Aspects of composite Higgs phenomenology

weak force > gravity $\longleftrightarrow M_{W} \ll M_{P}$

$$
c \Lambda_{U V}^{2} H^{\dagger} H
$$

$$
\Lambda_{U V} \sim M_{P} \Rightarrow c \sim 10^{-32}
$$

Higgs compositeness as a solution

The UV - IR hierarchy is generated by dimensional transmutation.

A light scalar can be accidentally present (light dilaton) or related by symmetry to the longitudinal W and Z (PGB Higgs).

Two objections

No sign of compositeness so far

First things we expect to see in weakly coupled models are new particles. Not in this case: heavy physics but strongly coupled. Indirect signals should come first. Cure: model building + fine-tuning

No compelling single model

Can be a virtue as it forces to understand generic features first.

Transverse gauge fields and light fermions are external to the strongly interacting sector.

Couplings of SM fields break global symmetry G and generate a potential for H which determines the vacuum of the theory.

Jargon

coupling to vector resonances

composite "Yukawa"
(can be naturally smaller due to chiral symmetries)
$f:$ sigma-model scale, expansion parameter for Higgs (goldstones) self interactions $\quad F\left(\frac{\pi}{f}\right)$

$$
W W_{N} \sim m_{\rho} \sim g_{\rho} f \quad \quad \sim m_{\Psi} \sim g_{\Psi} f
$$

$$
m_{h} \ll \Lambda_{I R} \quad \text { by Goldstone symmetry }
$$

The strong dynamics breaks some global symmetry of the UV theory delivering a set of Goldstone fields

Unitarity (compact cosets)

$+$

Custodial symmetry

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}_{-\mathbf{2}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}_{-5}+\overline{\mathbf{4}}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$
		Mrazek et al 'II	

$$
\phi^{T} \phi=1
$$

The symmetry structures fixes Higgs self interactions at low energy.

$$
\begin{gathered}
\mathcal{L}=\frac{f^{2}}{2}\left(D_{\mu} \phi\right)^{T}\left(D^{\mu} \phi\right)=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\frac{f^{2}}{2} \operatorname{Tr}\left[\left(D_{\mu} \Sigma\right)^{\dagger}\left(D^{\mu} \Sigma\right)\right] \sin ^{2}\left(\theta+\frac{h(x)}{f}\right) \\
=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\left(m_{W}^{2} W^{+} W^{-}+\frac{m_{Z}^{2}}{2} Z^{2}\right)\left(1+2 \sqrt{1-\xi} \frac{h}{v}+(1-2 \xi) \frac{h^{2}}{v^{2}}+\ldots\right) \\
m_{W}^{2}=\frac{g^{2} f^{2}}{4} \sin ^{2} \theta
\end{gathered}
$$

Higgs coupling to fermions is model dependent (see later)

$$
\begin{aligned}
& \sin \theta=0: \text { unbroken EW } \\
& \sin \theta=1: \text { technicolor limit }
\end{aligned}
$$

The misalignment angle is determined dynamically
unless fine tuning
unless complicated model building (see little Higgs models)

Small v/f (large f) decouples new physics and allow to live with the bounds from EW physics

+ Infrared logs:

The bound on xi cannot be relaxed assuming the existence of non-oblique NP contribution to the Zbb vertex (curing AFB and Rb anomalies)

Yukawa
plain small N technicolor: $\quad f=v, g_{\rho} \sim 4 \pi, m_{\rho} \sim 4 \pi v$

$$
\frac{4 \pi}{\Lambda_{F}^{d_{H}-1}} Q U \mathcal{O}_{H} \rightarrow 4 \pi\left(\frac{m_{\rho}}{\Lambda_{F}}\right)^{d_{H}-1} Q U H
$$

$$
\Lambda_{F} \sim 4 \pi v\left(\frac{4 \pi v}{m_{t}}\right)^{\frac{1}{d_{H}-1}}
$$

$$
\begin{gathered}
\mathcal{O}_{H}=\Psi \Psi \\
d_{H} \sim 3 \Rightarrow \Lambda_{F} \approx 10 \mathrm{TeV}
\end{gathered}
$$

You could in principle cure the flavor problem with very large f : requires too much tuning.

Flavor violation

$$
\frac{y_{s} y_{d}\left(\Lambda_{F}\right)}{\Lambda_{F}^{2}}\left(s^{c} d\right)^{2}
$$

$$
\begin{gathered}
d_{H} \sim 3 \Rightarrow \Lambda_{\mathrm{eff}} \approx 10^{4} \mathrm{TeV} \\
\text { still too small }
\end{gathered}
$$

One way out: partial compositeness

$$
\lambda_{Q} Q \mathcal{O}_{Q}+\lambda_{U} U \mathcal{O}_{U} \Rightarrow y_{t} \sim \frac{\lambda_{Q} \lambda_{U}}{g_{\Psi}} \equiv g_{\Psi} \epsilon_{Q} \epsilon_{U}
$$

$\epsilon \equiv \lambda / g_{\Psi}$:measures the mixing between elementary and composite states.*

$$
\lambda=\lambda_{U V}\left(\frac{\Lambda_{I R}}{\Lambda_{U V}}\right)^{5 / 2-d_{\mathcal{O}}}
$$

Maybe ad hoc d=5/2 decouples the UV flavor problem completely without reintroducing a hierarchy problem. $\mathrm{d}>5 / 2$ explains Yukawa hierarchies.

Flavor violation at the IR scale is controlled by the mixing selection rules (differs from FN, to be thought as a non compact $U(I)$)
$\Delta F=2$

$\Delta F=1$

Huber '03
Davidson, Isidori, Uhlig '07

$$
\begin{gathered}
\epsilon_{i} \epsilon_{j} \epsilon_{k} \epsilon_{h} \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \bar{f}_{i} f_{j} \bar{f}_{h} f_{k} \\
\Delta S=2: m_{\rho} \gtrsim 10 \mathrm{TeV} \frac{g_{\rho}}{g_{\Psi}} \Rightarrow \frac{v^{2}}{f^{2}} \lesssim 0.02\left(\frac{g_{\Psi}}{5}\right)^{2} \\
m_{\Psi} \gtrsim 2 \mathrm{TeV} \frac{1}{\epsilon_{R}^{2}} \frac{3}{g_{\Psi}}
\end{gathered} \operatorname{\epsilon }_{i} \epsilon_{j} g_{\Psi} \frac{v}{m_{\rho}^{2}} \frac{g_{\rho}^{2}}{16 \pi^{2}} \bar{f}_{i} \sigma(e F) f_{j} . \frac{\epsilon^{\prime}}{\epsilon}: m_{\rho} \gtrsim 10 \div 15 \mathrm{TeV} \frac{g_{\rho}}{4 \pi} \Rightarrow \frac{v^{2}}{f^{2}} \lesssim 0.04
$$

$$
\epsilon_{i} \epsilon_{j} \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \bar{f}_{i} \gamma^{\mu} f_{j} i H^{\dagger} D_{\mu} H
$$

$$
B_{s} \rightarrow \mu^{+} \mu^{-}: \frac{v^{2}}{f^{2}} \lesssim 0.4\left(\frac{g_{\Psi}}{5}\right)^{2}
$$

$$
d_{n}: m_{\rho} \gtrsim 30 \div 50 \mathrm{TeV} \frac{g_{\rho}}{4 \pi} \Rightarrow \frac{v^{2}}{f^{2}} \lesssim 0.008
$$

The constraints are much worse in the lepton sector

$$
B R(\mu \rightarrow e \gamma)<2.4 \times 10^{-12} \Rightarrow m_{\rho} \gtrsim 150 \mathrm{TeV} \frac{g_{\rho}}{4 \pi}
$$

(with a choice of the mixings which minimizes the constraints)

In general one may want to give up complete explanation of the flavor structure and assume the existence of appropriate flavor symmetries.

$$
M F V, U(2)^{3} \ldots
$$

$$
\lambda^{Q} Q^{i} \mathcal{O}_{Q}^{i}+\lambda_{i j}^{U} U^{i} \mathcal{O}_{U}^{j}+\lambda_{i j}^{D} D^{i} \mathcal{O}_{D}^{j}
$$

$U(3)$ symmetry in the strong sector broken by right-handed mixing. Realizes MFV.

$$
\begin{gathered}
\text { No FCNC (but assume CP) } \\
\text { quark compositeness: } \quad m_{\Psi}>1 \mathrm{TeV} \frac{1}{\epsilon_{R}^{2}} \frac{3}{g_{\Psi}} \\
\text { quark-lepton universality: } \quad m_{\Psi}>5 \mathrm{TeV} \frac{1}{\epsilon_{R}} \\
\lambda_{i j}^{Q_{u}} Q^{i} \mathcal{O}_{Q_{u}}^{j}+\lambda_{i j}^{Q_{d}} Q^{i} \mathcal{O}_{Q_{d}}^{j}+\lambda^{U} U^{i} \mathcal{O}_{U}^{i}+\lambda^{D} D^{i} \mathcal{O}_{D}^{i}
\end{gathered}
$$

$U(3) \times U(3)$ symmetry in the strong sector broken by left-handed mixing. Realizes MFV.

$$
\begin{array}{cl}
\text { epsK: } & m_{\Psi}>1 \mathrm{TeV} \frac{1}{\epsilon_{R}^{2}} \frac{3}{g_{\Psi}} \\
\text { quark compositeness: } & m_{\Psi}>11 \mathrm{TeV} \epsilon_{R} \frac{g_{\Psi}}{3}
\end{array}
$$

Bounds can be relaxed below the TeV with LHComp and more elaborated flavor structures: $U(2) \times U(2) \times U(2)$.

The Higgs potential and tuning

The potential is dominated by the top quark sector.

$+\ldots \quad 2$ loops
$V(h)=\frac{N_{C} m_{\Psi}^{4}}{16 \pi^{2}} \times\left[\quad \frac{\lambda^{2}}{g_{\Psi}^{2}} f_{1}\left(\frac{h}{f}\right)\right.$

$$
+\frac{\lambda^{4}}{g_{\Psi}^{4}} f_{2}\left(\frac{h}{f}\right)
$$

$$
+\frac{g_{\Psi}^{2}}{16 \pi^{2}} \times \ldots
$$

$$
f_{1}\left(\frac{h}{f}\right)=a_{1} I_{1}\left(\frac{h}{f}\right)+a_{2} I_{2}\left(\frac{h}{f}\right)+\ldots
$$

sum of simple trigonometric functions

The explicit form of the trigonometric invariants is fixed by symmetry (for the normalization you need a complete model)

$$
\bar{q}_{L}^{\alpha}\left(\lambda_{L}\right)_{\alpha I} \mathcal{O}_{L}^{I}+\bar{t}_{R}\left(\lambda_{R}\right)_{I} \mathcal{O}_{R}^{I}
$$

All that matter are the $\mathrm{SO}(5)$ representations of $O\left\llcorner\right.$ and O_{R}
(This choice also determines Higgs-fermion couplings)

The potential is dominated by the top quark sector.

Assume singlet top-right
$+\ldots$ loops

$$
y_{t}=\lambda_{L} \epsilon_{R}
$$

$$
V(h)=\frac{N_{C} y_{t}^{2}}{16 \pi^{2}} \frac{m_{\Psi}^{2}}{\epsilon_{R}^{2}}\left(a h^{2}+b \frac{h^{4}}{f^{2}}+\ldots\right)
$$

Natural EWSB requires light top partners.

Light Higgs requires them to be not too strongly coupled.

A non generic spectrum (\sim SUSY)

Extra dimensional realizations

Is it possible to study the resonances which are typical of composite Higgs models (EW resonances, heavy gluons, top partners) avoiding to pick a specific model?

$$
\Delta m \gg m_{\Psi}
$$

Allows to develop a quantitatively valid EFT description of the lowest lying resonance (quantum numbers, few couplings).

The light state is lighter because more weakly coupled $g_{\Psi}<g_{\Psi^{\prime}}$ Makes it possible to have a lighter resonance without lowering the cutoff.
("Partial UV completion")

In the limit $\Delta m \sim m_{\Psi}$ still have a valid qualitative description.

Application to the study of top partners

Assumptions: PGB higgs + partial compositeness + fully composite R -handed top
Inputs: $\mathrm{SO}(5)$ quantum numbers of the operator mixing with L-handed top $\mathrm{SO}(4)$ quantum numbers of the light state

$$
\begin{aligned}
& \mathcal{L} \sim \bar{\Psi}(i \not D-M) \Psi+i c_{1} \bar{\Psi} \not \partial \pi t_{R}+y_{1} f q_{L} f_{1}(\pi) \Psi_{R}+y_{2} f q_{L} f_{2}(\pi) t_{R}
\end{aligned}
$$

$$
\Psi=\left(\begin{array}{cc}
T & \begin{array}{c}
\text { Affects single } \\
\text { production }
\end{array} \\
B & X_{5 / 3} \\
X_{2 / 3}
\end{array}\right)
$$

Application to the study of top partners

Assumptions: PGB higgs + partial compositeness + fully composite R -handed top
Inputs: $\mathrm{SO}(5)$ quantum numbers of the operator mixing with L-handed top $\mathrm{SO}(4)$ quantum numbers of the light state

small y large y

(At small y, B is lighter and contributes to the signal together with the $5 / 3$ quark. That's why the bound is stronger.)

Bounds from:

$$
\begin{aligned}
& {[\mathrm{CMS}] b^{\prime} \rightarrow W b: b+\ell \ell(S S) / \ell \ell \ell\left(5 \mathrm{fb}^{-1}[7 \mathrm{TeV}]\right) \quad X_{5 / 3}, B} \\
& {[\mathrm{CMS}] t^{\prime} \rightarrow W b: b b+\ell \ell(O S)+M_{\ell b}>170 \mathrm{GeV}\left(5 \mathrm{fb}^{-1}[7 \mathrm{TeV}]\right) \quad \widetilde{T}}
\end{aligned}
$$

Experimental searches are optimized for pair production. Single production dominates for heavy top partners.

Bosonic resonances

EW resonances

Bosonic resonances

(aka Higgs phrenology)

The PGB Higgs and PC hypothesis imprint very specific signatures on Higgs couplings

$$
\begin{array}{rlr}
\frac{c_{H}}{f^{2}} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2} & +\frac{c_{H}^{\prime}}{f^{4}}|H|^{2} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2}+\ldots & \frac{c_{y}}{f^{2}} y_{f} \bar{f} H f|H|^{2} \\
& =-\sigma^{W, Z} & \propto a \\
2 & & =-<c_{f}
\end{array}
$$

$$
\frac{c_{\gamma} e^{2}}{16 \pi^{2} f^{2}} \frac{y_{t}^{2}}{g_{\Psi}^{2}}|H|^{2} F^{2}+\frac{c_{g} g_{s}^{2}}{16 \pi^{2} f^{2}} \frac{y_{t}^{2}}{g_{\Psi}^{2}}|H|^{2} G^{2}
$$

$$
=-\left\{^{r^{\gamma g}}\right.
$$

$$
\frac{i g}{16 \pi^{2} f^{2}}\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H+\ldots \quad \frac{g}{m_{\rho}^{2}}\left(H^{\dagger} \sigma^{a} D_{\mu} H\right) D_{\nu} W^{a \mu \nu}+\ldots
$$

Less relevant (angular distributions?)

$$
a=\sqrt{1-\frac{v^{2}}{f^{2}}}
$$

c depends on the fermion representations
fixed by the coset

(2)
$(\gamma \gamma) \begin{aligned} & \mathrm{m}_{\mathrm{H}}=126.8 \pm 0.2 \text { (stat) } \pm 0.7 \text { (syst) } \mathrm{GeV} \\ & \mu=1.65 \pm 0.24 \text { (stat) } \pm 0.22 \text { (syst) }\end{aligned}$
$(Z Z) \mathrm{m}_{\mathrm{H}}=124.3 \pm 0.6$ (stat) ± 0.4 (syst) GeV

The role of the SM Higgs boson:

The SM is singled out as the unique theory which can be extrapolated at weak coupling at arbitrarily high energies. For other parameter choices new states at high energy (weakly or strongly coupled).

 $\propto d_{3}$

$$
\propto\left(a^{2}-1\right) \frac{E^{2}}{v^{2}}
$$

$$
\propto\left(a^{2}-b\right) \frac{E^{2}}{v^{2}}
$$

$$
\propto\left(4 a b^{2}-4 a^{3}-3 b_{3}\right) \frac{E^{2}}{v^{3}}
$$

Similar effects for the fermions but delayed to higher energies.

Naive ratio between signal (s-wave amplitude) and 'irreducible' background (dominated by a Coulomb pole in the SM)

$$
\frac{\sigma_{\mathrm{sig}}}{\sigma_{\mathrm{bkg}}} \sim \frac{\hat{s} t_{\mathrm{min}}}{m_{W}^{4}}
$$

Higgs potential model dependence

Reduction of the rate to isolate the signal

WW final state Ballestrero et al 09 -'।l

Identification cuts +

$$
|\Delta \eta|>4.5, \quad\left|\eta_{\max }\right|>2.5, \quad\left|m_{\ell \ell}^{2}\right|>400 \mathrm{GeV}
$$

$\xi=1 \quad 100 \mathrm{fb}^{-1}$	S	B
$p p \rightarrow j j W(\ell \nu) V(j j)$	130	1100
$p p \rightarrow j j W^{ \pm}\left(\ell^{ \pm} \nu\right) W^{ \pm}\left(\ell^{ \pm} \nu\right)$	13	6
$p p \rightarrow j j Z\left(\ell^{+} \ell^{-}\right) Z(\nu \nu)$	6	1

Parton level analysis including $\alpha_{E M}^{6}, \alpha_{E M}^{4} \alpha_{S}^{2}, \alpha_{E M}^{2} \alpha_{S}^{4}$ backgrounds.
Combining all channels $\sigma(p p \rightarrow j j X)=\xi^{2} \sigma(p p \rightarrow j j X)_{\xi=1}$

$$
\begin{gathered}
200 \mathrm{fb}^{-1}: \Delta \xi \sim 0.5 \\
1000 \mathrm{fb}^{-1}: \Delta \xi \sim 0.3 \\
3 \sigma \text { discovery }
\end{gathered}
$$

Double Higgs production
 Contino et al 'lo

Detection of double Higgs production is hampered by the more difficult final state. Heavy Higgs ($\sim 180 \mathrm{GeV}$) was required to have sizable BR in VV.
The trileptonic channel is the cleanest

$$
\begin{gathered}
\mathcal{S}_{3}=p p \rightarrow h h j j \rightarrow l^{+} l^{-} l^{ \pm} E_{T}+4 j \\
\Delta \eta_{J J}^{r r e f} \geq 4.5 \quad m_{J J}^{r e f} \geq 700 \mathrm{GeV} \quad m_{J J l}^{h} \leq 160 \mathrm{GeV}
\end{gathered}
$$

LHC can only test the TC limit (before lumi. upgrade). No chance to measure the Higgs potential.

Long term questions

$(t \rightarrow \infty$?)

LHC is over and at most $\delta_{\text {Lнс }}=\mathrm{O}(10-20 \%)$ deviation in Higgs couplings is observed. Maybe new particles discovered but with no clear role. Many relevant questions remain open.

Weak or strong coupling? Large effects due to heavy (invisible) physics suggest strong coupling.

Bounding the effect from 4 derivative interactions allows to improve the bound

$$
\begin{aligned}
& \mathcal{A}(2 \rightarrow 2)=\frac{s}{v^{2}}\left(1+c \frac{s}{m_{*}^{2}}\right) \\
& c<\epsilon \Rightarrow g_{N P}(E) \gtrsim \sqrt{\frac{\xi_{\mathrm{obs}}}{\epsilon}} \frac{E}{v}
\end{aligned}
$$

Does h belong to a doublet? If so then $W W \rightarrow W W$ and $W W \rightarrow h h$ are equal up to higher order terms. No way to answer the question testing only single Higgs couplings. Need to measure b.

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\Delta a^{2} \sim 0.2 \text { requires \% precision on } b
$$

If there are indications for a composite Higgs, is this particle light due to Goldstone symmetry? Check relation between a and b. Look for triple Higgs production.

$$
\Delta b=2 \Delta a^{2}
$$

$$
\Delta b=\Delta a^{2}: \text { dilaton }
$$

Triple Higgs production is suppressed for a PGB Higgs

Polarisation	Amplitude for	
	PNGB	SILH
$V_{L} V_{L} \rightarrow h h h$	$g^{2} v / f^{2}$	$\hat{s} v / f^{4}$
$V_{L} V_{T} \rightarrow h h h$	$\sqrt{\hat{s}} g / f^{2}$	
$V_{T} V_{T} \rightarrow h h h$	$g^{2} v / f^{2}$	

σ			ξ				
(ab)	0	0.05	0.1	0.2	0.3	0.5	0.99
PNGB	0.32	0.46	0.71	1.47	2.41	4.13	0.30
SILH	0.32	0.71	0.87	7.56	42.89	407.9	7808
$e^{+} e^{-} \rightarrow \nu \bar{\nu} h h h @ 3 \mathrm{TeV}$							

The final answer to these questions requires a high energy linear collider
ILC (500GeV): $\quad \Delta a^{2} \gtrsim 0.5 \times 10^{-2}$

$\left(1 a^{-1}\right)$

CLIC (3TeV): $\quad \Delta b \gtrsim 1 \div 2 \times 10^{-2}$
$\left(1 \mathrm{ab}^{-1}\right) \quad \Delta d_{3} \gtrsim 5 \times 10^{-2}$

Conclusions

dn>peg

Partial Compositness vs MFV

A full comparison between the two approaches requires the specification of a coupling and a mass scale to completely define the structure of flavor-violating higher dimensional operators.

Eg: in SUSY with gauge mediation universal soft masses are generated at Mmess, non-universality generated through running respect MFV.

$$
\tilde{m}^{2}=m_{0}^{2}
$$

Four-fermions operator at superpartner scale have the form

$$
\frac{g_{s}^{2}}{16 \pi^{2}} \frac{g_{s}^{2}}{\tilde{m}^{2}}\left(\bar{q}_{L} \frac{Y_{U} Y_{U}^{\dagger}}{16 \pi^{2}} q_{L}\right)^{2}
$$

$$
\tilde{m}^{2}=\frac{m_{0}^{2}\left(1+c \frac{Y_{U} Y_{U}^{\dagger}}{(4 \pi)^{2}}+\ldots\right)}{\tilde{m}}
$$

d-d structures

Structure	MFV	PC
$\bar{d}_{i L} d_{j L}$	$V_{3 i}^{*} V_{3 j}$	$V_{3 i}^{*} V_{3 j}$
$\bar{d}_{i R} d_{j R}$	$y_{i}^{d} y_{j}^{d} V_{3 i}^{*} V_{3 j}$	$\frac{y_{i}^{d} y_{j}^{d}}{V_{3 i} V_{3 j}}$
$\bar{d}_{i L} d_{j R}$	$y_{j}^{d} V_{3 i}^{*} V_{3 j}$	$y_{j}^{d} V_{3 i}$

Shows only the structure in flavor space other coupling constants have been suppressed

