Search for neutrinoless double-beta decay with EXO

Igor Ostrovskiy Stanford University

Outline

- Introduction
 - Neutrino
 - Double beta decay
 - Enriched Xenon Observatory (EXO)
- EXO-200
 - Detector design
 - Data analysis
 - Physics results
- Next steps

Introduction: Neutrino

- From neutrino oscillation experiments we know that neutrino has a non-zero mass. We have measured relative mass-squared differences of different states
 - But what about absolute mass values?
 - How do different states align (normal, inverted hierarchy)?
 - What is the origin of mass term (Dirac, Majorana)?

From Wikipedia

Introduction: Double beta decay

- Two-neutrino mode is a Standard model process
 - though extremely rare, already observed for several isotopes
- Neutrino-less mode violates lepton
 number conservation
 - can only happen if neutrinos are massive Majorana particles
 - provides information about absolute mass scale
 - has never been observed*

^{*} a controversial discovery claim exists by a sub-group of Heidelberg-Moscow collaboration [H.V. Klapdor-Kleingrothaus and I.V. Krivosheina Mod. Phys. Lett., A21 (2006) 1547]

Introduction: Experimental signature

Illustration from P.Vogel, arXiv:hep-ph/0611243, Assumes 2% resolution and 1e2 (1e6 in insert) ratio of 2nu/0nu

- In the two-neutrino mode electrons have to share energy with undetectable neutrinos
 - A calculable, but broad and featureless spectrum
- In the neutrinoless mode, a monoenergetic peak is expected at Qvalue
 - Good energy resolution is essential
 - Large Q-value is preferred

Introduction: From half-life to mass

- Observing a peak at Q value gives estimate of half-life (our job!)
- The half-life is then related to the effective Majorana mass through
 - Reliably calculable phasespace factor
 - Strongly model-dependent matrix element

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

$$\langle m_{\beta\beta} \rangle = |\Sigma_i| U_{ei}|^2 e^{i\alpha(i)} m_i|$$

Introduction: The two hierarchies

 Cosmology limits sum of neutrino masses to <~0.5 eV

Hannestad, Prog.Part.Nucl.Phys, 65 (2010)185

 Heidelberg-Moscow limits effective Majorana mass to <~0.3 eV

Introduction: Some pursued options

$\beta\beta$ -decay	$G^{0 u}$	Q	nat. abund.	experiments
	$[10^{-14} \mathrm{y}^{-1}]$	[keV]	[%]	
$^{48}\mathrm{Ca} ightarrow ^{48}\mathrm{Ti}$	6.3	4273.7	0.187	CANDLES
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.63	2039.1	7.8	GERDA, Majorana
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.7	2995.5	9.2	SuperNEMO, Lucifer
$^{100}\mathrm{Mo} ightarrow ^{100}\mathrm{Ru}$	4.4	3035.0	9.6	MOON, AMoRe
$^{116}\mathrm{Cd} \rightarrow {}^{116}\mathrm{Sn}$	4.6	2809	7.6	Cobra
$^{130}\mathrm{Te} ightarrow ^{130}\mathrm{Xe}$	4.1	2530.3	34.5	CUORE
$^{136}\mathrm{Xe} ightarrow ^{136}\mathrm{Ba}$	4.3	2461.9	8.9	EXO, KamLAND-Zen, NEXT, XMASS
$^{150}\mathrm{Nd} ightarrow ^{150}\mathrm{Sm}$	19.2	3367.3	5.6	SNO+, DCBA/MTD

Bilenky, Giunti, arXiv:1203.5250

Introduction: Enriched Xenon Laboratory

- A multistage program to search for neutrinoless double beta-decay of Xe-136
- Xenon is a good candidate for bb0n search
 - Can serve as both source and detector
 - Q-value larger than energy of gammas from most natural radionuclides
 - Relatively easy to enrich in Xe-136 isotope
 - No need to grow high-purity crystals, continuous purification is possible, more easily scalable
 - No long-lived cosmogenically activated isotopes
 - Final state (Ba-136 ion) can, in principle, be tagged, greatly reducing backgrounds

EXO-200

- First stage of the experiment
- 200 kg of Xe enriched to 80.6% Xe-136 total procured
 - 175 kg in liquid phase inside a cylindrical Time Projection Chamber
 - 98.5 kg current fiducial mass
- Located at 1585 m.w.e. in the Waste Isolation Plant near Carlsbad, NM
 - Muon rate reduced to the order of 10⁻⁷ Hz /cm² /sr
 - Salt has inherently lower levels of U/Th, compared to rock
- Carefully selected radioactively clean materials used in construction, rigorous cleaning procedures, the detector installation is inside class 1000 clean room
 - Goal of 40 counts/2yrs in 2-sigma 0nu energy window (assuming 140 kg LXe, 1.6% resolution)
 - M. Auger et al., JINST 7 (2012) P05010 and D.S. Leonard et al., NIM A 591 (2008) 490

EXO-200: TPC

- Common cathode + Two Anodes
 - 376 V/cm drift field
- Each half records both charge and scintillation information with
 - 38 U (charge collection) + 38 V (charge induction) triplet wire channels, crossed at 60 degrees
 - Wire pitch 3 mm (9 mm / channel)
 - Photo-etched Phosphor bronze
 - 234 large area avalanche photo-diodes, in groups of 7 (178 nm Xe light)
 - Copper support plane with Au (AI) plating for contact (reflection)
- Teflon reflectors
- Copper field shaping rings
- Acrylic supports
- Flexible bias/readout cables: copper on kapton, no glue

Copper vessel 1.37 mm thick Copper conduits (6) for: •APD bias and readout cables •U+V wires bias and readout •LXe supply and return Epoxy feedthroughs at cold and warm doors Dedicated HV bias line

warm

EXO-200: Detector

Muon veto

•50 mm thick plastic scintillator panels
•surrounding TPC on four sides.
•95.5 ± 0.6 % efficiency
Veto cuts (8.6% combined dead time)

• 25 ms after muon veto hit

ESSINGTON

- 60 s after muon track in TPC
- 1 s after every TPC event

EXO-200: Calibration system

- A guide-tube to allow insertion of miniature radioactive calibration sources
- Several positions in cathode and anode planes and several sources to map out the detector response
 - Th-228
 - Co-60
 - Cs-137
- Frequent calibrations with most important Th-228 (2.6 MeV peak close to end-point energy) for purity, stability of energy scale, other corrections

I.Ostrovskiy, UC Davis, January 2013

I.Ostrovskiy, UC Davis, January 2013

EXO-200: Milestones

- Late 2010
 - Engineering run with natural Xe
- May 2011 July 2011 Run 1 "two-neutrino Run"
 - First run with enriched Xe
 - First successful measurement of two-neutrino double beta decay in Xe-136
 - 5.4 kg*yr exposure (4.4 kg Xe-136)
 - N. Ackerman et al., Phys. Rev. Lett. 107 (2011) 212501
- August 2011 September 2011
 - Installation of final lead shielding
 - Electronics and other upgrades
- October 2011 March 2012 "Run 2"
 - 32.6 kg*yr exposure (26.3 kg Xe-136)

EXO-200: Event Reconstruction

- Identify signals on individual U, V wires, summed APDs signals using matched filters
- Fit by waveform templates to determine time, amplitude in both charge and light channels
- Apply channel dependent correction for wire gain
- Combine U and V signals in one or more charge clusters (single- vs. multi-site events) based on time and U position, associate with nearest preceding scintillation signal
 - U and V coordinate, together with time since scintillation pulse, provide 3D coordinate of an event
 - Can distinguish clusters ~6 mm in z dimension, ~18 mm in u dimension
- Apply position dependent corrections
 - for light collection and APD gain inhomogeneity
 - for charge loss due to finite xenon purity
 - shielding grid inefficiency

I.Ostrovskiy, UC Davis, January 2013

EXO-200: Xenon purity

Xenon gas is circulated through a heated zirconium getter using a custom-built ultra-clean pump[†].

EXO-200: light correction

- Use full absorption peak of 2615 keV gamma from Th-228 to map light response in TPC
- Linearly interpolate between 1352 voxels

EXO-200: Anti-correlation

- Good energy resolution is essential for successful Onu search
- It is known that charge and light production in liquid Xe are anticorrelated
 - E. Conti et al. Phys.Rev.B 68 (2003) 054201

EXO-200: Energy/resolution calibration

- Energy calibration residuals are less than 0.1% with quadratic calibration
- Energy resolution in the rotated space is 1.67% (1.84%) for single (multi) site events

EXO-200: Generating prediction for signal/backgrounds

- We will fit the data by probability density functions (PDFs) describing shape of the signal and various expected background components
- We employ a combination of MC and data driven approaches
 - Use Geant4 to simulate true energy depositions given source/position
 - Pass through digitization / reconstruction algorithms to perform single- vs. multi-site assignment
 - Perform a Gaussian convolution of the true MC energy with energy-dependent resolution function, measured from the data

EXO-200: Source agreement

- To validate our ability to accurately describe data using PDFs, we use calibration sources to quantify
 - Shape agreement
 - Deemed compatible by χ², KS tests
 - Rate agreement
 - 9.4% maximum deviation from measured source activities (used as systematic)
 - Single-site fraction agreement
 - 8.5% maximum deviation with source data (used as systematic)

EXO-200: Source agreement

- To validate our ability to accurately describe data using PDFs, we use calibration sources to quantify
 - Shape agreement
 - Deemed compatible by χ^2 , KS tests
 - Rate agreement
 - 9.4% maximum deviation from measured source activities (used as systematic)
 - Single-site fraction agreement
 - 8.5% maximum deviation with source data (used as systematic)

EXO-200: Final data analysis cuts

- Veto cuts (8.6% total dead-time)
 - 60 s after muon track in TPC to avoid muon-induced activity
 - 25 ms after muon veto hit (possible shoulderclippers)
 - 1 s after every TPC events to exclude coincidences, e.g. Bi-Po
- "Diagonal" cut to remove events with large light/charge ratio (alphas and events with imperfect charge collection)
- Keep events with all 3 coordinates reconstructed
- 700 keV low energy cut (trigger fully efficient)
- Fiducial cut
 - 5 mm from cathode, 10 mm from anodes, 2 cm standoff from Teflon reflector
- 71% total efficiency for 0nu
 - Estimated by MC and verified by comparing 2nu to the data over broad range of energies

EXO-200: Final data analysis cuts

- Veto cuts (8.6% total dead-time)
 - 60 s after muon track in TPC to avoid muon-induced activity
 - 25 ms after muon veto hit (possible shoulderclippers)
 - 1 s after every TPC events to exclude coincidences, e.g. Bi-Po
- "Diagonal" cut to remove events with large light/charge ratio (alphas and events with imperfect charge collection)
- Keep events with all 3 coordinates reconstructed
- 700 keV low energy cut (trigger fully efficient)
- Fiducial cut
 - 5 mm from cathode, 10 mm from anodes, 2 cm standoff from Teflon reflector
- 71% total efficiency for 0nu
 - Estimated by MC and verified by comparing 2nu to the data over broad range of energies

EXO-200: Onu analysis final fit

- Binned maximum likelihood fit to 0nu, 2nu, and various backgrounds PDFs
- Simultaneous fit to SS and MS spectra
 - SS fractions float with 8.5% constraint
- Rn in LXe and in air gap between cryostat/led wall float with constraints by dedicated studies
- Calibration offset/resolution parameters float, constrained by corresponding error/matrix
- Slightly different energy scales for betas/gammas used, as preferred by dedicated profile likelihood tests
 - Live-time: 120.7 days
 - Active mass: 98.5 kg (79.4 Xe-136)
 - Exposure: 32.5 kg*yr

EXO-200: Region of interest

- No signal found
- Background from the fit in 1 sigma ROI:
 - 1.5·10⁻³ ± 0.1 /kg /yr /keV
- Upper limit with profile likelihood
 method
 - $T_{1/2} 0\nu\beta\beta > 1.6 \cdot 10^{25} \text{ yr } @90\% \text{ C.L}$
 - $< m_{\beta\beta} > < 140-380 \text{ meV}$

90% C.L. limit compared with Recent Xe-136 constraints (KamLAND-ZEN) >2.5 factor improvement.

EXO-200 contradicts Klapdor claim at the 90% C.L. for most matrix element calculations.

I.Ostrovskiy, UC Davis, January 2013

What's next?

- Basically, doubled the dataset
- Will continue to run with EXO-200 for few more years
- Further improvements in the works
 - New radon purge in the air gap between lead shield and cryostat
 - Possible further improvements to resolution, reconstruction efficiency
 - Incorporate position-dependency in PDFs additional handle on backgrounds
- R&D for the next generation of EXO (nEXO) has started
 - A multi-ton TPC
 - Initially, without Ba-tagging

University of Alabama, Tuscaloosa AL, USA - D. Auty, M. Hughes, A. Piepke, K. Pushkin, M. Volk

University of Bern, Switzerland - M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier, M. Weber

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - A. Coppens, M. Dunford, K. Graham, C. Hägemann, C. Hargrove, F. Leonard, C. Oullet, E. Rollin, D. Sinclair, V. Strickland

Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, T. Walton

Drexel University, Philadelphia PA, USA - M.J. Dolinski

University of Illinois, Urbana-Champaign IL, USA - D. Beck, J. Walton, M. Tarka, L. Yang

IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, L. Wen, Y. Zhao

Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, M. Lodato, C. Mackeen, K. Malone, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, K. Fouts, R. Herbst, S. Herrin, J. Hodgson, A. Johnson, R. MacLellan, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen, J. Wodin

Stanford University, Stanford CA, USA - P.S. Barbeau, J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, M. Montero-Díez, D. Moore, I. Ostrovskiy, K. O'Sullivan, A. Rivas, A. Sabourov, D. Tosi, K. Twelker

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

Rn in liquid Xe

Bi-214 rate is consistent with a steady state source of radon in the system (no radon trap installed)

 $360 \pm 65 \ \mu Bq/kg$ in fiducial volume

I.Ostrovskiy, UC Davis, January 2013

- 31 live-days of data
- 63 kg active mass
- Signal / Background ratio 10:1

T_{1/2} = 2.11·10²¹ yr (± 0.04 stat) yr (± 0.21 sys)

N. Ackerman et al., Phys. Rev. Lett. 107 (2011) 212501

Run 1 source agreement

I.Ostrovskiy, UC Davis, January 2013

Introduction: Neutrino mass scale

I.Ostrovskiy, UC Davis, January 2013

References for nuclear matrix elements:

RQRPA (Renormalized Quasiparticle Random Phase Approximation): from Table II, column 6, Simkovic *et al.*, Phys. Rev.C**79**, 055501 (2009). For 150Nd D.L. Fang, ArXiv:1009.5260

NSM (Nuclear Shell Model): J. Menendez *et al.*, Nucl. Phys.**A818**, 139 (2009).

IBM-2 (Interacting Boson Model -2): J. Barea and F. lachell, Phys. Rev. C**79**, 044301 (2009) and private communication.

PHFB (Projected Hartree-Fock Bogoljubov): K. Chatuverdi *et al.,* Phys. Rev. C**78**, 054302 (2008).

EDF (Energy Density Functional): T. R. Rodriguez and G. Martinez-Pinedo, ArXiv:1008.5260

Phase space factors for the $0\nu\beta\beta$ decay from F. Boehm and P. Vogel, Vogel, 9/2010 Physics of Massive Neutrinos, Table 6.1

(slide from L.Kaufman, Physics in Collision 2012)

Sensitivity

Given our estimated background, we expect a 90% CL on T1/2 of 1.6×10^{25} years or better 6.5% of the time.

We would quote a 90% CL upper limit of $7x10^{24}$ years or better 50% of the time

- Measured 2nu rate does not change with choice of fiducial volume
- Rates of backgrounds gammas are less deeper inside the detector