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Higgs sector
(strongly coupled)

ΛUV

mh

ΛIR ∼ mρ

The UV - IR hierarchy is generated by 
dimensional transmutation.

A light scalar can be accidentally present 
(light dilaton) or related by symmetry to the 
longitudinal W and Z (PGB Higgs).

Higgs compositeness as a solution
En

er
gy



Two objections

No sign of compositeness so far
First things we expect to see in weakly coupled models are new particles. Not in this case: heavy 
physics but strongly coupled. Indirect signals should come first. Cure: model building + fine-tuning

No compelling single model
Can be a virtue as it forces to understand generic features first.



Couplings of SM fields break global symmetry G and generate a potential for H which 
determines the vacuum of the theory.

Higgs sector

(strongly coupled)

SM gauge bosons

SM fermions

g

λ

Transverse gauge fields and light fermions are external to the strongly interacting sector.



Jargon

, ∼ gρ

coupling to vector resonances

,

composite “Yukawa”
(can be naturally smaller due to chiral symmetries)

∼ gΨ

f : sigma-model scale, expansion parameter for Higgs (goldstones) self interactions F

�
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Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⊂ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ∼= SU(2) × SU(2) symmetry, H ⊃ SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2)× SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) × SO(2) 8 4+2 + 4̄−2 = 2× (2,2)
SO(7) SO(6) 6 6 = 2× (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) × SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3× (2,2)
Sp(6) Sp(4) × SU(2) 8 (4,2) = 2× (2,2), (2,2) + 2× (2,1)
SU(5) SU(4) × U(1) 8 4−5 + 4̄+5 = 2× (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) � SU(2)L × SU(2)R are reported. For Sp(6)/SU(2) × Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G → H → H
� etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) → SO(5) → SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

by Goldstone symmetry

Unitarity (compact cosets)

Custodial symmetry
+

Mrazek et al ’11

The strong dynamics breaks some global symmetry of the UV theory delivering a 
set of Goldstone fields

mh � ΛIR
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai

are SO(4)
�/SO(3) generators. Considering that ||Φ|| = 1 implies

φ4 ≤ 1, and that in the vacuum �φ4� = sin θ, it is convenient to define φ4(x) ≡ sin(θ+h(x)/f).

Hence,

Φ =




sin(θ + h(x)/f) eiχ

i(x)Ai/v





0

0

0
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cos(θ + h(x)/f)




. (12)

By construction, the three χi
are the fields eaten after the SU(2)L×U(1)Y external gauging

is turned on, while h, which parametrizes SO(4)
�
-invariant fluctuations around the vacuum θ,

remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.

By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four

NG bosons of SO(5)/SO(4), πâ
, and the ‘physical’ degrees of freedom, χi

, h:

sin(θ + h(x)/f) χ̂i
(x) sin(χ(x)/v) = π̂i

(x) sin(π(x)/f), i = 1, 2, 3

cos(θ + h(x)/f) = cos(π(x)/f) cos θ − π̂4
(x) sin(π(x)/f) sin θ ,

(13)

where χ ≡
�
(χi)2, χ̂i ≡ χi/χ.

In realistic models, the value of θ is dynamically determined, and the breaking of the

electroweak symmetry can be seen as the result of a vacuum misalignment. Another point

of view, however, is possible and sometimes useful. If all the explicit breaking of the global

SO(5) comes from the SU(2)L × U(1)Y external gauging and from the couplings of other

elementary fields (in particular the SM fermions), then at tree level the orientation of the
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).
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sin θ = 0 : unbroken EW

: technicolor limit

The misalignment angle is determined dynamically
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≈ 1

G-breaking interactions (top mass,...)

unless fine tuning 

unless complicated model building (see little Higgs models)

Small v/f (large f) decouples new physics and allow to live with the bounds from EW 
physics
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Figure 8: Logarithmically divergent contributions to S (left diagrams) and T (right dia-

grams) from loops of would-be NG Goldstones χ’s (upper row) and of the Higgs boson (lower

row). In the SM the Higgs divergent contribution exactly matches that from the χ’s to give

a finite result. At scales below mh, the upper left diagram contributes to the running of the

coefficient of the operator Tr
�
Σ†WµνΣBµν

�
, see eq.(32). Similarly, the upper right diagram

contributes to the running of the coefficient of
�
Tr

�
T 3Σ†DµΣ

��2
. See Ref. [18].

which leads to a constraint on the mass of the lightest spin-1 resonance mρ.
11

Concerning ∆ρ (or equivalently the Peskin-Takeuchi T parameter), the tree-level

correction due to the exchange of heavy spin-1 resonances identically vanishes in the

SO(5)/SO(4) model as a consequence of the custodial symmetry of the strong sector.

In fact, the absence of this otherwise large correction to ∆ρ is the main reason to

consider this symmetry breaking pattern instead of more minimal ones (like for example

SU(3) → SU(2) × U(1), see Ref.[43]), where no custodial symmetry is present. Non-

vanishing corrections to ∆ρ will follow in general from loops of heavy fermions and

vectors. We do not discuss these effects here, referring to the literature [44–46] for

more details.

There is another important correction to both the S and T parameters, calculable

within the low-energy effective theory, that follows from the modified couplings of the

composite Higgs to the SM gauge bosons, see eq.(56). In the Standard Model the

1-loop contribution of the Higgs boson to the vector self energy exactly cancels the

logarithmic divergence arising from loops of would-be NG bosons χa
(see for example

Ref. [18]). The relevant diagrams are shown in Fig. 8. The cancellation follows from the

11
Notice that resumming the effect of the whole tower of resonances, without assuming vector

meson dominance, will in general make the bound stronger. For example, the calculation of S in the

5-dimensional models of Refs. [34, 35] leads to a formula analogous to eq.(99) where the coefficient

1.36 is replaced by 2.08, see [34].
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∆Ŝ : ∝ v2

f2

⇒ Ŝ ∼ m2
W

mρ
∼ g2

g2ρ

v2

f2

The bound on xi cannot be relaxed assuming the existence of non-oblique NP contribution to the Zbb 
vertex (curing AFB and Rb anomalies)



Higgs sector

(strongly coupled)

SM gauge bosons

SM fermions?



Yukawa

Flavor violation

plain small N technicolor: f = v, gρ ∼ 4π, mρ ∼ 4πv

4π
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4πv
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� 1
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OH = ΨΨ

dH ∼ 3 ⇒ ΛF ≈ 10TeV

ysyd(ΛF )

Λ2
F

(scd)2
dH ∼ 3 ⇒ Λeff ≈ 104 TeV

still too small

Caveat emptor...

Q

U

OH

You could in principle cure the flavor problem 
with very large f: requires too much tuning.

Luty, Okui (’04) but also Rattazzi, Rychkov, Tonni, Vichi 
(’08) ...



One way out: partial compositeness

Maybe ad hoc d = 5/2 decouples the UV flavor problem completely without 
reintroducing a hierarchy problem. d > 5/2 explains Yukawa hierarchies.

: measures the mixing between elementary and composite states.� ≡ λ/gΨ *

(weak gauging of a global symmetry of the strong sector automatically implement PC in the gauge sector)*

Q OQ

Kaplan ’91

λQ QOQ + λU UOU

λ = λUV

�
ΛIR
ΛUV

�5/2−dO

λ

⇒ yt ∼ λQλU

gΨ
≡ gΨ�Q�U



Flavor violation at the IR scale is controlled by the mixing selection rules (differs from FN, to 
be thought as a non compact U(1))

∆F = 2
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Davidson, Isidori, Uhlig ’07
...

Keren-Zur, Lodone, DP, Rattazzi, Vecchi ’12

mΨ � 2TeV 1
�2R

3
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The constraints are much worse in the lepton sector

BR(µ → eγ) < 2.4× 10−12 ⇒ mρ � 150TeV gρ
4π

(with a choice of the mixings which minimizes the constraints)

In general one may want to give up complete explanation of the 
flavor structure and assume the existence of appropriate flavor 

symmetries.

MFV, U(2)3 . . .



MFV and PC

Bounds can be relaxed below the TeV with LHComp and more elaborated 
flavor structures: U(2)xU(2)xU(2).

U(3) symmetry in the strong sector broken by right-handed mixing. Realizes MFV.
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j
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ijD
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j
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Barbieri, Isidori, DP ’09
Redi, Weiler ’11

Barbieri, Buttazzo, Sala, Straub, Tesi ’13

No FCNC (but assume CP)

quark compositeness:

quark-lepton universality: mΨ > 5TeV 1
�R
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U(3)xU(3) symmetry in the strong sector broken by left-handed mixing. Realizes MFV.

epsK:

quark compositeness:

mΨ > 1TeV 1
�2R

3
gΨ

mΨ > 11TeV�2R
gΨ
3



The Higgs potential and tuning



The potential is dominated by the top quark sector.
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Figure 1.7: Graphical representation of some of the contributions in eq. (1.3.9) to the

composite Higgs potential due to the coupling of the strong sector to the elementary fields.

resulting structure is

V (π) = V (1 loop)(π/f) + V (2 loop)(π/f) + . . . = (1.3.9)

= f 2m2
ρ

� gρ
4π

�2 �
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2 (π/f) + . . .

�
+

+ f 2m2
ρ

� gρ
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�4 �
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1 (π/f) + . . .
�
.

� denotes a generic ratio gSM/gρ, representing the amount of compositeness of the
various SM fields9. Notice that � enters only quadratically. This is obvious for
gauge couplings and will be made clear for fermions below. Even before any other
calculation we see where a source of tuning is. As V (π) is a function of π/f the
generic expectation for �π� is f . Some amount of cancellation will be required in
order to get a hierarchy between v and f .

Regarding the coupling of the SM fermions to the strong sector the only one
which are relevant for the potential are those involving the qL = (tL, bL) doublet
and the tR as they are responsible for the top Yukawa coupling. Notice in particular

9
We are invoking partial compositeness only for the fermions, but we are implicitly making

the same hypothesis also for the transverse polarizations of the SM gauge bosons. Since we are

gauging flavor currents of the strong sector the coupling of the elementary gauge bosons to it is

only through

AµO
µ
J (1.3.10)

where OJ
is a dimension 3 conserved current of the strong sector. This hidden assumption is a

natural one to make as LEP has tested the elementary nature of the transverse gauge boson with

great precision.
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The explicit form of the trigonometric invariants is fixed by symmetry (for the normalization 
you need a complete model)

q̄αL (λL)αI O
I
L + t̄R (λR)I O

I
R

All that matter are the SO(5) representations of OL and OR
(This choice also determines Higgs-fermion couplings)



The potential is dominated by the top quark sector.
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Natural EWSB requires light top partners.

Light Higgs requires them to be not too strongly coupled.



EW vector resonances

2− 3TeV

Fermionic resonances

Top partners
0.7− 1TeV

A non generic spectrum (~ SUSY) gΨ < gρ



Extra dimensional realizations

EW vector resonances

2− 3TeV
Fermionic resonances

Top partners

gΨ ∼ gρ

Agashe, Contino, Pomarol
...

DP,  Torre, Thamm ’13



Is it possible to study the resonances which are typical of composite Higgs models (EW 
resonances, heavy gluons, top partners) avoiding to pick a specific model?

Ψ

Ψ�

Ψ

Allows to develop a quantitatively valid EFT description of the lowest lying resonance (quantum 
numbers, few couplings).

∆m � mΨ

The light state is lighter because more weakly coupled gΨ < gΨ�

Makes it possible to have a lighter resonance without lowering the cutoff.
(“Partial UV completion”)

Contino, Marzocca, DP, Rattazzi ’11 (Effect of 
vector resonances on WW scattering)

In the limit                     still have a valid qualitative description.∆m ∼ mΨ

NO

YES



Application to the study of top partners
De Simone, Matsedonskyi, Rattazzi, Wulzer  ’13

Assumptions: PGB higgs + partial compositeness + fully composite R-handed top

Inputs: SO(5) quantum numbers of the operator mixing with L-handed top
SO(4) quantum numbers of the light state
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Figure 11: Maxmal and minimal bounds on the masses of top partners for y ∈ [0.3, 3], c1 ∈ [0.3, 3] and
ξ ∈ [0.1, 0.3] for the models M45, M15 (left pannel) and M414, M114 (right pannel). Blue and green bars
correspond respectively to high and low values of y. Black dashed lines correspond to the exclusions for the
reference values ξ = 0.1, c1 = 1, y = 1.

5 Conclusions

In this paper we described an approach to systematically construct the low-energy effective la-

grangian for the lighest colored fermion multiplet related to the UV completion of the top quark

sector: the top partner. Our construction is based on robust assumptions, as concerns symmetries,

and on plausible assumptions, as concerns the dynamics. Our basic dynamical assumption, follow-

ing Ref. [4], is that the electroweak symmetry breaking sector, or at least the fermionic sector, is

broadly decribed by a coupling g∗ and a mass scale m∗. This assumption implies a well definite

power counting rule. In particular the derivative expansion is controlled by inverse powers of m∗.

In the technical limit where the top partner multiplet Ψ, is parametrically much lighter than the

rest of the spectrum (mΨ � m∗), our power counting provides a weakly coupled effective lagrangian

description of the phenomenology of Ψ. The basic idea is that, in this case, the effects of the bulk of

the unknown spectrum at the scale m∗ can be systematically described by an expansion in powers of

mΨ/m∗. The lagrangian obtained in this limit defines our simplified description of the top parters.

One should however keep in mind that the most likely physical situation is one wherem∗−mΨ ∼ mΨ,

where an effective lagrangian is formally inappropriate. In practice, however, we expect it to be more

than adequate for a first semi-quantitative description of the phenomenology and certainly to assess

experimental constraints. The comparison with explicit constructions supports this expectation.

As concerns the symmetries of the strong sector, we considered the minimal composite Higgs

based on the SO(5)/SO(4) coset. Furthermore we focussed on the simplest possibility where the

right-handed top quark tR is itself a composite fermion. The leading source of breaking of SO(5) is

thus identified with top quark Yukawa coupling yt. In our construction, we have fully exploited the

selection rules obtained by treating yt as a small spurion with definite transformation properties. For

instance the structure of the mass spectrum and the couplings are greatly constrained by symmetry

and selection rules. In particular the pNGB nature of the Higgs doublet implies the couplings

originating from the strong sector are purely derivative: at high energy, or for heavy on-shell fermions,

these couplings are effectively quite sizeable and yet they do not affect the spectrum even accounting

for �H� �= 0. If the Higgs were not treated as a pNGB a large trilinear would be associated with a

large Yukawa coupling and the spectrum would necessarily be affected when �H� �= 0.
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Ψ = 4X=2/3 ∈ SO(4)

Ψ = 1X=2/3 ∈ SO(4)

Experimental searches are optimized for pair production. 
Single production dominates for heavy top partners.

Bounds from:

[CMS] b� → Wb : b+ ��(SS)/��� (5 fb−1[7 TeV])

[CMS] t� → Wb : bb+ ��(OS) +M�b > 170GeV (5 fb−1[7 TeV])

X5/3, B

�T

σ [fb] @ NNLO

pair production

M [GeV]
√
s = 7 TeV

√
s = 8 TeV

400 (0.920) 1.41 ×103 (1.50) 2.30 ×103

500 (218) 330 (378) 570

600 (61.0) 92.3 (113) 170

700 (19.1) 29.0 (37.9) 56.9

800 (6.47) 9.88 (13.8) 20.8

900 (2.30) 3.55 (5.33) 8.07

1000 (0.849) 1.33 (2.14) 3.27

1100 (0.319) 0.507 (0.888) 1.37

1200 (0.122) 0.196 (0.375) 0.585

1300 (4.62) 7.60 ×10−2 (0.160) 0.253

Table 2: Cross sections for the NNLO pair production of heavy fermions at
√
s = 7, 8 TeV (the LO values

are in brackets), with HATHOR [24].

t

X
V

b

X
V

Figure 3: The single-production diagrams.

and for this reason it will not be reported here, however it is easily implemented in a Mathematica

package.

The single production cross-sections are quadratic polynomials in the couplings, with coefficients

that encapsulate the effect of the QCD interactions, the integration over the phase-space and the

convolution with the parton distribution functions. These coefficients depend uniquely on the mass

of the partner and can be computed by Monte Carlo integration. Once the latter are known we obtain

semi-analytical formulae for the cross-sections. The production in association with the b is simply

proportional to g2XbL
while the one with t would be, a priori, the sum of three terms proportional

to g2XtL
, g2XtR

and gXtL · gXtR which account, respectively, for the effect of the left-handed coupling,

of the right-handed one and of the interference among the two. However in the limit of massless

top quark, mt � mX , the processes mediated by the left-handed and by the right-handed couplings

become physically distinguishable because the anti-top produced in association with X will have

opposite chirality in the two cases. Therefore in the limit mt → 0 the interference term can be

neglected. Moreover, the coefficients of the gXtL
2 and gXtR

2 terms will be equal because the QCD
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t, b

small y
large y

(At small y, B is lighter and contributes to the signal together with the 5/3 quark. That’s why the bound is stronger.)
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Figure 13: LHC discovery reach in the plane (MG∗ , tan θ3). The blue area shows the region

where a discovery of the signal pp → G∗ → T̃ t + Bb → Wtb is possible at 5σ with sinϕtR = 0.6,
MG∗/mT̃ = 1.5 and Y∗ = 3. The reach at sinϕtR = 0.8 and sinϕtR = 1 is shown respectively by the

dashed red curve and the dotted black curve. Upper plot: LHC at
√
s = 7TeV with an integrated

luminosity L = 10 fb
−1

; Lower plot: LHC at
√
s = 14TeV with L = 100 fb

−1
.
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mX5/3

= 1.5

pp → G∗ → T̄ t+ B̄b → Wtb → �bbjj /ET

A cut on the large Wb invariant mass allows 
to reduce the background. The channel is 

more sensitive than the tt final state.
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Signals in Higgs physics
(aka Higgs phrenology)



The PGB Higgs and PC hypothesis imprint very specific signatures on Higgs 
couplings

cy

f2
yf f̄Hf |H|2cH

f2
∂µ|H|2∂µ|H|2 + c

�
H

f4
|H|2∂µ|H|2∂µ|H|2 + . . .

∝ a

W

W

h

h

W

W

h

h

W,Z f

cγe
2

16π2f2

y
2
t

g
2
Ψ

|H|2F 2 +
cgg

2
s

16π2f2

y
2
t

g
2
Ψ

|H|2G2 Sub-leading at strong coupling

W

W

h

h

W

W

h

h
ig

16π2f2
(DµH)†Wµν

DνH + . . .
g

m2
ρ

(H†
σ
a
DµH)DνW

aµν + . . .

Less relevant (angular distributions?)

Giudice et al ’07



MCHM4

a =
�
1− v2

f2

fixed by the coset

c depends on the fermion representations

MCHM4

other models

other models

large deviations still allowed

(γγ)

(ZZ)

(γγ)

(ZZ)



W

W

h

h

W

W

h

h

W

W

h

h

W

W

h

h

W

W

h

h

W

W

h

h

W

W

h

h

W

W

h

h

Similar effects for the fermions but delayed to higher energies.

The role of the SM Higgs boson:
The SM is singled out as the unique theory which can be extrapolated at weak coupling at 
arbitrarily high energies. For other parameter choices new states at high energy (weakly or 
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Figure 4: W+W+ → W+W+ cross section as a function of the center of mass energy for two
different cuts on t and mh = 180 GeV. The left plot shows the almost inclusive cross section with
−s+ 4M2

W < t < −M2
W . The right plot shows the hard cross section with −3/4 < t/s < −1/4.

cross section. At large s and for |t|, |u| > Q2
min � M2

W (s � Q2
min) one has:

σLL→LL(Qmin) �
(1− a2)2 s

32π v4
. (27)

On the other hand, the scattering of transverse modes is dominated by the forward t- and
u-poles

σTT→TT (Qmin) �
g4

π

�
s4W
Q2

min

+
c4W

Q2
min +M2

Z

�
∼ g4

π

s4W + c4W
Q2

min

, (28)

and the ratio of the longitudinal to transverse cross section is

σLL→LL(Qmin)

σTT→TT (Qmin)
� (1− a2)2

512

Q2
min

s4W + c4W

s

M4
W

(29)

corresponding to a numerical factor Ns ∼ 1/500 ! By using Table 1 one can directly check

that this factor simply originates from a pile up of trivial effects (factors of 2) in the ampli-

tudes. Interestingly, this numerical enhancement occurs for the TT → TT and LT → LT
scattering channels, as clearly displayed by the left plot of Fig. 4, while it is absent in

TT → LL (this latter channel is not shown in Fig. 4 because its cross section is much

smaller than the others).

Of course the best way to test hard vector boson scattering is to go to the central

region where the ‘background’ from the Coulomb singularity of Z and γ exchange is absent.

Figure 5 reports the ratio of the differential cross sections as a function of t both for a = 0

(left plot) and a = 1 (right plot). It is shown that even for exactly central W ’s (t = −s/2)
the ratio is still smaller than its naive estimate, the suppression factor being Nh ∼ 4× 10−4

for a = 0. The origin of this numerical (as opposed to parametric) suppression is in the value

of the coefficients Ai entering the various scattering channels. Indeed, for t = −s/2 Eq. (25)

simplifies to

A � −2
�
At

γ + At
Z + Au

γ + Au
Z

�
+ Areg. + As

s

v2
, (30)
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Figure 7: Total cross section for double Higgs production with mh = 180 GeV. The left plot

shows the inclusive cross section with no cut on t. The right plot shows the hard scattering

cross section with a cut −s + 2m2
h + 2M2

W + Q2
min < t < −Q2

min, with Q2
min = s/2 − m2

h −
M2

W − (s/4)
�

(1− 4m2
h/s)(1− 4M2

W /s). This choice of Q2
min is compatible with the kinematical

constraint close to threshold energies and coincides with the cut applied in the right plot of Fig. 4

for s � m2
h (as Q2

min → s/4). Notice that differently from WW → WW , the ratio of longitudinal

over transverse scattering is not particularly enhanced by the cut. The behavior of the amplitudes

near threshold is sensitive to the cubic self-coupling d3 controlling the s-channel Higgs exchange.

The continuous and dotted LL → hh curves respectively correspond to the MHCM4 and MCHM5

models with ξ = (a2 − b) and d3 as given in Eqs. (13) and (14).

channel weight At
W Au

W Areg. As

LL → hh 1/2 a2g2/2 a2g2/2
g2((4a2−2b)M2

W+(3ad3−2a2)m2
h)

4M2
W

b− a2

TT → hh
++ → hh 1 0 0 (b− a2)g2/2 0

+− → hh 1 0 0 −a2g2/2 0

Table 2: W+W− → hh scattering: coefficients for the decomposition of the amplitude according to

Eq. (33). By crossing and complex conjugation there are only 4 independent polarization channels,

one of which has vanishing coefficients and is not shown. When computing the cross section each

channel has to be weighted by the corresponding multiplicity factor reported in the third column.

13

YES!

Contino, Grojean, Moretti, 
Piccinini, Rattazzi ‘10

Reduction of the rate to isolate the signal

Higgs potential
model dependence

Naive ratio between signal (s-wave amplitude) and ‘irreducible’ background (dominated by a Coulomb 
pole in the SM)

W

W

h

h

W

W

h

h

j

j

X

NO



hh mη [GeV]

R 1500 2000 2500

ξ
0.1 8.4 3.6 2.1

0.5 1.9 1.3 1.1

0.8 1.4 1.1 1.0

W
+
L W

+
L mη [GeV]

R 1500 2000 2500

ξ
0.1 0.45 0.59 0.69

0.5 0.45 0.59 0.69

0.8 0.45 0.59 0.69

Finally, the results for the resonance ∆ are shown in Fig. 8. In this case, given the

quantum numbers of the ∆, the exchange of the resonance tends to enhance all the channels.

As for the η, our calculation cannot be trusted in the pink (darker) area of the (m∆, a∆)

region shown in Fig. 8, where the ππ∆ coupling is non-perturbative (Γ∆/m∆ > π). For

reference values m∆ = 1.5TeV, a∆ = 1, we predict an enhancement in all channels as

follows: R = 2.3 in W
+
L W

−
L ; R = 1.7 in hh; R = 6.6 in W

+
L W

+
L ; R = 5.3 in W

+
L ZL. An

increase of ξ implies a suppression of the ratio R in all the channels. This is illustrated by

the following tables, which report the value of R in the channels hh (left) and W
+
L W

+
L (right)

for a∆ = 1:

hh m∆ [GeV]

R 1500 2000 2500

ξ
0.1 3.2 1.7 1.2

0.5 1.7 1.3 1.1

0.8 1.6 1.2 1.1

W
+
L W

+
L m∆ [GeV]

R 1500 2000 2500

ξ
0.1 33 11 4.3

0.5 6.6 2.4 1.2

0.8 4.3 1.7 1.0

100 fb
−1

S B

pp → jjW (�ν)V (jj) 130 1100

pp → jjW±
(�±ν)W±

(�±ν) 13 6

pp → jjZ(�+�−)Z(νν) 6 1

4.1 Check of the analytic approximation

At this point we would like to discuss the precision of our approximate analytic calculation

of the cross sections. We will do so by comparing with a full calculation performed by using

a Montecarlo simulation. We consider the models MCHM4 and MCHM5 defined in Refs. [2]

and [16], and their linearized versions, which we will denote respectively as LMCHM4 and

LMCHM5 in the following. The LMCHM4, in particular, has been already considered in

Ref. [19]. In both linearized models a scalar resonance η is added to the original SO(5)/SO(4)

chiral lagrangian to form a linear representation of SO(5) together with the four NG bosons.

The lagrangian which describes the derivative interactions between η and the NG bosons

is that of eq.(55) with aη = bη = 1. The two linearized models thus differ only by (non-

derivative) potential terms, as well the original MCHM4 and MCHM5 differ only by the

Higgs trilinear coupling. The reader can find all the details and the relevant formulas in

Appendix G.
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Parton level analysis including 

Identification cuts + 

|∆η| > 4.5, |ηmax| > 2.5, |m2
��| > 400GeV

α6
EM , α4

EMα2
S , α2

EMα4
S backgrounds.

ξ = 1
Ballestrero et al ’09-’11

Combining all channels σ(pp → jjX) = ξ2σ(pp → jjX)ξ=1

Detection of double Higgs production is hampered by the more difficult final state.

3 leptons 2 leptons 4 leptons

# Events with 300 fb
−1

signal bckg. signal bckg. signal bckg.

MCHM4

ξ = 1 4.9 1.1 15.0 16.6 1.3 0.08

ξ = 0.8 3.3 1.2 10.1 18.3 0.9 0.14

ξ = 0.5 1.5 1.4 4.9 21.0 0.4 0.23

MCHM5
ξ = 0.8 4.5 1.8 14.3 26.0 1.1 0.19

ξ = 0.5 2.3 1.2 7.6 18.4 0.6 0.21

SM ξ = 0 0.2 1.7 0.8 25.4 0.05 0.37

Table 9: Number of events with 300 fb
−1

of integrated luminosity based on the

cross sections predicted in each channel at the end of the analysis (σATLAS
4 , σATLAS

6

and σ5 for the channels with respectively three, two and four leptons). Values for

the background have been obtained by properly rescaling the Higgs contributions to

account for its modified couplings in each model.

SM hypothesis CHM hypothesis

Significance S3 S2 S4 S3 S2 S4

MCHM4

ξ = 1 2.7 (9.0) 2.7 (8.6) 1.3 (4.8) 3.1 (10.3) 3.2 (10.3) 2.0 (7.1)

ξ = 0.8 1.9 (6.4) 1.8 (6.0) 0.8 (3.5) 2.1 (7.2) 2.1 (6.9) 1.2 (4.7)

ξ = 0.5 0.8 (3.2) 0.9 (3.0) 0.0 (1.7) 0.9 (3.4) 1.0 (3.2) 0.0 (2.0)

MCHM5
ξ = 0.8 2.5 (8.3) 2.6 (8.3) 1.1 (4.2) 2.5 (8.2) 2.5 (8.2) 1.3 (5.1)

ξ = 0.5 1.3 (4.7) 1.4 (4.5) 0.0 (2.5) 1.5 (5.3) 1.6 (5.2) 0.0 (3.0)

Table 10: Signal significance with 300 fb
−1

in the channels with three (S3), two (S2)

and four (S4) leptons assuming two statistical hypotheses: Higgs with SM couplings

(SM hypothesis) and Higgs with modified couplings (CHM hypothesis), see text.

Numbers in parenthesis correspond to the significance with 3 ab
−1

.
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Heavy Higgs (~180 GeV) was required to have sizable BR in VV.
The trileptonic channel is the cleanest

not consider ξ = 1 in the MCHM5 because the branching ratio h → WW (∗) vanishes in
this limit. Notice that the coupling hWW formally vanishes for ξ → 1 in both models,
but in the MCHM4 all couplings are rescaled in the same way, so that the branching ratio
h → WW (∗) stays constant to its SM value. Cross sections for the SM backgrounds will
be reported assuming SM values for the Higgs couplings and detailing possible (resonant)
Higgs contributions as separate background processes whenever sizable. A final prediction
for the total SM background in each model will be presented at the end of the analysis in
Section 4.4 by properly rescaling the Higgs contributions to account for the modified Higgs
couplings.

We concentrate on the three possible decay chains that seem to be the most promising
ones to isolate the signal from the background:

S4 = pp → hhjj → l+l+l−l− �ET + 2j

S3 = pp → hhjj → l+l−l± �ET + 4j

S2 = pp → hhjj → l+(−)l+(−) �ET + 5j (6j) ,

(35)

where l± = e±/µ±, �ET denotes missing transverse energy due to the neutrinos and j stands
for a final-state jet. A fully realistic analysis, including showering, hadronization and detector
simulation is beyond the scope of the present paper. We will stick to the partonic level as
far as possible, including showering effects only to provide a rough account of the jet-veto
benefit for this search. We perform a simple Gaussian smearing on the jets as a crude
way to simulate detector effects. 7 Signal events have been generated using MADGRAPH [20],
while both ALPGEN [21] and MADGRAPH have been used for the background. A summary with
information about the simulation of each process, including the Montecarlo used, the choice
of factorization scale and specific cuts applied at the generation level can be found in the
Appendix B.

Our event selection will be driven by simplicity as much as possible: we design a cut-
based strategy by analyzing signal and background distributions, cutting over the observable
which provides the best signal significance, and reiterating the procedure until no further
substantial improvement is achievable. As our starting point, we define the following set of
acceptance cuts

pTj > 30GeV |ηj| < 5 ∆Rjj� > 0.7

pT l > 20GeV |ηl| < 2.4 ∆Rjl > 0.4 ∆Rll� > 0.2 ,
(36)

where pTj (pT l) and ηj (ηl) are respectively the jet (lepton) transverse momentum and pseudo-
rapidity, and ∆Rjj� , ∆Rjl, ∆Rll� denote the jet-jet, jet-lepton and lepton-lepton separations.

In the next sections we will present our analysis for each of the three channels of Eq. (35)
assuming a value mh = 180GeV for the Higgs mass. A qualitative discussion on the depen-
dence of our results on the Higgs mass will be given in Section 6.

7We have smeared both the jet energy and momentum absolute value by ∆E/E = 100%/
�

E/GeV, and
the jet momentum direction using an angle resolution ∆φ = 0.05 radians and ∆η = 0.04.
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Figure 12: Differential cross section after the acceptance cuts of Eq. (36) as a

function of the invariant mass, mSF -OS , of the e+e− or µ+µ−
pair. Whenever two

such pairings are possible the mass closer to MZ is selected. Continuous line: signal

S3 in the MCHM4 at ξ = 1; Dashed line: background.

We searched for the optimal set of cuts on mSF -OS and other possible distributions (in-

cluding all those mentioned above and shown in Figs. (9)–(12)) by following an iterative

procedure: at each step we cut over the observable which provides the largest enhancement

of the signal significance, until no further improvement is possible. The significance has been

computed performing a goodness-of-fit test of the background-only hypothesis with Poisson

statistics.
11

We assumed 300 fb
−1

(3000 fb
−1
) of integrated luminosity at the LHC (at the

LHC luminosity upgrade). We end up with the following set of additional cuts:

mSF -OS ≥ 20GeV |mSF -OS −MZ | ≥ 7ΓZ

∆ηref
JJ

≥ 4.5 mref

JJ
≥ 700GeV mh

JJl
≤ 160GeV ,

(38)

MZ and ΓZ being respectively the Z boson mass and width. The cross sections for signal

and backgrounds after these cuts are reported as σ3 in Table 3.

As a final set of cuts, we consider a further restriction on mW

JJ
around the W pole:

|mW

JJ
−MW | < 30GeV (39)

|mW

JJ
−MW | < 20GeV (40)

The cuts in Eqs. (39)-(40) correspond to twice the expected invariant dijet mass resolution

respectively for the CMS and ATLAS detector resolution. The corresponding final cross sections

are denoted as σCMS

4 and σATLAS

4 in Table 3. An additional veto on b-jets has a relatively

small impact, since it would reduce the tt̄W (W ) + jets backgrounds which are however

already subdominant. Assuming for example a b-jet tagging efficiency of �b = 0.55 for

ηb < 2.5, the signal significances increase by approximately 10%.

11
Given the number of signal and background events a p-value is computed using the Poisson distribution.

The significance is defined as the number of standard deviations that a Gaussian variable would fluctuate in

one direction to give the same p-value. For example, a p-value = 2.85×10
−7

corresponds to a 5σ significance.

21

LHC can only test the TC limit (before lumi. upgrade). No 
chance to measure the Higgs potential.

Double Higgs production

WW final state

Contino et al ’10

200fb−1 : ∆ξ ∼ 0.5

1000fb−1 : ∆ξ ∼ 0.3

3σ discovery



Long term questions
(t → ∞?)

Contino, Grojean, DP, 
Rattazzi, Thamm (to appear)



LHC is over and at most δLHC=O(10-20%) deviation in Higgs couplings is observed. Maybe new 
particles discovered but with no clear role. Many relevant questions remain open.

Weak or strong coupling? Large effects due to heavy (invisible) physics suggest strong 
coupling.
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Bounding the effect from 4 derivative interactions allows to improve the bound
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Figure 2: Leading diagrams contributing to the χχ → hhh amplitude. Dashed lines represent the

NG bosons χ, while solid lines denote the Higgs boson h. The sum of these diagrams with their

crossings cancels out exactly in the gaugeless limit for a symmetric coset and at the O(p2) level for

any coset. See text.

σ ξ
[ab] 0 0.05 0.1 0.2 0.3 0.5 0.99

PNGB 0.32 0.46 0.71 1.47 2.41 4.13 0.30

SILH 0.32 0.71 0.87 7.56 42.89 407.9 7808

Table 2: Cross section for the process e+e− → νν̄hhh for mh = 125 GeV at
√
s = 3 TeV. The first

line shows the cross sections obtained in the symmetric SO(5)/SO(4) coset for various values of ξ.
The cross sections in the second line are obtained from the SILH with dimension 6 and 8 operators

for cH = 1 and c�
H

= 0.

universality of the SILH Lagrangian, but it breaks down at higher orders. By substituting

the relations of Eq. (11) into Eq. (24) we find:

A(χχ → hhh) = 2i (c�
H
− 2cH)

ŝ

v3

�
v4

f 4

�
. (25)

As expected, the coefficient of the energy-growing term is of order v4/f 4
and proportional to

the linear combination (c�
H
−2cH). This latter must vanish if the Higgs lives on a symmetric

coset G/H.
10

At CLIC, triple Higgs production follows through the process e+e− → νν̄V V → νν̄hhh,
where V = W±, Z. Some typical values of the cross section are shown in Table 2 for the

case of a PNGB and a SILH with cH = 1 and c�
H
= 0. While the cross section for a PNGB

is in the range of a few ab, in the case of a generic SILH it grows like ξ4, with the dominant

contribution coming from the subprocess VLVL → hhh. This makes it measurable for ξ not

too small. We find that for ξ ∼> 0.1 this process should be detectable for a generic SILH,

thus allowing one to distinguish it from a PNGB Higgs. Notice that this is the same range

of ξ where we can distinguish SILH and PNGB using single and double Higgs production.

Yet it would be an independent test.

The dominant contribution to triple Higgs production in the case of a PNGB Higgs comes

from the subprocess W±
L
W∓

T
→ hhh, whose cross section is expected to grow as ŝ log ŝ. The

leading logarithmic behaviour can be extracted by using the Equivalence Theorem and arises

from the subset of diagrams shown in Fig. 3. In the limit in which the intermediate NGB line

10
This shows that the relation c�

H
= 2cH holds true in any symmetric coset, and not only in SO(5)/SO(4).

14

Polarisation
Amplitude for

PNGB SILH

VLVL → hhh g2v/f 2 ŝv/f 4

VLVT → hhh
√

ŝg/f 2

VT VT → hhh g2v/f 2

Table 1: Naive high-energy and large angles behavior of partonic V V → hhh amplitudes for a

PNGB Higgs (first column) and a generic SILH scalar (second column).

SO(5)/SO(4), that R is an element of G, in which case it remains unbroken at all orders in

the Lagrangian in the gaugeless limit. Notice also that the invariance under R can be always

imposed by enlarging the coset (for example O(4)/O(3) includes PLR). Consequently, any

process with an odd number of NG bosons would be forbidden by symmetry.

The above argument implies that, although by a naive counting one would expect the

VLVL → hhh cross section to grow with ŝ2
, this does not happen for a PNGB Higgs living

on a symmetric coset due to the accidental invariance of the O(p2
) Lagrangian under R.

In practice R is weakly broken by the gauging, so that this process is not strictly zero but

only suppressed. The expected energy behavior of the amplitude at the parton level can be

estimated by power counting and is shown in Table 1. Each longitudinal mode contributes

one power of E/f , while each transverse mode implies one power of g. Measuring the cross

section of triple Higgs production can thus give important indications on the nature of the

Higgs boson and distinguish the case of a PNGB from that of a generic SILH. By the same

argument, a three-body final state can distinguish also between a symmetric coset space,

where the cancellation takes place, and an asymmetric one, such as SO(7)/G2, without any

cancellation. However, the only two custodially symmetric cosets with one scalar doublet,

SO(5)/SO(4) and SO(4, 1)/SO(4), happen to be symmetric. If more scalar particles were

to be found, the situation would be more complicated: V V → hhh would have to be studied

along with other processes in order to discriminate between the different models.

5.2 Quantitative analysis of V V → hhh

We have checked that the expected cancellation of the energy-growing term of the VLVL →
hhh scattering amplitude takes place by performing an explicit computation in the gaugeless

limit g = g�
= 0. By the Equivalence theorem, the leading energy behavior of VLVL → hhh

is captured by the NB scattering χχ → hhh. From the Lagrangian of eq. (1) we find three

distinct diagrams, depicted in Fig. 2, plus their crossings, which contribute to the amplitude.

At leading order in ŝ we find:

A(χχ→ hhh) =
iŝ

v3

�
4ab− 4a

3 − 3b3

�
. (24)

In the case of SO(5)/SO(4) the values of the couplings a, b and b3 are given by Eq. (13)

and the coefficient of the term growing with ŝ in the amplitude identically vanishes. In the

case of a generic Higgs doublet the cancellation works at the O(v2/f 2
) level, as due to the

13

Does h belong to a doublet? If so then WW→WW and WW→hh are equal up to higher 
order terms. No way to answer the question testing only single Higgs couplings. Need to measure b.

If there are indications for a composite Higgs, is this particle light due to Goldstone 
symmetry? Check relation between a and b. Look for triple Higgs production.

of strength gρ, affect the coupling of h to two gluons and two photons by a relative amount

∼ (gρv/mρ)
2
. Similarly a heavy singlet scalar S coupled to the Higgs doublet via a trilinear

gρmρS|H|2, mixes by an angle θ ∼ gρv/mρ with h, implying deviations from the SM of order

θ2 ∼ (gρv/mρ)
2
in its couplings.

9
In the absence of new states below a certain scale M , the

observation of deviations of order δh, already in single Higgs production, would then imply

a qualitative lower bound on the coupling

gρ >
�
δh(M/v) . (13)

Sizeable deviations, δh in the absence of new states would strongly suggest a strong cou-

pling, and, indirectly, h compositeness. A more direct measurement of the strength of the

underlying interaction is obtained by studying the processes WW → WW and WW → hh.
As discussed in section 2, a deviation from a = b = 1 leads to a cross section that grows

with s. The 2 → 2 amplitude can be taken as a measure of a “running” coupling g(s), see
eq.(7). The measurement of an enhancement, quantified by δexphh , in these processes at an

energy E, corresponds directly, though qualitatively, to a lower bound on the strength of the

interaction

gρ > ḡ(E) ∼
�
δexphh

E

v
. (14)

Eqs. (13) and (14) look similar, and not by chance. Notice, however, that the second equation

corresponds to a direct measurement of the coupling, and is thus a more robust estimate.

Indeed, at a precise machine such as CLIC a detailed study of 2 → 2 processes would allow

even stronger conclusions. The point is that eq. 7 is only the leading term in a derivative

expansion, the subleading corrections being of relative size s/m2
ρ

A(2 → 2) = δhh
s

v2

�
1 +O

�
s

m2
ρ

��
. (15)

In principle at CLIC one could measure the leading O(s) contribution and set an upper

bound �hh on the relative size of the O(s2) term. That would indirectly suggest that there

are no new states below a mass M ∼ E/
√
�hh and that the amplitude will keep rising at

least until that scale. That would amount to a stronger indirect bound

gρ > ḡ(M) ∼

�
δexphh

�hh

E

v
. (16)

We clearly see here the value of being able to measure 2 → 2 processes with high precision

below the threshold of new physics.

Consider now the properties of h from the standpoint of symmetries. In the case of the

SILH, in which h fits into a doublet of SU(2) arising from some unspecified dynamics at

the scale mρ, the bosonic couplings a, b, b3 are predicted in terms of just one parameter, as

illustrated by eq.(10). In particular, by defining ∆a2 ≡ a2 − 1 and ∆b ≡ b− 1 one has

∆b = 2∆a2
�
1 +O(∆a2)

�
, (17)

9One could also consider a potential V = −m
2
ρ|S|2 + g

2
ρ|S|2|H|2 + g

2
ρ|S|4, by which �S� ∼ mρ/gρ ≡ f ,

and reach the same conclusion.
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where the higher-order corrections are determined by the tower of higher-dimension operators
with two derivatives and 2n H fields. Furthermore, in the very special case where H is a
PNGB the whole tower of operators and the resulting WWhn couplings are all fixed by just
one parameter: ξ = (v/f)2. Eq.(12) reports for example the predictions of the minimal
SO(5)/SO(4) and SO(4, 1)/SO(4) theories. In both cases eq. (17) becomes exactly

∆b = 2∆a2 . (18)

From single Higgs production one would be able to measure ∆a2 with an error smaller
than 10−2 , probably of a few per mille. 10 The measurement of WW → hh, as we will
discuss in the next sections, allows us in principle to measure ∆b with an error of order 10−2.
Eqs. (17) and (18) can then be tested at the % level. For instance, in the case of a SILH
not embedded in a coset one could imagine finding ∆a2,∆b ∼> 0.1 and to be compatible with
eq. (17) but violating eq. (18) by an amount bigger than the expected % accuracy. On the
other hand, for ∆a2,∆b < 0.1, it would not be possible to distinguish between a SILH and
a PNGB. Finally, down to ∆a2,∆b ∼ 10−2 one could find that eq. (17) is not respected,
indirectly speaking against the embedding of h in a doublet. It should however be pointed
out that such a scenario, normally associated with a fully composite h, would more probably
imply ∆’s of order 1. It should also be remarked that the only case of this type with some
mild motivation is the one of a light dilaton, corresponding to

∆b = ∆a2 , (19)

implying a vanishing contribution to WW → hh at leading order in the energy expansion.
We should finally point out the potential role of the rates for h → gg and h → γγ in

distinguishing a pseudo-Goldstone h from a generic composite scalar. The basic remark [12]
is that there are two classes of corrections to these rates. One correction originates from the
modification of the coupling of h to WW and to t̄t and affects the on-shell h → gg, h → γγ
amplitudes via the W and t loop contribution. In a sense this contribution is long distance.
A second corrections is the genuine short distance contribution to the Wilson coefficient of
the operators

Ogg = hGµνG
µν

Oγγ = hFµνF
µν (20)

that arises from loops of heavy states. In the case of a pseudo-Goldstone h this second class
of effects is suppressed with respect to the first by a power of gSM/gρ, where by gSM and gρ
we respectively indicate the couplings in the SM and in the strong sector. This suppression
is a consequence of the Goldstone symmetry selection rules and woud be absent in the case
of a generic composite scalar, like for instance the dilaton. In the limit where gSM/gρ � 1,
the rates h → gg, h → γγ are fully controlled by a and ct, a result that can in principle be
tested. However one should keep in mind that the measured value of mh prefers a scenario
where the top partners are somewhat lighter than the rest and only moderately strongly
coupled [40]. In that situation the correlation between h → gg, h → γγ and the parameters
a, ct may receive important corrections.

10Also WW → WW can be used to extract ∆a2, but Zh associated production, summing over all final
decay channels, is just nicely sensitive to a2 and more precisely measured.

11

: dilaton

∆a2 ∼ 0.2 requires % precision on b

Triple Higgs production is suppressed for a PGB Higgs

e+e− → νν̄hhh@3TeV

π → −π
grading belongs to SO(4)
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Figure 5: Contours of constant cross section σ(e+e− → hhνν̄) for
√

s = 3TeV and mh = 125GeV
in the plane (δb, δd3).

where σSM denotes its SM value. Notice that a enters only as an overall factor. Without

applying any kinematical cut on the Higgs decay products we find

σSM = 0.83 fb , {A, B, C, D, E} = {3.83, 0.64, 3.41, 15.6, 0.48}. (40)

A simple minded approach to the extraction of the two parameters δb and δd3 is the following.

Let us consider a kinematical variable O whose value increases with the c.o.m. energy of the

W
+
W
− → hh subprocess. mhh, the invariant mass of the two Higgses in an event, and HT ,

the sum of the transverse momenta of the two Higgses, are two valid examples for O. We

can divide the set of e
+
e
− → νν̄hh events into two categories according to whether O < Ō

or O > Ō where Ō is a fixed number. The number of observed events in these two categories

can be fitted to σ|O<Ō(δb, δd3) and σ|O>Ō(δb, δd3), the analogous expression of eq. (40) after

a cut on O is imposed. Notice that thanks to the cut on O, σ|O>Ō will have an enhanced

sensitivity to δb while σ|O<Ō to δd3. In Fig. 5 we show the distribution of mhh and HT for

some values of the parameters. Notice that while the HT is particularly sensitive to δb, mhh

is better suited to isolate the δd3 dependence.
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The final answer to these questions requires a high energy 
linear collider 

CLIC (3TeV): ∆b � 1÷ 2 × 10−2

ILC (500GeV): ∆a2 � 0.5× 10−2

∆d3 � 5× 10−2
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Figure 6: Contours of constant cross section σ(e+e− → hhνν̄) for
√

s = 3TeV and mh = 125GeV
in the plane (δb, δd3).

We thus consider the four independent kinematical regions

I : mhh > 700 GeV and HT > 400 GeV , (41)

II : mhh > 700 GeV and HT < 400 GeV , (42)

III : mhh < 700 GeV and HT > 400 GeV , (43)

IV : mhh < 700 GeV and HT < 400 GeV. (44)

The specific choice of the cuts is arbitrary. We could in principle optimize them to obtain

the best sensitivity on the parameters. We have checked that reasonable variations around

the values we adopted result in insignificant variations of the final results. For each of these

we have determined the coefficients A, B, C, D, E expressing the e
+
e
− → hhνν̄ cross section

as a function of δb and δd3. Figure 6 shows the corresponding value of the cross section in

the plane (δb, δd3) for three choices of cuts: no cuts, region I and region IV.

The sensitivity on δb and δd3 that can be reached at CLIC is obtained constructing the

following likelihood function L(we work under the assumption of no background and and we

use the undecayed Higgs particles as the physical objects; we will come back to these issues

later)

L = exp
�
−χ2

/2
�
, χ2

(δb, δd3) =

�

i=I,...,IV

(σi(δb, δd3)− σ̄i)
2

∆2
i

. (45)

The errors ∆i are the statistical errors on the cross section after the cuts. They are given

by ∆i =

�
σ̄i/L where L is the total integrated luminosity. Notice that since a appears in

eq. (39) as an overall factor, it can be absorbed in L. We set a = 1 from now on.

The sensitivity on δb(δd3) is obtained marginalizing L(δb, δd3) over δd3(δb) and using the

resulting single-parameter likelihood to find the 68% C.L. interval on δb(δd3). In the limit

of large enough statistic (which is the limit in which we will work) we can expand the χ2
in

eq. (45) at quadratic order around its minimum and use the simple formulas which hold for

gaussian variables

∆δb =

�
2H22

det H
and ∆δd3 =

�
2H11

det H
, (46)
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Figure 1: Summary of current constraints on ξ = (v/f)2 and the mass of the lightest spin-1

resonance mρ for SO(5)/SO(4) composite Higgs theories. See text.

but more data are clearly required to get a clearer picture. Preliminary studies indicate that
a precision of ∼ 5% should be eventually reached on a at the 14TeV LHC with an integrated
luminosity of 300 fb−1 [38, 39].

Searches for direct production of spin-1 resonances at the LHC also set important con-
straints on the mass scale of a new strongly interacting dynamics mρ. The dominant
resonance production channel is via Drell-Yan processes [41]. Their cross section scales
as 1/g2ρ since the couplings of the resonances to the SM are suppressed by 1/gρ. CMS
searches for WZ resonances decaying leponically [43, 44] currently put tight limits. While
the experimental search excludes resonance masses up to 1.5 TeV, we extend these lim-
its to larger masses assuming a constant efficiency in detecting WZ pairs. The limit
σ(pp → W �)BR(W � → WZ → 3lν) < 3 fb excludes resonance masses up to 2 TeV depending
on gρ. Searches for WZ resonances decaying hadronically [42] put similar constraints. Tight
limits are also set by W � resonances decaying directly into a lepton and neutrino [45].

The situation of direct and indirect constraints is summarized in Fig. 1 for the case of
a generic SO(5)/SO(4) composite Higgs theory. This can be reasonably considered as a
benchmark scenario, although the actual bounds will depend on the details of the strong
dynamics and how it couples to the SM fermions. For simplicity we focus on the lightest
spin-1 resonance of the strong sector, which we denote by ρ, and assume that it transforms as
a (3, 1) under SU(2)L×SU(2)R ∼ SO(4). For illustrative purposes, we fix aρ ≡ mρ/(gρf) =�

4/3, so that the ρ exchange unitarizes the ππ elastic scattering [17]. The fundamental
free parameters of the new dynamics are then the mass of the spin-1 resonance, mρ, and the
strength of the Higgs interactions parametrized by ξ = (v2/f 2). The dark (medium light)
horizontal purple bands of Fig. 1 indicate the sensitivity on ξ expected at the LHC from
double (single) Higgs production with 300 fb−1 of integrated luminosity. The value shown
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Figure 4: In red dashed: the cross sections of pair production. In green and blue the single production of
the �T (in association with a b) and of the X5/3(in association with a t), respectively in model M15 and M45.
The point chosen in the parameter space is ξ = 0.2, c1 = 1 and y = 1. The value of c2 is fixed, at each value
of MΨ, in order to reproduce the top quark mass.

It total, all the single-production processes are parameterized in terms of 5 universal coefficient

functions σW±t, σZt and σW±b. Notice that a possible σZb vanishes because flavor-changing neutral

couplings are forbidden in the charge −1/3 sector as explained in the previous section. As such,

the single production of the B in association with a bottom quark does not take place. We have

computed the coefficient functions σW±t and σW±b, including the QCD corrections up to NLO,

using the MCFM code [29]. To illustrate the results, we report in Table 3 the single production

cross-section with coupling set to unity, for different values of the heavy fermion mass, and for the 7

and 8 TeV LHC. The values in the table correspond to the sum of the cross sections for producing

the heavy fermion and its antiparticle, on the left side we show the results for tB production, on

the right one we consider the case of b �T . In our parametrization of eq.s (3.3) and (3.4) the cross-

sections in the table correspond respectively to σW+t + σW−t and to σW+b + σW−b. We see that the

production with the b is one order of magnitude larger than the one with the t, this is not surprising

because the t production has a higher kinematical threshold and therefore it is suppressed by the

steep fall of the partonic luminosities. The values in the table do not yet correspond to the physical

single-production cross-sections, they must still be multiplied by the appropriate couplings.

The last coefficient function σZt cannot be computed in MCFM and therefore to extract it

we used a LO cross section computed with MadGraph 5 [30] using the model files produced

with FeynRules package [31]. To account for QCD corrections in this case we used the k-factors

computed with MCFM for the tB production process.

In order to quantify the importance of single production we plot in figure 4 the cross-sections for

the various production mechanisms in our models as a function of the mass of the partners and for

a typical choice of parameters. We see that the single production rate can be very sizeable and that

it dominates over the QCD pair production already at moderately high mass. This is again due to

the more favorable lower kinematical threshold, as carefully discussed in Ref. [16].

Let us finally discuss the decays of the top partners. The main channels are two-body decays

to vector bosons and third-family quarks, mediated by the couplings in eq. (3.2). For the partners

of charge 2/3 and −1/3 also the decay to the Higgs boson is allowed, and competitive with the

others in some cases. This originates from the interactions of the partners with the Higgs reported
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Partial Compositness vs MFV
A full comparison between the two approaches requires the specification of a coupling and a 

mass scale to completely define the structure of flavor-violating higher dimensional operators.

Eg: in SUSY with gauge mediation universal soft masses are generated 
at Mmess, non-universality generated through running respect MFV. 

Four-fermions operator at superpartner scale have the form

m̃2 = m2
0

m̃2 = m2
0(1 + c

YUY †
U

(4π)2 + ...)

Mmess

m̃

g2
s

16π2
g2
s

m̃2

�
q̄L

YUY †
U

16π2 qL
�2

1

Operators ∆F = 2 Re c Im c Observables

(s̄RdL)
2 500 2 ∆mK ,�K

(s̄R dL)(s̄LdR) 200 0.6 ”

(c̄L uR)
2 30 6 ∆mD, |q/p|,φD

(b̄Lγµ
dL)

2 5 (�u3/�
q
3)

2 2 (�u3/�
q
3)

2 ∆mBd
, SψKS

(b̄Lγµ
sL)

2 6 (�u3/�
q
3)

2 ∆mBs

Operators ∆F = 1 Re c Im c Observables

sRσµν
eFµνbL 1 B → Xs

sLσµν
eFµνbR 2 9 ”

sRσµν
gsGµνdL - 0.4 K → 2π; ��/�

sLσµν
gsGµνdR - 0.4 ”

Operators ∆F = 0 Re c Im c Observables

dσµν
eFµνdL,R - 0.03 neutron EDM

uσµν
eFµνuL,R - 0.3 ”

dσµν
gsGµνdL,R - 0.04 ”

uσµν
gsGµνuL,R - 0.2 ”

Leptonic Operators Re c Im c Observables

eσµν
eFµνeL,R - 0.05 electron EDM

µσµν
eFµνeL,R 4× 10−3

µ → eγ

ēγµ
µL,R H

†
i
←→
D µH 1.5(�e3/�

�
3) µ(Au) → e(Au)

Coefficient Upper bound Observables

(cu11)LR 0.4 EDMs

(cd11)LR 0.09 EDMs

(ce12)LR,RL 0.6 µ → eγ
(ce11)LR 0.5 electron EDM

Structure MFV PC

d̄iLdjL V
∗
3iV3j V

∗
3iV3j

d̄iRdjR y
d
i y

d
jV

∗
3iV3j

ydi y
d
j

V ∗
3iV3j

d̄iLdjR y
d
jV

∗
3iV3j y

d
j
V3i
V3j

d-d structures

Shows only the structure in flavor space other 
coupling constants have been suppressed


