Couplings and width of the Higgs (-like) particle

Bogdan Dobrescu (Fermilab)

Work with Joe Lykken: 1210.3342

Outline: • General Higgs couplings

- Upper & lower limits on the Higgs width and couplings
- Non-standard production and decays

Theory Seminar - UC Davis, April 15, 2013

A Higgs boson is defined as any scalar particle h^0 that couples to the W and Z according to:

$${h^0\over v_h}\left(2\kappa_W M_W^2 W_\mu^+ W^{-\mu}+\kappa_Z\,M_Z^2\,Z_\mu Z^\mu
ight)$$

 $v_h pprox 246 \; {
m GeV}$

Couplings of a Higgs boson to 3rd generation fermions:

$$-rac{h^0}{v_h}ig(\kappa_t m_t\,ar{t}t+\kappa_b m_b\,ar{b}b+\kappa_ au m_ au\,ar{ au} auig)$$

 $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ are real parameters, equal to 1 in the SM.

Effective Higgs coupling to a pair of gluons is given by a dimension-5 operator:

$$\kappa_g \, {lpha_s \over 12 \pi v} \, h^0 \, G^{\mu
u} G_{\mu
u}$$

Effective coupling to photons:

$$\kappa_\gamma \equiv \left(rac{\Gamma(h^0 o \gamma \gamma)}{\Gamma^{
m SM}(h^0 o \gamma \gamma)}
ight)^{1/2}$$

Within the SM: $\kappa_g = \kappa_{\gamma} = 1$. Deviations from 1 are due to new particles in the loops as well as changes in the Higgs couplings to $\overline{t}t$ and WW.

Couplings of a non-standard Higgs boson are described by 7 parameters: $\kappa_W, \kappa_Z, \ \kappa_t, \kappa_b, \kappa_\tau, \ \kappa_g, \kappa_\gamma$.

Eventually, $\kappa_{Z\gamma}$ and κ_{μ} will also be important (also $h \rightarrow \tau \mu$, ... Harnik et al. 1209.1397)

Importance of the total width

Cross section \times branching fractions for $\Gamma_h \ll M_h$:

$$\sigma(pp
ightarrow h + X
ightarrow ... + X) \propto rac{1}{\Gamma_h}$$

 $\Gamma_h^{
m SM}/M_hpprox 3.2 imes 10^{-5}$ for $M_h=126$ GeV.

Rate measurements give:
$$\frac{\kappa_{\rm prod.}^2 \kappa_{
m decay}^2}{\Gamma_h}$$

Duhrssen, et al, hep-ph/0407190 Barger, Ishida, Keung, 1203.3456 HXSWG, 1209.0040, ...

Higgs couplings $\kappa_{\mathcal{P}}$ cannot be extracted from LHC data, in the absence of some theoretical assumptions, because an increase in all couplings can be compensated by a larger Γ_h due to (almost) undetectable decays through new particles.

$$rac{\Gamma_h}{\Gamma_h^{
m SM}} \lesssim 10^2$$

Current resolution (~ 1 GeV) implies

Our method (1210.3342):

1. Define the "apparent squared couplings":

$$a_{\mathcal{P}} \,=\, \kappa_{\mathcal{P}}^2 \left(rac{\Gamma_h^{
m SM}}{\Gamma_h}
ight)^{1/2} \,, \quad ext{for} \,\, \mathcal{P} = W, Z, g, \gamma, t, b, au$$

 $a_{\mathcal{P}}$ can be extracted directly from the CMS and ATLAS data:

Rate = $a_{\text{prod.}} a_{\text{decay}}$

2. Based on some theoretical assumption, the couplings $\kappa_{\mathcal{P}}$ (Lagrangian parameters!) can then be related to $a_{\mathcal{P}}$.

Assumptions used by CMS PAS-HIG-12-045 (Nov. 2012),

ATLAS-CONF-2012-127 (Sept. 2012), HXSWG (1209.0040):

no decays into non-SM particles, or some $\kappa_{\mathcal{P}} = 1$.

A well-motivated assumption: an upper limit on κ_W or κ_Z .

First, extract the $a_{\mathcal{P}}$ observables from the rate measurements:

$$egin{split} \left(rac{\sigma}{\sigma_{
m SM}}
ight)(hjj o \gamma\gamma jj) = rac{a_W + ra_Z}{1+r} \, a_\gamma \ r pprox 0.3 \end{split}$$

$$\left(rac{\sigma}{\sigma_{
m SM}}
ight) (Wh
ightarrow Wbar{b}) = a_W a_b$$

. . .

Contamination of "VBF tagged" sample from the gluon fusion (+ jj) channel:

$$a_{ ext{VBF}} pprox (1-f_g) rac{a_W + r a_Z}{1+r} + f_g a_g$$

SM simulations: $f_g \approx 30\%$ (20% - 50% depending on event selection)

Contamination of gluon fusion from VBF is small ($\sim 10\%$).

h^0 decay	h^0 production	observable	measured $\sigma/\sigma_{ m SM}$
WW^*	$gg ightarrow h^0$	$a_g a_W$	0.8 ± 0.4 , ATLAS 0.76 ± 0.21 , CMS $0.94^{+0.85}_{-0.83}$, Tevatron our average: 0.78 ± 0.18
	VBF	$a_{ m VBF}a_W$	1.7 ± 0.8 , ATLAS $-0.05^{+0.74}_{-0.55}$, CMS
	$W^* o Wh^0$	a_W^2	$-0.3^{+2.2}_{-1.9}$, CMS
	$Z^* o Zh^0$	$a_Z a_W$	
ZZ^*	$gg ightarrow h^0$	$a_g a_Z$	1.5 ± 0.4 , ATLAS $0.9^{+0.5}_{-0.4}$, CMS our average: 1.3 ± 0.3
	VBF	$a_{ m VBF}a_Z$	$1.0^{+2.4}_{-2.3}$, CMS

h^0 decay	h^0 production	observable	measured $\sigma/\sigma_{ m SM}$
$\gamma\gamma$	$gg ightarrow h^0$	$a_g a_\gamma$	$1.6^{+0.5}_{-0.4}$, ATLAS $0.5^{+0.6}_{-0.4}$, CMS $6.0^{+3.4}_{-3.1}$, Tevatron our average: 1.4 ± 0.4
	VBF	$a_{ m VBF}a_\gamma$	$1.7^{+1.0}_{-0.8}$, ATLAS 1.5 ± 1.1 , CMS our average: $1.6^{+0.7}_{-0.6}$
	$W^* ightarrow Wh^0$	$a_W a_\gamma$	1.8 ± 1.4 . Atlas
	$Z^* o Z h^0$	$a_Z a_\gamma$	

h^0 decay	h^0 production	observable	measured $\sigma/\sigma_{ m SM}$
$bar{b}$	$W^* o W h^0$	$a_W a_b$	-0.4 ± 1.0 , ATLAS $1.31^{+0.65}_{-0.60}$, CMS $1.59^{+0.69}_{-0.72}$, Tevatron
	$Z^* o Z h^0$	$a_Z a_b$	our average: 1.1 ± 0.4
	$tar{t}h^0$	$a_t a_b$	$-0.80^{+2.10}_{-1.84}$, CMS
$ au^+ au^-$	$gg ightarrow h^0$	$a_g a_ au$	2.4 ± 1.7 , ATLAS $0.8^{+0.5}_{-0.6}$, CMS $1.7^{+2.3}_{-1.7}$, Tevatron our average: $1.0^{+0.4}_{-0.5}$
	VBF	$a_{ m VBF}a_{ au}$	-0.4 ± 1.2 , ATLAS 1.4 ± 0.6 , CMS
	$W^* o Wh^0$	$a_W a_ au$?, ATLAS 0.8 ± 1.5 CMS
	$Z^* o Z h^0$	$a_Z a_ au$	

Electroweak data requires $\kappa_W/\kappa_Z = 1 \pm O(10^{-2})$

(unless some BSM contributions are tuned to cancel the effects of h^0)

For simplicity, assume $\kappa_W = \kappa_Z \equiv \kappa_V$.

Combine the $gg \rightarrow h^0 \rightarrow WW^*, ZZ^*$ rate measurements:

$$a_g a_V = (\sigma/\sigma_{
m SM})(gg
ightarrow h
ightarrow VV^*) = 0.92 \pm 0.15$$

Using measurements for $a_g a_V$, $a_g a_\gamma$, $a_{\mathrm{VBF}} a_\gamma$:

$$a_V^2 = (\sigma/\sigma_{
m SM})(gg
ightarrow h
ightarrow VV^*) rac{(\sigma/\sigma_{
m SM})({
m VBF}
ightarrow hjj
ightarrow \gamma\gamma jj)}{(\sigma/\sigma_{
m SM})(gg
ightarrow h
ightarrow \gamma\gamma)}$$
 for $f_g = 0$.

Using (bifurcated) Gaussian distributions,

$$a_V = 1.00^{+0.34}_{-0.22}$$

Similarly, extract a_g , a_γ . Measurements for $a_V a_b$, $a_g a_\tau$ give a_b and a_τ .

$$a_{\mathcal{P}} = \kappa_{\mathcal{P}}^2 \left(rac{\Gamma_h^{ ext{SM}}}{\Gamma_h}
ight)^{1/2}$$

Intervals for 'apparent squared-couplings':

for $f_g=0$, and including the VBF data only for $h^0
ightarrow \gamma\gamma$.

Lower limit on Γ_h

A lower limit on Γ_h can be derived from the rates required for its observation.

$$\Gamma_h = \sum_{egin{smallmatrix} {\mathcal P} = W, Z, \ b, au, g, \gamma \end{bmatrix}} \kappa_{\mathcal P}^2 \; \Gamma^{ ext{SM}}(h^0 o {\mathcal P} {\mathcal P}) + \; \Gamma_X$$

 Γ_X is the h^0 partial decay width into final states other than the SM ones.

Given that $\Gamma_X \geq 0$,

$$\Gamma_h \geq \Gamma_h^{\min} = \left(\sum_{\substack{\mathcal{P} = W, Z, \ b, au, g, \gamma}} a_\mathcal{P} \ \mathcal{B}^{ ext{SM}}(h^0 o \mathcal{P}\mathcal{P})
ight)^2 \ \Gamma_h^{ ext{SM}}$$

Lower limit on the width:

$$\Gamma_h \geq \Gamma_h^{
m min} = 0.90^{+0.78}_{-0.25} \; \Gamma_h^{
m SM}$$

If electroweak symmetry breaking is due entirely to VEVs of $SU(2)_W$ doublets, then:

$$0 < \kappa_W = \kappa_Z \le 1$$

If triplets or higher $SU(2)_W$ representations acquire VEVs, it is possible to have $\kappa_W \neq \kappa_Z$, and values for $\kappa_W, \kappa_Z > 1$.

Even then one can derive some upper bounds (~ 1.5) on the couplings:

$$|\kappa_W| < \kappa_W^{ ext{max}}$$
 , $|\kappa_Z| < \kappa_Z^{ ext{max}}$

Can be directly tested at the LHC through searches for H^{++} , ...

Upper limit on Γ_h

The upper limits on κ_W and κ_Z imply

$$\Gamma_h \leq \Gamma_h^{\max} = \operatorname{Min} \left\{ \frac{(\kappa_W^{\max})^4}{a_W^2}, \frac{(\kappa_Z^{\max})^4}{a_Z^2} \right\} \ \Gamma_h^{\mathrm{SM}}$$

If the electroweak symmetry is broken only by the VEVs of $SU(2)_W$ doublets (majority of viable theories), then

$$\Gamma_h \leq \Gamma_h^{ ext{max}} = rac{\Gamma_h^{ ext{SM}}}{a_V^2}$$

 \sim -

 a_V extracted from the current data gives:

$$\Gamma_h \leq \Gamma_h^{
m max} = 0.71^{+0.93}_{-0.15} \; \Gamma_h^{
m SM}$$

$$a_{\mathcal{P}}^{1/2} \left(rac{\Gamma_h^{\min}}{\Gamma_h^{\mathrm{SM}}}
ight)^{1/4} < \kappa_{\mathcal{P}} < a_{\mathcal{P}}^{1/2} \left(rac{\Gamma_h^{\max}}{\Gamma_h^{\mathrm{SM}}}
ight)^{1/4}$$

Coupling 'spans':

updated in April 2013, based on Dobrescu, Lykken: 1210.3342

Branching fraction of exotic decays:

(non-SM particles, $c\bar{c}$, ...)

$${\mathcal B}_X = 1 - rac{1}{\Gamma_h} \sum_{\substack{{\mathcal P} = W, Z, \ b, au, g, \gamma}} \kappa_{\mathcal P}^2 \ \Gamma^{
m SM}(h^0 o {\mathcal P}{\mathcal P})$$

$$\Rightarrow \quad \mathcal{B}_X \leq \mathcal{B}_X^{\max} = 1 - \left(\frac{\Gamma_h^{\text{SM}}}{\Gamma_h^{\max}}\right)^{1/2} \sum_{\substack{\mathcal{P} = W, Z, \\ b, \tau, g, \gamma}} a_{\mathcal{P}} \, \mathcal{B}^{\text{SM}}(h^0 \to \mathcal{PP})$$

 $\mathcal{B}_X^{
m max} < 22\%$ at the 68% CL $\mathcal{B}_X^{
m max} < 46\%$ at the 95% CL.

Non-standard Higgs production

Higgs 'portal' coupling: $\lambda_G G^a_H G^a_H H^{\dagger} H$, G_H has spin 0, carries color.

The direct signatures of the new colored particles at the LHC may have large backgrounds.

Scalar octet

 G_H : spin 0, transforms as (8,1,0) under $SU(3)_c \times SU(2)_W \times U(1)_Y$

 $SU(2)_W$ forbids renormalizable couplings of G_H to SM quarks. Renormalizable couplings of G_H to gluons are fixed by $SU(3)_c$ gauge invariance \Rightarrow production of G_H at hadron colliders occurs in pairs.

Dobrescu, Kong, Mahbubani, hep-ph/0709.2378

 G_H decays are model dependent. A simple possibility: $G_H \rightarrow gg$ Dobrescu, Bai, 1012.5814 G_H G_H

A more complicated decay: $G_H o ar{\psi}^* \psi^* o gar{q} \, gq$

Signal: a pair of narrow *gg* resonances of same mass

1000

ATLAS search for (jj)(jj)

For
$$M_h^2 \ll M_{G_H}^2$$
: $\kappa_g pprox 1 + 3\lambda_G rac{v_h^2}{8M_{G_H}^2}$

Change in Higgs production through gluon fusion:

Dobrescu, Kribs, Martin: 1112.2208

(see also Bai, Fang, Hewett 1112.1964; Kumar, Vega-Morales, Yu 1205.4244)

Nonstandard Higgs decays

Standard model + a gauge-singlet complex scalar S:

 $S=rac{1}{\sqrt{2}}\left(arphi_S+\langle S
angle
ight)e^{iA^0/\langle S
angle}$, A^0 is a CP-odd spin-0 particle

$$rac{c\,v}{2}h^0A^0A^0~\mathrm{coupling}~~\Rightarrow~~\Gamma(h^0
ightarrow A^0A^0)~=~rac{c^2\,v^2}{32\pi M_h}~\left(1-4rac{M_A^2}{M_h^2}
ight)^{1/2}$$

For $2M_A \ll M_h = 125$ GeV:

Higgs boson may be the portal to a hidden sector: dark matter, ...

A^0 decays are model dependent.Example:(Dobrescu, Landsberg, Matchev, hep-ph/0005308) A^0 χ χ

Even $\mathcal{B}(h \to A^0 A^0 \to 4 g)$ near 100% is very hard to observe due to huge backgrounds.

Total width Γ_h of the Higgs-like particle may be \gg the sum over the partial widths of the SM decays.

 $\mathcal{B}(A^0 \to \gamma \gamma) \lesssim 1\%$, but $h \to A^0 A^0 \to \gamma \gamma j j$ may still be eventually observed at the LHC. (Chang, Fox, Weiner, hep-ph/0608310, A. Martin hep-ph/0703247 ...)

Vectorlike quarks

All Standard Model fermions are <u>chiral</u>: their masses arise from the Higgs coupling.

<u>Vectorlike</u> (*i.e.* non-chiral) elementary fermions – a new (hypothetical) form of matter. Masses allowed by $SU(2)_W \times U(1)_Y$ gauge symmetry \Rightarrow naturally heavier than the t quark.

A vectorlike quark χ which mixes with the top quark:

Higgs boson may lead to the discovery of the vectorlike quark.

Is the Higgs boson an elementary particle or a bound state ?

Composite Higgs field as a bound state of the top quark and a vectorlike quark (S. Chivukula, B. Dobrescu, H. Georgi, C. Hill, 1998)

Binding due to some new strongly coupled interaction:

Conclusions

Higgs boson is sensitive to various phenomena beyond the SM.

A lower limit on the Higgs width follows from the LHC and Tevatron rates required for observation.

An upper limit on Γ_h follows from the well-motivated assumption that the Higgs coupling to a W or Z pair is not much larger than in the Standard Model.

This range for Γ_h allows the extraction of a "span" (*i.e.*, lower and upper limits) for each Higgs coupling.

 $\Gamma_h < \Gamma_{\text{max}} \Rightarrow$ an upper limit on the branching fraction of exotic Higgs decays (46% at the 95% CL, if the electroweak symmetry is broken only by doublets).