A =
c(8)A

�2
(ū TA�µ�5u)(t̄ TA�µ�

5t) . (25)

In terms of chirality eigenstates the operator O(8)
A reads

O(8)
A =(ūR�

µTAuR)(t̄R�µT
AtR)� (ūL�

µTAuL)(t̄R�µT
AtR)

� (ūR�
µTAuR)(t̄L�µT

AtL) + (ūL�
µTAuL)(t̄L�µT

AtL) . (26)
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p0 plots 

•  Full 2011 and 2012 statistics: 

% % γγ :  7.4 σ% % %  ΖΖ: 6.6 σ%

•  Previous combination% %
   γγ :  6.1 σ  ⊕  ΖΖ : 4.1 σ  =>  global : 7.0 σ%

   Present combination 
   γγ :  7.4 σ  ⊕  ΖΖ : 6.6 σ  =>  global : ?  (> 9 σ)%
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p0 plots 

•  Full 2011 and 2012 statistics: 

% % γγ :  7.4 σ% % %  ΖΖ: 6.6 σ%

•  Previous combination% %
   γγ :  6.1 σ  ⊕  ΖΖ : 4.1 σ  =>  global : 7.0 σ%

   Present combination 
   γγ :  7.4 σ  ⊕  ΖΖ : 6.6 σ  =>  global : ?  (> 9 σ)%
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Figure 12: In the plot on the left, we show the exclusion regions both from theoretical
considerations (the dashed contours) arising from constraining the model to remain unitary
up to the cuto↵ scale ⇤ = 3 TeV or ⇤ = 5 TeV, and from the CMS direct search constraints
(solid contours). Two extremes of compositeness for the third generation LH fermions are
considered. All fermions are presumed to be completely elementary for the first contour
(excluded region shaded light gray), and in the other, the third generation quarks are
taken to be purely composite (shaded dark gray) with fundamental 1st and 2nd generation
fermions. In the plot on the right, we superimpose the tuning required to satisfy constraints
on the S-parameter on the unitarity bound on m⇢ with ⇤ = 3 TeV, and on the collider
bounds when the 3rd generation left-handed fermions are completely composite.

with SM couplings, and the results are di�cult to interpret in terms of a generic resonance
search. While the ⇢0 is primarily produced via Drell-Yan, the SM Higgs is produced in
a combination of gluon and vector-boson-fusion, with VBF dominating in the high mass
region.

Additionally, if the third generation LH fermions are primarily composite, the ⇢0 may
couple strongly to t̄t and b̄b final states, although this coupling is model dependent. In
fact, as discussed in Section 2, the coupling of the ⇢3 to the composite top is suppressed in
the presence of a PLR symmetry. Since the ⇢0 is in the SU(2)C triplet, and RH composite
fermions are chosen to be singlets of this group, there are no large couplings of the ⇢0

to these composite degrees of freedom. Extensive searches have been performed for t̄t
resonances in the context of Z 0 models and in searches for Kaluza-Klein gluons, and these
can be used to place limits on the ⇢0 mass and couplings.
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with SM couplings, and the results are di�cult to interpret in terms of a generic resonance
search. While the ⇢0 is primarily produced via Drell-Yan, the SM Higgs is produced in
a combination of gluon and vector-boson-fusion, with VBF dominating in the high mass
region.

Additionally, if the third generation LH fermions are primarily composite, the ⇢0 may
couple strongly to t̄t and b̄b final states, although this coupling is model dependent. In
fact, as discussed in Section 2, the coupling of the ⇢3 to the composite top is suppressed in
the presence of a PLR symmetry. Since the ⇢0 is in the SU(2)C triplet, and RH composite
fermions are chosen to be singlets of this group, there are no large couplings of the ⇢0

to these composite degrees of freedom. Extensive searches have been performed for t̄t
resonances in the context of Z 0 models and in searches for Kaluza-Klein gluons, and these
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Ŝ ∼

m2
W

m2
ρ
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Figure 1: Masses of the two lightest fermion resonances for mh = 125GeV (taking ⇠ = 0.2 and mt = 160GeV (the
running top mass at ⇠ TeV)). In blue we plot the MCHM5 result; the solid line corresponds to Eq. (25) calculated
in the approximation ✏2 ⌧ 1, while the dashed line is the exact result (always �F 2 = 0). In solid red we plot the
result for the MCHM10 (✏2 ⌧ 1 and �F 2 = 0) with mQ1 ! mQ6 . The black solid line is for rL = 5 and rR = 1
(denoted MCHM5+1), fixing for illustration FL
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A very similar model to the MCHM5 is the MCHM10 [6], in which the left-handed and right-

handed top quarks are embedded into spurions in the 10 representation of SO(5). In this model

Eqs. (15)-(17) also hold, and � is given by 4

� = N
c

Z
d4p

(2⇡)4

"
|M t

1|2
8p2⇧tL

0 ⇧tR
0

+

✓
3⇧tL

1

4⇧tL
0

◆2

+

✓
⇧tR

1

4⇧tR
0

◆2
#
, (26)

where now m
t

= hs
h

c
h

i|M t

1(0)|/
q

16⇧tL
0 (0)⇧tR

0 (0) and the correlators are the same as Eq. (24) but

with the replacementQ1 ! Q6, since 10 = 4�6 under SO(4). For the Higgs mass we obtain Eq. (25)

with the replacement (�F 2)2 ! (�F 2)2 + |FL

Q4
FR

Q4
|2 where now �F 2 = (3|FL

Q4
|2 � |FR

Q4
|2)/2. In

4As in Ref. [6], we are not considering invariants formed by contracting the spurions with the Levi-Civita tensor
(see Appendix B). These invariants can be eliminated by imposing extra parities in the strong sector, along the lines
of the models in Ref. [11].
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Figure 1: Masses of fermionic partners as a function of the Higgs mass for f = 800 GeV in CHM5. The
six fermionic parameters are varied between 0.3 and 4 TeV and we require mixing elementary composite
�tL,tR/mT,T̃ < 3. The gauge contribution corresponds to f1 = f2 =

p
2f and g⇢ = 3. In the first plot

mass of the lightest fermionic partner as a function of the Higgs mass. In the second plot mass of the
fermionic excitations in the low mass region.

of the top Yukawa respectively [1]. The natural size of � is,

� ⇡ N
c

y2
t

16⇡2
f2⇤2 (7)

where ⇤ is the cut-o↵ entering the top loops physically represented by the fermionic resonances.
This is exactly reproduced in our model, see appendix B. From this the degree of tuningm2

h

/�m2
h

scales as v2/f2. This does not include a possible tuning on ↵.
The result of the scan is reported in Figs. 2. In the first figure we show the correlation of

the Higgs and the lightest fermionic resonances which in a large fraction of points is the doublet
of hypercharge 7/6 (the “custodian”), even though regions of parameters where the singlet is
the lightest state can be found. Splittings generated by electro-weak symmetry breaking are
neglected throughout. In the lower figure we zoom on the low Higgs mass region allowed by the
LHC and show the mass of the singlet, doublet and custodian fermions.

A comment is in order. The natural size ↵ is larger than � so tuning the electro-weak
VEV requires ↵ ⌧ ↵naive. This is often ascribed to a cancellation between the contributions
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Figure 7: Schematic representation of the properties of the three basic classes of composite-Higgs
models.

model with the 14 we expect light top partners in the 4, in the 1 and in the 9 of SO(4).
Alternatively, for similar tuning, one can also have models with heavy fermionic resonances
where the Higgs mass is tuned independently of the electro-weak VEV, we provided one
example based on the 14

L

and totally composite t
R

. This case is indicated in the upper
right corner of fig. 7. A model of this kind is rather di�cult to test directly at the LHC,
therefore if no top partners are found it might become the last corner where the Composite
Higgs scenario could hide.

Our results also have theoretical implications. If we insist on a moderate tuning we need
a separation among the mass scale of the fermonic and of the gauge resonances, and it is not
easy to imagine the origin of this separation. For examples in the models with a geometrical
origin, like the 5d holographic ones, the mass of the fermions is typically tied to the one of
the vectors since both originate from the compactification length of the space. Therefore
it is di�cult to describe the separation with 5d models, indeed in this paper we employed
non-geometrical 4d constructions where the fermonic and gauge masses are independent
parameters. However at the fundamental level the problem remains. “Normal” strongly-
coupled theories like QCD are characterized by a unique scale of confinement and all the
resonances (aside from the baryons in the large-N

c

limit) are expected to have comparable
masses. Moreover to obtain a light Higgs we are led to consider rather low masses, that
correspond to a weak fermonic coupling g

 

⇠ 1. Thus the interpretation of our models in
terms of a strongly-coupled dynamics could be improper. It would be interesting to identify
a possible UV-completion of these constructions.
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Constraints from EWPT & Flavor                                                                              .

doublet triplet bidoublet

! 4.9 1.7 1.2∗
U(3)3LC 4.6 5.3 4.3

U(3)3RC - - 3.3

U(2)3LC 4.9 0.6 0.6

U(2)3RC - - 1.1∗

Table 8: Minimal fermion resonance mass mψ in TeV compatible with all the bounds (except
for the QLR

S contribution to εK in the anarchic model), fixing O(1) parameters in
anarchy to 1 and assuming the parameter |rb| in U(2)3LC to be ∼ 0.2. The bounds
with a ∗ are obtained for a value of Y ≈ 2.5, that minimizes the flavour and EWPT
constraints consistently with mψ = Y f and f ! 0.5 TeV.

1 TeV level. This is also formally possible in U(2)3RC but requires xt " 0.3, i.e. Y ! 3, not
consistent with mψ = Y f and f ! 0.5 TeV.

7. Summary and Conclusions

After about two years of operation of the LHC and the remarkable discovery of a Higgs-like
particle of 125 GeV mass, the view of a natural Fermi scale is still under scrutiny, with three
different lines of investigation: the more precise measurements of the properties of the same
Higgs-like boson, the direct searches of new particles that are expected to accompany the Higgs
boson and several measurements in flavour physics. One way to implement a natural Fermi
scale is to make the Higgs particle, one or more, a pseudo-Goldstone boson of a new strong
interaction in the few TeV range. A meaningful question is then if and how a Higgs boson of
125 GeV mass fits into this picture, which requires spin-12 resonances, partners of the top, with
a semi-perturbative coupling to the strong sector and a mass not exceeding about 1 TeV.

Not the least difficulty in addressing this question is the variety of possible specific implemen-
tations of the Higgs-as-pseudo-Golsdtone-boson picture, especially with regard to the different
representations of the spin-12 resonances and the various ways to describe flavour. A further
problem is represented by the limited calculability of key observables in potentially complete
models, due to their strongly interacting nature.

To circumvent these difficulties, we have adopted some simple partial-compositeness La-
grangians and assumed that they catch the basic phenomenological properties of the theories
under consideration. This allows us to consider a grid of various possibilities, represented,
although at the risk of being too simplistic, in table 8, which tries to summarize all in one
go the content of the more detailed tables 2 to 7 discussed throughout the paper, taking into
account all constraints from flavour and EWPT. For any given case, this table estimates a
lowest possible value for the mass of the top partners. In the case of anarchy we are neglecting
the constraint coming from εK (first line of table 3, particularly problematic for the bidoublet
model, maybe accidentally suppressed) and the various O(1) factors that plague most of the
other flavour observables in table 3. In every case we also neglect the constraint coming from
one-loop chirality-breaking operators, relevant to direct CP violation both in the K and in the
D systems, as well as to the quark electric dipole moments. This is a subject that deserves
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

MT̃ = 2 (2.5)TeV, for L = 300 fb−1 and a value of the T̃ bW coupling equal to λT̃ = 1 (2).

Pair production of the heavy fermion with electric charge −1/3 (the heavy bottom B)

has also been recently considered in [20, 21].1 The process gg, qq̄ → BB̄ → W−tW+t̄ leads

to spectacular events with 4W ’s and two bottom quarks, though its observability into final

states with one charged lepton or two leptons with opposite charge is challenged by the

large tt̄ + jets SM background. To get rid of the latter, refs. [20] and [21] performed hard

cuts on the total effective mass respectively of the jets and of the entire event. Ref. [21]

also proposed the use of the single-jet invariant mass distribution as a strategy to further

isolate the signal events and reconstruct the hadronically decayed B. The basic idea is that

the top and the W originating from the decay of a very massive B are highly boosted, and

the quarks emitted in their hadronic decay will merge into a single jet with invariant mass

Mj close to mW or mt.

In this paper we want to study the pair production of the B and of its custodial partner

T5/3 proposing a different strategy to get rid of the tt̄ + jets background: looking at final

states with two same-sign leptons. Once pair produced, both the heavy bottom B and

the exotic T5/3 decay to W+W+W−W−bb̄, although with different spatial configurations

as dictated by their different electric charges, see figure 1. In the case of the T5/3 the

two same-sign leptons come from the decay of the same heavy fermion, allowing for a full

reconstruction of the hadronically-decaying T5/3, while in the case of the heavy bottom

they come from different B’s. Despite the fact that a full reconstruction of the B is not

possible, we still find that the same-sign dilepton channel is probably the most promising

one for its discovery.

In the next section we present a simple effective lagrangian for the top partners valid

at low energy. We then describe our Monte Carlo simulation (section 3), and define our

strategy (section 4). Sections 5 and 6 present our main analysis: first, we show the optimal

1See also [22] for an earlier study.
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Figure 1: Typical single and pair production diagrams for T
5/3

and B for signals with two positively
charged leptons. We notice that for T

5/3

the leptons always comes from its decay, while for B they
originate in two di↵erent legs.

and correspond, when going to the unitary gauge and making use of the Equivalence Theorem, to vertices
with the longitudinal EW bosons. From the Lagrangian above it is easy to see that only the B and the
T

5/3

partners will be visible in the final state we want to study, which contains two hard and separated
same–sign leptons; the pair and single production diagrams are shown in fig. 1.

The couplings �B = Y ⇤
t sin 't cos 'q = yt/ tan'q and �T = Y ⇤

t sin 't = yt/ sin 'q are potentially
large since Y ⇤

t is large, as we have discussed, and for sure �T � yt ' 1. But they will actually be
bigger in realistic models where the amount of compositeness of qL, sin'q, cannot be too large. The
bL couplings have indeed been measured with high precision and showed no deviations from the SM.
Large bL compositeness would have already been discovered, for instance in deviations of the ZbLbL

coupling from the SM prediction. Actually, eq. (3) already seems to imply a tension of the model since
it gives sin 't � Y ⇤

t /yt & 1/6 while corrections �gL/gL ⇠ sin 't
2 [11] are generically expected for partial

compositeness. The model we consider, i.e. the one of [8], solves this problem as it implements a “Custodial
Symmetry for ZbLbL” [22,23] which makes the correction reduce to �gL/gL ⇠ sin 't

2 (mZ/⇤)2. But still,
having not too big bL compositeness is favored. To be more quantitative let us assume sin'q < sin 't, i.e.
that qL is less composite than the tR. This implies sin'q <

p
(yt/Y ⇤

t ) and therefore �T >
p

(ytY ⇤
t ) & 2

and �B >
p

(ytY ⇤
t � y2

t ) &
p

3. We will therefore consider �T,B couplings which exceed 2 and use the
reference values of 2, 3, 4; smaller values for both couplings are not possible under the mild assumption
sin 'q < sin 't.

Our analysis, though performed in the specific model we have described, has a wide range of applica-
bility. The existence of the B partner is, first of all, a very general feature of the partial compositeness
scenario given that one partner with the SM quantum numbers of the bL must exist. Also, it interacts
with the tR as in eq. (4) due to the SU(2)L invariance of the proto–Yukawa term. The T

5/3

could on
the contrary not exist, this would be the case if for instance we had chosen representations Q = (2,1)

1/6

and eT = (1,2)
1/6

for the partners, or in the model of [11]. To account for these situations we will also
consider the possibility that only the B partner is present. 2 The existence of the T

5/3

is a consequence
of the ZbLbL–custodial symmetry, implemented as the requirement that the B partner has equal T 3

L and
T 3

R quantum number. This, plus the SO(4) invariance of the proto–Yukawa, implies that the T
5/3

must
exist and couple as in eq. (4). Our analysis, as we have remarked, can also apply to Higgsless scenarios
in both cases in which the custodian T

5/3

is present or not. The results could change quantitatively in
other specific models because for instance other partners can be present and contribute to the same–sign

2
In this case, our analysis perfectly applies to the model proposed in [11], where the tR is entirely composite, sin 't = 1,

and the coupling is large.
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the per mille level. This bound has strongly disfavored in the past Technicolor models and other

variants [11]. From the lagrangian of Eq. (11), we find a deviation from the SM Zb
L

b̄
L

coupling

given by
�g

bL

g
bL

=
(c(1)

L

+ c
(3)
L

)⇠

1� 2
3 sin2 ✓

W

. (18)

For c
(1),(3)
L

⇠ 1, as expected for a composite q
L

, Eq. (18) gives a large deviation, excluded by the

present LEP data. This strong bound, however, can be evaded in certain custodial BSM models. As

pointed out in Ref. [7], the custodial symmetry implemented with P
LR

(that interchanges L $ R)

can protect Zbb̄ from large deviations from its SM value. This occurs when the BSM field that

couples to b
L

has the following isospin-left and isospin-right charge assignments [7]:

T
L

= T
R

= 1/2 , T 3
L

= T 3
R

= �1/2 . (19)

In this case one finds, from integrating out the BSM sector, c
(1)
L

= �c
(3)
L

, and therefore no contribu-

tions to Eq. (18) are generated. The only e↵ect on Zbb̄ will arise from loops involving SM particles

(together with BSM states) that do not respect the custodial and P
LR

symmetry. We will comment

on these e↵ects later on.

Assuming that Eq. (19) is fulfilled, and that the operator Q̄
L

⌃T
R

must be allowed to give masses

to the SM fermions, we are left with only two possible charge assignments for the states Q and T

under SU(2)
L

⇥SU(2)
R

⇥U(1)
X

2:

Q T
Case (a) (2,2)2/3 (1,1)2/3

Case (b) (2,2)2/3 (1,3)2/3 + (3,1)2/3

(20)

In this article we will concentrate only on these two possibilities.

4.1 The bT parameter

With Zbb̄ under control at tree-level, the next important observable is the T -parameter. The

contribution to T arises from the higher-dimensional operator

c
T

2f 2
|H†D

µ

H|2 , bT = c
T

⇠ , (21)

where we follow the notation of Ref. [12] in which the T -parameter is rescaled: bT = ↵T ' T/129.

As we previously said, bT is zero at the tree-level by the custodial symmetry. Nevertheless, it can

2The extra global U(1)X symmetry of the BSM sector is needed to properly embed the hypercharge of the SM,
Y = T 3

R + X.
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

MT̃ = 2 (2.5)TeV, for L = 300 fb−1 and a value of the T̃ bW coupling equal to λT̃ = 1 (2).

Pair production of the heavy fermion with electric charge −1/3 (the heavy bottom B)

has also been recently considered in [20, 21].1 The process gg, qq̄ → BB̄ → W−tW+t̄ leads

to spectacular events with 4W ’s and two bottom quarks, though its observability into final

states with one charged lepton or two leptons with opposite charge is challenged by the

large tt̄ + jets SM background. To get rid of the latter, refs. [20] and [21] performed hard

cuts on the total effective mass respectively of the jets and of the entire event. Ref. [21]

also proposed the use of the single-jet invariant mass distribution as a strategy to further

isolate the signal events and reconstruct the hadronically decayed B. The basic idea is that

the top and the W originating from the decay of a very massive B are highly boosted, and

the quarks emitted in their hadronic decay will merge into a single jet with invariant mass

Mj close to mW or mt.

In this paper we want to study the pair production of the B and of its custodial partner

T5/3 proposing a different strategy to get rid of the tt̄ + jets background: looking at final

states with two same-sign leptons. Once pair produced, both the heavy bottom B and

the exotic T5/3 decay to W+W+W−W−bb̄, although with different spatial configurations

as dictated by their different electric charges, see figure 1. In the case of the T5/3 the

two same-sign leptons come from the decay of the same heavy fermion, allowing for a full

reconstruction of the hadronically-decaying T5/3, while in the case of the heavy bottom

they come from different B’s. Despite the fact that a full reconstruction of the B is not

possible, we still find that the same-sign dilepton channel is probably the most promising

one for its discovery.

In the next section we present a simple effective lagrangian for the top partners valid

at low energy. We then describe our Monte Carlo simulation (section 3), and define our

strategy (section 4). Sections 5 and 6 present our main analysis: first, we show the optimal

1See also [22] for an earlier study.
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and correspond, when going to the unitary gauge and making use of the Equivalence Theorem, to vertices
with the longitudinal EW bosons. From the Lagrangian above it is easy to see that only the B and the
T

5/3

partners will be visible in the final state we want to study, which contains two hard and separated
same–sign leptons; the pair and single production diagrams are shown in fig. 1.
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t sin 't = yt/ sin 'q are potentially
large since Y ⇤

t is large, as we have discussed, and for sure �T � yt ' 1. But they will actually be
bigger in realistic models where the amount of compositeness of qL, sin'q, cannot be too large. The
bL couplings have indeed been measured with high precision and showed no deviations from the SM.
Large bL compositeness would have already been discovered, for instance in deviations of the ZbLbL

coupling from the SM prediction. Actually, eq. (3) already seems to imply a tension of the model since
it gives sin 't � Y ⇤

t /yt & 1/6 while corrections �gL/gL ⇠ sin 't
2 [11] are generically expected for partial

compositeness. The model we consider, i.e. the one of [8], solves this problem as it implements a “Custodial
Symmetry for ZbLbL” [22,23] which makes the correction reduce to �gL/gL ⇠ sin 't

2 (mZ/⇤)2. But still,
having not too big bL compositeness is favored. To be more quantitative let us assume sin'q < sin 't, i.e.
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t ) and therefore �T >
p

(ytY ⇤
t ) & 2

and �B >
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3. We will therefore consider �T,B couplings which exceed 2 and use the
reference values of 2, 3, 4; smaller values for both couplings are not possible under the mild assumption
sin 'q < sin 't.

Our analysis, though performed in the specific model we have described, has a wide range of applica-
bility. The existence of the B partner is, first of all, a very general feature of the partial compositeness
scenario given that one partner with the SM quantum numbers of the bL must exist. Also, it interacts
with the tR as in eq. (4) due to the SU(2)L invariance of the proto–Yukawa term. The T

5/3

could on
the contrary not exist, this would be the case if for instance we had chosen representations Q = (2,1)

1/6

and eT = (1,2)
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for the partners, or in the model of [11]. To account for these situations we will also
consider the possibility that only the B partner is present. 2 The existence of the T
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is a consequence
of the ZbLbL–custodial symmetry, implemented as the requirement that the B partner has equal T 3

L and
T 3

R quantum number. This, plus the SO(4) invariance of the proto–Yukawa, implies that the T
5/3

must
exist and couple as in eq. (4). Our analysis, as we have remarked, can also apply to Higgsless scenarios
in both cases in which the custodian T

5/3

is present or not. The results could change quantitatively in
other specific models because for instance other partners can be present and contribute to the same–sign

2
In this case, our analysis perfectly applies to the model proposed in [11], where the tR is entirely composite, sin 't = 1,

and the coupling is large.
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the per mille level. This bound has strongly disfavored in the past Technicolor models and other

variants [11]. From the lagrangian of Eq. (11), we find a deviation from the SM Zb
L
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given by
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For c
(1),(3)
L

⇠ 1, as expected for a composite q
L

, Eq. (18) gives a large deviation, excluded by the

present LEP data. This strong bound, however, can be evaded in certain custodial BSM models. As

pointed out in Ref. [7], the custodial symmetry implemented with P
LR

(that interchanges L $ R)

can protect Zbb̄ from large deviations from its SM value. This occurs when the BSM field that

couples to b
L

has the following isospin-left and isospin-right charge assignments [7]:

T
L

= T
R

= 1/2 , T 3
L

= T 3
R

= �1/2 . (19)

In this case one finds, from integrating out the BSM sector, c
(1)
L

= �c
(3)
L

, and therefore no contribu-

tions to Eq. (18) are generated. The only e↵ect on Zbb̄ will arise from loops involving SM particles

(together with BSM states) that do not respect the custodial and P
LR

symmetry. We will comment

on these e↵ects later on.

Assuming that Eq. (19) is fulfilled, and that the operator Q̄
L

⌃T
R

must be allowed to give masses

to the SM fermions, we are left with only two possible charge assignments for the states Q and T

under SU(2)
L

⇥SU(2)
R

⇥U(1)
X

2:

Q T
Case (a) (2,2)2/3 (1,1)2/3

Case (b) (2,2)2/3 (1,3)2/3 + (3,1)2/3

(20)

In this article we will concentrate only on these two possibilities.

4.1 The bT parameter

With Zbb̄ under control at tree-level, the next important observable is the T -parameter. The

contribution to T arises from the higher-dimensional operator

c
T

2f 2
|H†D

µ

H|2 , bT = c
T

⇠ , (21)

where we follow the notation of Ref. [12] in which the T -parameter is rescaled: bT = ↵T ' T/129.

As we previously said, bT is zero at the tree-level by the custodial symmetry. Nevertheless, it can

2The extra global U(1)X symmetry of the BSM sector is needed to properly embed the hypercharge of the SM,
Y = T 3

R + X.
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composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4

+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G

2

7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5

+ 4̄
+5 = 2 ⇥ (2,2)

SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4
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composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4

+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G

2

7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5

+ 4̄
+5 = 2 ⇥ (2,2)

SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset
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Figure 6: The same as in Fig. 5, but with f = 1 TeV and with a comparison between two
scenarios for the top quark couplings: Case 1 (left panel) and Case 2 (right panel), as defined
at the end of section 2.

As discussed above, composite models prefer � . m2
⌘

/f 2 (the region below the yellow
dot-dashed line) that is compatible with the Higgs-resonance region for � . 0.003, and with
the region dominated by the derivative coupling, for � . 0.02. On the contrary, the cancel-
lation region is slightly disfavoured theoretically, even though � larger by a factor of a few is
su�cient to realize the cancellation.

• m
h

= 145 GeV, f = 500 GeV: DM candidate with m
⌘

. 10� 20GeV and m
⌘

' 60 GeV
In case the LHC excess at 125 GeV were not confirmed, the Higgs boson might be heavier,

as long as it decays invisibly with a su�cient rate to avoid the LHC bound. In order to
illustrate this possibility, in Fig. 7 we choose a representative value m

h

= 145 GeV, assuming
for definiteness f = 500 GeV and Case 2 (the results are very similar in Case 1).

The LHC bound is satisfied easily below the kinematical threshold for Higgs decays into
DM, m

⌘

< m
h

/2, in a region of parameters which is very much complementary to the one
allowed in Fig. 5. As a consequence, a light DM candidate with a mass m

⌘

. 10 GeV is
compatible with XENON100 and LHC. A light singlet with 10GeV . m

⌘

. 20GeV could
in principle explain the DAMA/CoGeNT/CRESST-II results (of course, in tension with the
XENON100 bound). However the value � . 0.3 required by the relic density is slightly
smaller than the one needed to fit the signal in these experiments: for larger �, ⌘ accounts
only for part of the DM relic density.

In any case, the large coupling � & 0.1, needed to explain the relic density when m
⌘

. 20
GeV, is in contradiction with theoretical expectations. Indeed, the singlet receives at least

16
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a) Mass of singlet very model dependent: SO(2) explicit breaking?

b) Discrete symmetry                 might be an exact symmetry.
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Singlet could be DM!
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composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4

+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G

2

7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5

+ 4̄
+5 = 2 ⇥ (2,2)

SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4
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F0 still matters for the dilaton mass
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then we understand that the fine tuning is tied to the dilaton mass, and further that it is
moderated by the marginality of the symmetry breaking coupling

� =
4⇡

�
⇠ 4✏

⇤2

m2
dil

. (5.11)

From this formula it appears that the fine-tuning can be reduced arbitrarily by taking ✏ ! 0,
however one should not forget that once ✏ is very small the next-to-leading term in (5.8) will
become the dominant source of the dilaton mass, replacing (5.10) with

m2
dil

⇤2
⇠ �

⇡
⇠ �2

4⇡2
(5.12)

so that � scales, at best, linearly8 with ⇤/mdil

� & 2⇤/mdil ' 50

✓

f

246GeV

◆✓

125GeV

mdil

◆

. (5.13)

From this discussion, in particular Eq. (5.12), one can again see that in technicolor theories,
where ✏ = 0 and � = g2 is required to become non-perturbative to generate a condensate,
mdil ⇠ ⇤.

Finally notice that if we define the perturbative coupling � at some scale M where the
strongly coupled theory is conformal then a large hierarchy of scales f ⌧ M is generated
because of the assumption that O is almost marginal

f ' M

✓ �4⇡c0
�(M)c1

◆1/✏

. (5.14)

In the next section we present a natural supersymmetric implementation of the mech-
anism outlined above for a naturally light dilaton. We will see that SUSY will ensure the
presence of a flat direction, which will be slightly broken by a non-perturbative e↵ect, giving
rise to a runaway direction a < 0, |a| ⌧ 1, which will then be stabilized by a small, tech-
nically natural almost-marginal deformation at f � ⇤s. SUSY plays a crucial role in all
aspects of the naturalness of the light dilaton in this model.

6 The 3-2 model: an illustrative SUSY example

A simple model that illustrates the general discussion related to the magnitude of the dilaton
mass is the well-known 3-2 model of dynamical supersymmetry breaking [52]. The model
is given by the following chiral superfield matter content under an SU(3) ⇥ SU(2) N = 1
supersymmetric gauge theory:

8We assumed that the leading symmetry breaking term c1 is not suppressed. In case instead c2 term
dominates over c1 the fine tuning scales as � = (4⇡/�)2 & (2⇤/mdil)

4/3.
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1 Introduction

2 Dilaton E↵ective Potential in Generalized holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d

5
x

p
g
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22
R+

1

2
g

MN
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M
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�� V (�)

◆
+

Z
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p
g0V0(�) +

Z
d
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g1V1(�).

(2.1)
of a bulk scalar field � coupled to gravity. Here 

2 is the 5D Newton constant, which is
related to 5D Planck scale via 

2 = 1
2M3

⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds

2 = e

�2A(y)
dx

2 � dy

2
. (2.2)

where e

�A(y) is the general warp factor. The AdS/CFT prescription gives the proper
identification between the extra dimensional coordinate and scale in a dual 4D CFT:

µ = A

0(y = 0)e�A(y) =
1

R

e

�A(y)
, (2.3)

where A

0(0) ⌘ k ⌘ 1/R is the curvature of the asymptotic AdS space.

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking
of conformality. In addition, we may or may not have a UV brane cutting o↵ the AdS
space providing a UV cuto↵ and introducing a dynamical 4D graviton into the theory. The

1

UV IR

Still one needs to accomplish:

Figure 1:
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−∞
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Current LHC data                                                                                                        .

Signal strength 
•  Parameter of interest : µ (global)     

        

⇒ µ = 1.43 ± 0.16 (stat) ± 0.14 (sys) 
     Council Dec 2012 µ = 1.35 ± 0.19 (stat) ± 0.15 (sys) 

•  Consistency tests 
–   global µ with SM: 3% 

•  11% with rectangular  
     QCD scale and parton dist functions  

–  5 µi with SM: 8% 
–  5 µi with 1.43: 32% 

•  µ, mH contours 
–  γγ%
–  4l 
–  combined 

7"Bruno Mansoulié (IRFU-CEA), Moriond-EW,  March 2013 

at mH = 125.5 

[124.5-126.5]: 
 µ ± 4% 

Production modes: VBF+VH / ggF +ttH 

•  µVBF+VH  versus µggF +ttH 

          includes Branching Ratio 

   (which might be different in each case) 

•  Ratio independent of B.R.:  
      can be combined 

=> µVBF+VH  / µggF +ttH = 0.9  +0.7
-0.4 

9"Bruno Mansoulié (IRFU-CEA), Moriond-EW,  March 2013 

Fermion versus Vector couplings 

•  Group couplings : κV = κW = κZ ;        κF = κt = κb= κτ  %

•  Assume: 
–   gg → H and H → γγ only through SM particles 
–  only SM particles contribute to decay   (relaxing this assumption => backup) 

                           sensitivity to relative sign:  
                           only from   
                           interference term in H → γγ%

–   compatibility with SM: 21% 

•  With these data, sensitivity to κF  is mostly 
 through top in loops. Will be better with ττ, bb… 

11"Bruno Mansoulié (IRFU-CEA), Moriond-EW,  March 2013 

Contributions from non-SM particles 

•  Assume all couplings to SM particles κi = 1 
•  Introduce effective κg, κγ , independent (allow additional contributions to loops) 

•  Assume no contributions to  
      the total width in undetected modes 
           (relaxing this assumption => backup) 

% κg = 1.1 +0.2
-0.3  ; κγ = 1.2 +0.3

-0.2 

        SM hypothesis : 18% 

13"Bruno Mansoulié (IRFU-CEA), Moriond-EW,  March 2013 

Signal'strengths'

New)results)are)compatible)
with)the)SM)Higgs)boson)

9"

New'updates'on'some'modes'
preliminary'with'full'2011+2012'data'

3/6/13" Mingshui"Chen"(UF)""

H"ZZ(0/1&jet)&&&&:)0.84+0.32
@0.26)

H"ZZ(dijet&tag):)1.22+0.84@0.57)

κV'and'κF'
•  Map"vectorial"and"

fermionic"couplings"into"
two"scale"factors,"κV"and"
κF"

•  H"(W&and&t&loops)"γγ#

#

#

23"

Data'consistent'with'(κV;'κF)=(1;'1)'

3/6/13" Mingshui"Chen"(UF)""

HCP)

Fit'for'CP7odd'contribu5on'
•  Perform&a&fit&for&the&fraction&fa3&of&a&CPSodd&

contribution&&in&the&observed&peak&

•  decays&of&state&0m
+&governed&by&the&A1&amplitude&

•  decays&of&state&0S&governed&by&A3&amplitude&

3/6/13" Mingshui"Chen"(UF)"" 35"

•  Take&separate&templates&for&SM&
Higgs&(A1)&and&0S&(A3)&states&and&fit&
the&data&for&the&ratio&between&the&
two&states&

•  Measurement&of&the&fa3fraction&
&&&&&&&&in&data:&fa3=)0.00+0.23

@0.00),)
&&&&&&&&or&equivalently&fa3)<&0.58&@&95%&CL&
)

(A2"contribuXon"assumed"to"be"0)"

Look'for'new'physics'in'loops'
•  New&particles&can&&
•  hide"in"the"loop8mediated"

couplings""
•  contribute"to"the"total"width"

•  Allow"total"width"to"scale"as"
1/(18BRBSM)"

"
&

24"3/6/13" Mingshui"Chen"(UF)""

No'sign'of'new'physics'

HCP)

More data on EWSB than ever!
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language, we shall refer to it as Higgs boson.

In this paper we assume that:

• Near 126 GeV there is a unique particle - a color-singlet neutral scalar with positive

parity.

• This scalar has naturally no flavor violating interactions with the SM fermions.

• Its interactions obey custodial symmetry under which h is a singlet.

With these assumptions, the lowest-order interaction Lagrangian takes the form:

L(0) =
h

v

"
cV

�
2m2

WW †
µW

µ +m2
ZZµZ

µ
�� ct

X

f=u,c,t

mf f̄f � cb
X

f=d,s,b

mf f̄f � c⌧
X

f=e,µ,⌧

mf f̄f

#
.

(2.2)

As a consequence of custodial symmetry, only one parameter cV controls the LO couplings to

both W and Z bosons; relaxing this would lead to quadratically divergent corrections to the

T parameter, and thus any departure from custodial symmetry is severely constrained at the

level of 1%, barring large fine-tuned cancellations. Furthermore, while we allow the couplings

to up-type quarks, down-type quarks, and leptons to be independent, we assume that within

each of these classes the coupling ratios are equal to the fermion mass ratio. Relaxing this

would generically lead to flavor-changing Higgs interactions in the mass eigenstate basis,

which are very constrained unless some underlying flavor principle is at work to suppress

these dangerous e↵ects.

At the NLO in the derivative expansion we include

L(2) = � h

4v

⇥
2cWWW †

µ⌫W
µ⌫ + cZZZµ⌫Z

µ⌫ + 2cZ�Aµ⌫Z
µ⌫ + c��Aµ⌫A

µ⌫ � cggG
a
µ⌫G

a
µ⌫

⇤
, (2.3)

where custodial symmetry imposes two further restrictions on the couplings (see Appendix A):

cWW = c�� +
gL
gY

cZ� , cZZ = c�� +
g2L � g2Y
gLgY

cZ� . (2.4)

where gL, gY are the SU(2)L ⇥ U(1)Y gauge couplings in the SM. Unlike in Eq. (2.2), the

terms in Eq. (2.3) are not the most general interactions terms at the 2-derivative level. In

particular, terms of the form hZµ@⌫Vµ⌫ or h@⌫Zµ@µZ⌫ are omitted because they lead, even

after imposing custodial symmetry, to quadratic divergences in the S parameter. A more
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f=d,s,b

mf f̄f � c⌧
X

f=e,µ,⌧

mf f̄f

#
.

(2.2)

As a consequence of custodial symmetry, only one parameter cV controls the LO couplings to

both W and Z bosons; relaxing this would lead to quadratically divergent corrections to the

T parameter, and thus any departure from custodial symmetry is severely constrained at the

level of 1%, barring large fine-tuned cancellations. Furthermore, while we allow the couplings

to up-type quarks, down-type quarks, and leptons to be independent, we assume that within

each of these classes the coupling ratios are equal to the fermion mass ratio. Relaxing this

would generically lead to flavor-changing Higgs interactions in the mass eigenstate basis,

which are very constrained unless some underlying flavor principle is at work to suppress

these dangerous e↵ects.

At the NLO in the derivative expansion we include

L(2) = � h

4v

⇥
2cWWW †

µ⌫W
µ⌫ + cZZZµ⌫Z

µ⌫ + 2cZ�Aµ⌫Z
µ⌫ + c��Aµ⌫A

µ⌫ � cggG
a
µ⌫G

a
µ⌫

⇤
, (2.3)

where custodial symmetry imposes two further restrictions on the couplings (see Appendix A):

cWW = c�� +
gL
gY

cZ� , cZZ = c�� +
g2L � g2Y
gLgY

cZ� . (2.4)

where gL, gY are the SU(2)L ⇥ U(1)Y gauge couplings in the SM. Unlike in Eq. (2.2), the

terms in Eq. (2.3) are not the most general interactions terms at the 2-derivative level. In

particular, terms of the form hZµ@⌫Vµ⌫ or h@⌫Zµ@µZ⌫ are omitted because they lead, even

after imposing custodial symmetry, to quadratic divergences in the S parameter. A more
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Figure 3: Left: The 68% (darker green) and 95% (lighter green) CL best fit regions in the

cV -cf paramater space. The yellow regions are fits without the electroweak data. The color

bands are the 1� regions by the preferred by the Higgs data in the �� (purple), V V (blue),

⌧⌧ (brown), and bb (mauve) channels. Right: Fit to the parameter ✏ = v/f in sample

composite Higgs models with (black) and without (gray) including electroweak precision

data. The di↵erent lines correspond to the SO(5)/SO(4) coset and fermionic representations

with m = 0 and n = 0 (thick), n = 1 (solid) and n = 2 (dashed).

included. That is true in spite of the fact that the electeroweak observables are not sensitive

to cf at one loop; simply, they prefer cV somewhat above 1 which is more consistent with the

SM island. In the right panel of Fig. 3 we show the bounds on the compositeness scale for a

number of composite Higgs models based with the SO(5)/SO(4) coset. Quite independently

of the model, the data push the compositeness scale f above 1.5 TeV at 95% CL.

5.4 Invisible Width

In the last of our studies we are going beyond our e↵ective Lagrangian and also allow Higgs

decays to invisible particles. Searches for such decays are strongly motivated by the so-called

Higgs portal models of dark matter. Furthermore, given the small Higgs width in the SM,

�H,SM ⇠ 10�5mH , a significant invisible width �H,inv ⇠ �H,SM may easily arise even from

small couplings of the Higgs to weakly interacting new physics. If the Higgs coupling to the

SM matter take the SM value then the invisble width leads to a universal reduction of the

14
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Figure 1: Left: ��2 for as a function of cV for a fit to the Higgs (dashed blue), electroweak

(dashed red), and combined (solid black) data, after marginalizing over the remaining pa-

rameters of the e↵ective theory. The orange and purple lines visualize the 68% and 95% CL

range of cV . Right: Fit of c�� and cZ� to electroweak data when cV is fixed to the SM value.

The 68% (darker green) and 95% CL (lighter green) allowed regions are displayed. In both

plots ⇤ = 3 TeV.

⇤ = 1 TeV, and cV 2 [0.96, 1.16] for ⇤ = 10 TeV. The NLO order couplings c�� and cZ�

are generically constrained at the level of 0.1 as well, but for c�� ⇡ �cZ� these two coupling

are allowed to take O(1) values. We will see in the following that LHC Higgs data impose

a much stronger bound on c��, while the electroweak constraints on cZ� are competitive to

those from the LHC.

4 Higgs Rates

In this section we summarize how the LHC Higgs observables depend on the parameters of

our e↵ective Lagrangian. As customary, we present the results in the form of rates in various

channels relative to the SM ones.

6
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rates in all visible channels. That possibility is already quite constrained, given that we do

see the Higgs produced with roughly the SM rate. The left panel of Fig. 4 shows ��2 as

a function of the invisible branching fraction. Invisible branching fraction larger than 12%

is excluded at 95% CL. The bounds can be relaxed if new physics modifies also the Higgs

couplings such that the Higgs production cross section is enhanced. An example of such

set-up is plotted in the right panel of Fig. 4, where we show the allowed region assuming

the invisible Higgs branching fraction and, simultaneously, a non-zero p4 coupling to gluons.

Even in this more general case Brinv larger 30 % is excluded at 95% CL. The indirect limits

on the invisible width are in most cases much stronger than the direct ones from the ATLAS

Z + h ! inv. search and from monojet searches.
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Figure 4: Left: Fit for the Higgs with the SM-size couplings to the SM matter and an invisible branching

fraction to hidden sector new physics states. Right: 68% CL (light green) and 95% CL (dark green) best fit

regions to the combined LHC Higgs data in the model. The color bands are the 1� regions by the preferred

by the Higgs data in the �� (purple), V V (blue), ⌧⌧ (brown), and bb (mauve) channels. The meshed regions

are excluded by direct probes of the invisble Higgs width: the ATLAS Z + h ! inv. search (red) [26], and

monojet constraints (black) [27].

6 Conclusions

In this paper we updated the experimental constraints on the parameters of the Higgs e↵ec-
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⇤ = 1 TeV, and cV 2 [0.96, 1.16] for ⇤ = 10 TeV. The NLO order couplings c�� and cZ�

are generically constrained at the level of 0.1 as well, but for c�� ⇡ �cZ� these two coupling

are allowed to take O(1) values. We will see in the following that LHC Higgs data impose

a much stronger bound on c��, while the electroweak constraints on cZ� are competitive to

those from the LHC.

4 Higgs Rates

In this section we summarize how the LHC Higgs observables depend on the parameters of

our e↵ective Lagrangian. As customary, we present the results in the form of rates in various

channels relative to the SM ones.
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There is already an extensive literature on constraints for the coe�cients in Eq. (4.1) obtained
by fitting the Rij’s. The current errors on these are large, however strong correlations among
the actual multi-dimensional fit parameters are obscured if one considers only the limits on
individual coe�cients. For this reason, in this section we directly compare the results of
our theoretical predictions with the experimental values of the rates [38]. It is useful to
present the scaling of the di↵erent Rij with the dilaton parameters, that is v/f and the

anomalous dimensions �i, b
(J )
eff . The total decay rate of the dilaton compared to the SM can

be approximated (if the deviations of the couplings are small) by

|Ctot|2 =
�tot,�

�tot,SM

' v2

f 2

"

BRWW,SM + BRZZ,SM + (1 + �b)BRbb,SM +
(b(3)eff )

2

(b(3)t )2
BRgg,SM

#

⌘ v2

f 2
C2 . (4.18)

With this we can compute the rates as R ' (��)/(��)SM ⇥ |Ctot|�2, and one obtains for the
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Summary                                                                                                                      .

✦ If a composite Higgs, the expectation is that it behaves as a Goldstone 
boson.

✦ A 125 GeV composite Higgs implies light and weakly coupled top 
resonances, with masses around the current bound 700 GeV.

✦ Light W and Z resonances are disfavored by EW precision data and Higgs 
couplings measurements.

✦ We have clear predictions for composite Higgs couplings (deviations), 
which we should look for.

✦ Extra Goldstone’s might play an important role and deserve further study.

Nature has given us a light higgs for EWSB
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Thank you for your attention
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