

Juhin S. Roy

University of Washington

with Steve Ellis, Andrew Hornig, David Krohn and Matt Schwartz arXiv:1201.1914 Phys.Rev.Lett. 108 (2012) work-in-progress

2ts

ets

ets

Qjets is an idea that explores the dimension of clustering history

Qjets is an idea that explores the dimension of clustering history

it is a challenging task -- let us start with something simpler

Qjets is an idea that explores the dimension of clustering history

it is a challenging task -- let us start with something simpler

Outline

- Applications in Higgs Search
- Pruning

Clustering vs QClustering

- QPruning
 - Applications

Butterworth, Davison, Rubin, Salam 0802.2470

Recipe for boosted resonance search:

(if you know what you are looking for)

- Look for "boosted" jets
- Identify "interesting" jets
- Clean jets

Recipe for boosted resonance search:

(if you know what you are looking for) ex. h -> bb

Look for "boosted" jets

the angular separation of the decay products $\Delta R~\sim 2~m_h/p_{Th}$

"boosted jets" refer to jets containing four-vectors separated by $\Delta R \sim 1.0$ and with $p_T > 2 m_h$

Recipe for boosted resonance search:

(if you know what you are looking for) ex. h -> bb

- Identify "interesting" jets

Higgs jets should have "mass-drop" Higgs jets should be double b-tagged

Recipe for boosted resonance search:

(if you know what you are looking for) ex. h -> bb

- Clean jets

- signal jets contain ISR + UE + pile-up other than the decay products
- cleaning a jet involves guessing which components are not due to decay + FSR and getting rid of these
 - ex: filtering, pruning, trimming etc.

5 9

LHC Higgs reach

Ex. Higgs from top partners

$$\sqrt{s} = 14 \text{ TeV}, \mathcal{L} = 10 \text{ fb}^{-1}$$

 $M_T = 800 \text{ GeV}$

LAC Higgs reach

Ex. Higgs from top partners

$$\sqrt{s} = 14 \text{ TeV}, \mathcal{L} = 10 \text{ fb}^{-1}$$

 $S/\sqrt{B} = 5.2$

Monday, December 13, 2010

Recipe for boosted resonance search:

(if you don't know what you are looking for)

- Look for "boosted" jets
- Identify "interesting" jets
- Clean jets -----

more important than ever

rest of the talk will be on how pruning can be made a more effective groomer.

Pruning

Start with the constituents of a given jet and rebuild the jet along C/A or $k_{\rm T}$

Pruning

At every step of clustering check whether the branch to be added is soft **and** wide angled.

Pruned Jet

1.0

Pruning

- Four-vectors that are pruned are actually branches of the tree.
- Pruned jets depend crucially on the tree-structure or the clustering algorithm used to construct the jet.

but who ordered the clustering algorithm?

Clustering

of four-vectors/set

Clustering

Clustering

Many paths remain unexplored

Clustering

Many paths remain unexplored

A better formalism should explore all such paths

one needs to be clever since the total number of distinct trees is enormous

our prescription is QClustering

QClustering

As in a sequential recombination algorithm, assign every pair of four-vectors a distance measure d_{ij}.

However, unlike a normal sequential algorithm (where the pair with the smallest measure is clustered), here a given pair is randomly selected for merging with probability

$$\Omega_{ij} = \frac{1}{N} \exp\left(-\alpha \frac{d_{ij}}{d_{\min}}\right)$$
rigidity parameter

Repeat many (~100-1000) times, till the distribution stabilizes

QClustering

$$\Omega_{ij} = \frac{1}{N} \exp\left(-\alpha \ \frac{d_{ij}}{d_{\min}}\right)$$

d_{ij}: we take C/A or kT measure

- $\alpha \rightarrow \infty$ Classical regime: only path corresponding to d_{min} is selected
- $\alpha > 0$ physical regime: physical paths are preferred
- $\alpha \rightarrow 0$ democratic regime: all paths have same weight
- $\alpha < 0$ unphysical regime: physical paths are de-weighted

QClustering vs. Clustering

QClustering vs. Clustering

QClustering vs. Clustering

QClustering + Pruning

Ex. a hadronic W jet from WW events

The original jet is made from C/A algorithm with R = 1.0 and pT > 200GeV

QClustering + Pruning = QPruning

Ex. a hadronic W jet from WW events

The original jet is made from C/A algorithm with R = 1.0 and pT > 200GeV

QClustering + Pruning = QPruning

Before we proceed, one comment about the choice of weight

$$\Omega_{ij} = \frac{1}{N} \exp\left(-\alpha \ \frac{d_{ij}}{d_{\min}}\right)$$

Who ordered the choice of d_{ij} and α ?

Before we proceed, one comment about the choice of weight

$$\Omega_{ij} = \frac{1}{N} \exp\left(-\alpha \ \frac{d_{ij}}{d_{\min}}\right)$$

Before we proceed, one comment about the choice of weight

$$\Omega_{ij} = \frac{1}{N} \exp\left(-\alpha \ \frac{d_{ij}}{d_{\min}}\right)$$

For $0.1 > \alpha > 0$ our results are insensitive to the choice of α and the form of d_{ij}

QPruning vs. Pruning

Let us take a sample jet

Application in signal discovery

QPruning vs. Pruning

Let us take a sample jet

Application 1: discovery of W

- When there is an intrinsic mass scale for a jet, the pruned jetmass is more or less robust under variation of paths.
- Signal jets with decay products of massive resonances have intrinsic mass scales.
- Even QCD jets with m/p_T ~ 1 have hard splittings and hence intrinsic mass scales.
- But background is dominantly due to QCD jets with m/pt < 1/2 whose masses are highly volatile.

Application 1: discovery of W

When there is an intrinsic mass scale for a jet, the pruned jetmass is more of less robust under variation of paths.

Application 1: discovery of W

volatility of a jet
$$\mathcal{V} = \frac{\omega_p}{m_p}$$

 ω_p = width of jetmass distribution m_p = averaged pruned jetmass

Application 1: discovery of W

a cut on \mathcal{V} decreases background significantly

 $\frac{\delta S\mid_{\rm Q}}{\delta S\mid_{\rm Cl}}$

Application 1: discovery of W

a cut on $\,\mathcal{V}\,$ decreases background significantly

Application 1: discovery of W

a cut on $\,\mathcal{V}\,$ decreases background significantly

Unofficial comparisons

QPruning vs. Pruning

Let us take a sample jet

Application in signal discovery

QPruning vs. Pruning

tagging efficiency is either 0 or 1

QPruning vs. Pruning

Consider candidates for a W jet

Pruning -> QPruning

A transition from a discrete (binomial distribution) to a continuous distribution

QPruning vs. Pruning

Pruning --> QPruning

A binomial distribution --> a continuous distribution

 $\alpha = 0.1$

 $\alpha = 0.01$

Use the distribution to reduce statistical fluctuations in measurements

Statistical Fluctuation

Application 2: CS measurement

 $<\tau>$ = average of the distribution var(τ) = variance of the distribution

numerical

 $\sqrt{N} imes rac{\sqrt{\mathrm{Var}\left(m_{\mathrm{exp}}
ight)_{0}}}{\left\langle m_{\mathrm{exp}}
ight
angle_{0}}
ight|_{\mathrm{m}}}$

Application 2: CS measurement

- As an example, take a sample of ~10 boosted QCD jets and ask for number of jets in a mass bin.
- The uncertainty associated with cross-section measurement decreases from classical pruning to QPruning
- Need half the luminosity to make a measurement of the same precision.

$$\alpha = 10^{-2}$$

Algorithm	$\frac{\delta N}{\sqrt{N}}$	Relative luminosity required
prune with C/A	~1.0	1.0
QPrune	0.72	0.52
		l

Application 3: mass measurement

- As an example, take a sample of ~10 boosted W jets and ask for average jet mass.
- The uncertainty associated with mass measurement decreases from classical pruning to QPruning
- Need less than half the luminosity to make a measurement of the same precision.

$$\alpha = 10^{-2}$$

Algorithm	Mass uncertainty [GeV]	Relative luminosity required
prune with C/A	3.2	1.0
QPrune	2.4	0.58

Future Directions

- In substructure physics, it still remains to be seen whether QClustering can be applied to other quantities such as massdrop, Y₂₃ etc.
- QClustering has been done on the elements of a jet. We intend to extend it to an entire event.
- We need to find a formalism towards analytical calculations.

Works in progress

- QClustering has been done on the elements of a jet. We intend to extend it to an entire event.

work in progress with Ellis also Kahawala, Krohn, Schwartz

Q-Anti-k_T Clustering

all di-jet masses in a W+jet event

Works in progress

- QClustering has been done on the elements of a jet. We intend to extend it to an entire event.

work in progress with Ellis also Kahawala, Krohn, Schwartz

Q-Anti-k_T Clustering

Works in progress

- QPruning extended to an event (tt event)

Pruned jetmass for a top candidate (3-jet resonance)

Works in progress

- Towards analytically calculation for Qclustering

(Hornig & Schwartz)

