Date: 2010-05-16 05:47:06 CEST

Improving the sensitivity of the top quark charge asymmetry measurements at the LHC

EXPERIMENT

Jean-François Arguin (LBNL)

HE Seminar, UC Davis

January 17, 2012

OUTLINE

★ Introduction to top quark and top asymmetry measurements

★ Three parts talk:

*A_{fb} measurements at the Tevatron

*Current top asymmetry measurement at ATLAS

*How to improve the Ac measurements at the LHC

TOP QUARK: A UNIQUE SM PARTICLE

- * Most striking characteristics: M_{top}=173.2±0.9 GeV
- * The study of top quark is highly motivated (only observed particle with its own ATLAS and CMS physics groups):

- * <u>Connection to new physics</u>? Yukawa coupling =0.995±0.005
- * Couples to strong force \Rightarrow large $\sigma_{ttbar} \Rightarrow huge samples at LHC$
- * <u>Rich signature</u> (jets, E^{miss}, b-jets, leptons)
- * Dominant background to new physics (e.g. SUSY with leptons and/or b-jets)
- * Tiny lifetime \Rightarrow can access top properties directly

WHAT DO WE KNOW ABOUTTHE TOP?

* We learned a lot since its discovery in 1995...

- * Mass measured to 0.5% at the Tevatron. Consistent within the various channels
- * Single-top quark production observed
- * Plus many others (charge, W helicity, spin correlation, Br, etc, etc)
- * ... but there still lots of unknown. Today's talk will focus on the production mechanism of top-antitop pairs
 - * Cross-section measured to \approx 6% experimentally (both Tevatron and LHC), theory uncertainty \approx 10% \Rightarrow room for new physics in top sample
 - ★ dσ/dM_{ttbar}: narrow width resonance excluded to 1.0-1.5 TeV (≤pb), but constraints on wide resonance weaker
 - * Forward-backward asymmetry probed for the first time only recently (2008)

AFB AT PROTON-ANTIPROTON COLLIDER

★ Measured quantity:

 $A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

* Where
$$\Delta y = y_t - y_{tbar}$$

* SM prediction (NLO): $A_{ttbar} = 0.06 \pm 0.01$

* Only non-zero at NLO

- ★ However recently pointed out that EW corrections not negligible: A^{ttbar}≈0.089 (Hollik, Pagani 2011)
- ★ NNLO not fully known but partial results suggest < 10%</p>

AFB AT PROTON-ANTIPROTON COLLIDER

Backward

★ Measured quantity:

 $A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

* Where
$$\Delta y = y_t - y_{tbar}$$

* SM prediction (NLO): $A_{ttbar} = 0.06 \pm 0.01$

* Only non-zero at NLO

★ However recently pointed out that EW corrections not negligible: A^{ttbar}≈0.089 (Hollik, Pagani 2011)

★ NNLO not fully known but partial results suggest < 10%</p>

MORE ON SM PREDICTIONS

*****SM A_{fb} only occurs at $O(\alpha_s^3)$

AFB BEYOND THE SM

★ Several models could be responsible for anomalous A_{fb}

★Model building constraints: A_{ttbar}, σ_{ttbar}, dσ/dm_{ttbar}, flavor, dijet resonance, same-sign top, etc

★Not the topic of this talk, take home message: several BSM can accommodate anomalous A_{fb}

TOP COLLIDER PHENO 101

- Pair production dominates
 - Tevatron: qqbar dominated: σ_{ttbar} =7.2±0.8pb
 - LHC: gg dominated, $\sigma_{ttbar} = 165^{+8}$ -11pb
- Top decays immediately and 100% of the time to a W boson and a b-quark: t→Wb
- The W boson decays define the experimental channel
 - W→Iv or W→qqbar'
- This talk focuses on the lepton+jets channel:
 - One isolated e or μ from W
 - tau not yet considered
 - Missing ET from neutrino from W
 - 2 b-jets
 - 2 jets from W

Tevatron Measurements

I'll concentrate on the results that came out in 2011 from each experiment (and created the most interest)

L+jets CDF: Phys. Rev. D 83, 112003 (2011) L+jets DØ: arXiv:1107.4995 [hep-ex] Dilepton CDF: CDF Note 10436

L+JETS EVENT SELECTIONS

- ★ 5.3 fb⁻¹
- ★ e(µ) E_T(p_T) > 20 GeV
- **★** e(**μ**) |**η**|<|.0
- ★ E^{miss}>20 GeV
- ★ ≥4 jets with E_T>20 GeV, |**η**|
- ★≥Ib-tag (SECVTX)

★ 5.4 fb⁻¹

- ★ e(µ) E_T(p_T) > 20(25) GeV
- ★ e(μ) |η|<|.|(2.0)
- ★ E_T^{miss} >20(25)GeV e(µ)
 - * Plus some $\Delta \phi$ cuts
- ★ ≥4 jets with E_T >20 GeV, $|\eta|$ <2.5
 - * Leading jet p_T>40 GeV

★ ≥ I b-tag (neural network)

BACKGROUND AND SIMULATION

* Total: 1260

* Background: 283±91

*** Simulation**:

* Signal: Pythia

* MC@NLO as cross-check

* W+jets: ALPGEN

★ Number of events (5.4 fb⁻¹)

* Total: |58|

* Background: 455±47

*** Simulation**:

* Signal: MC@NLO

* W+jets: ALPGEN

TTBAR EVENT RECONSTRUCTION

*** Common to both**: X² fit based on the ttbar hypothesis

- * Mass constraints of W and top mass
- * Object momentum can float within experimental resolutions
- *** Performance**: $\delta\Delta y \sim 0.10$ (CDF), 70% correct parton-jet assignment (DØ)

SM PREDICTIONS

- * **Parton-level**: 'truth''-level before any detector effects
 - Desirable to compare to theory and other experiments
- * **Reco-level**: Pure ttbar (no bkgd) but with detector acceptance and resolution effects

SM (%)	CDF MCFM	CDF MC@NLO	DØ MC@NLO
Parton- level	5.8±0.1	5.2±0.8	5.0±0.1
Reco-level (no bkgd)	N/A	2.4±0.5	2.4±0.7

RECO-LEVEL ASYMMETRY (BKGD SUBTRACTED)

 $A_{fb} = 7.5 \pm 3.7\%$

UNFOLDING AND SYSTEMATICS

Unfolding: Invert acceptance and resolution matrix to go back to parton-level. Systematics affect the unfolding

CDF		DQ	Ø
effect	$\delta A^{\mathrm{t}\overline{\mathrm{t}}}$		$\overset{a}{=}$ (%) Prod. level
background magnitude	0.011	Source	Measurement
background shape	0.007	Jet reco	± 1.0
ISR/FSR	0.001	JES/JER	-1.3
JES	0.007	Signal modeling	+0.3/-1.6
PDF	0.005	b tagging	± 0.1
color reconnection $I \cap MC$ generator	0.004	Charge ID Bg subtraction	+0.2/-0.1 +0.8/-0.7
total	0.003	Unfolding Bias Total	+1.1/-1.0 +1.8/-2.6

Note: statistical uncertainties (7% CDF, 6% DØ) dominate

PARTON-LEVEL ASYMMETRY

Reminder: SM predicts A_{fb}~6±1%

 $A_{fb} = 19.6 \pm 6.5\%$ 2.4 σ from SM

DØ also performs a leptonbased asymmetry (MC@NLO: 2.1±0.1%)

> A_{fb} = 15.2±4.0% 3.3 σ from SM

CROSS-CHECKS

★ Antitag (bkgd) control sample A_{fb} consistent with zero: 3.3±1.8%

 ★ Δy consistent with lepton charge

selection	$A^{\mathrm{t}\overline{\mathrm{t}}}$
inclusive	0.057 ± 0.028
electrons	0.026 ± 0.037
muons	0.105 ± 0.043
single b -tags	0.058 ± 0.031
double $b\text{-tags}$	0.053 ± 0.059

- ★ Antitag (bkgd) control sample A_{fb} consistent with zero: 4.1±4.1%
- ★ No dependence on magnet polarities (inverted regularly at DØ)
- ★ Consistent with lepton charge (reco-level)

DØ PT(TTBAR) ANALYSIS

* SM A_{fb} depends on p_T (ttbar): high value selects ttbar+jets (negative A_{fb})

CDF MTTBAR DEPENDENCE

★ New physics could produce larger A_{fb} at high M_{ttbar}

★ Separate in two bins (chosen a priori): Mttbar < and > 450 GeV

selection	all $M_{t\bar{t}}$	$M_{t\bar{t}} < 450 \ \mathrm{GeV}/c^2$	$M_{t\bar{t}} \ge 450 \ \mathrm{GeV}/c^2$
reco data	$0.057{\pm}0.028$	-0.016 ± 0.034	$0.210 {\pm} 0.049$
MC@NLO	$0.017 {\pm} 0.004$	$0.012 {\pm} 0.006$	$0.030 {\pm} 0.007$
A_{lh}^+	$0.067 {\pm} 0.040$	-0.013 ± 0.050	$0.210 {\pm} 0.066$
A^{lh}	$-0.048 {\pm} 0.039$	$0.020{\pm}0.047$	-0.210 ± 0.071

★ Large asymmetry for M_{ttbar} > 450 GeV

★ Effect is CP conserving

*After unfolding: A_{fb}=0.475±0.114 (SM: 0.088±0.013, 3.4**σ** away)

CROSS-CHECKS TO CDF AFB VS MTTBAR

selection	N events	all $M_{t\bar{t}}$	$M_{t\bar{t}} < 450 \ \mathrm{GeV}/c^2$	$M_{t\bar{t}} \ge 450 \ \mathrm{GeV}/c^2$
standard	1260	$0.057 {\pm} 0.028$	-0.016 ± 0.034	$0.212{\pm}0.049$
electrons	735	$0.026 {\pm} 0.037$	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	$0.105 {\pm} 0.043$	-0.012 ± 0.054	$0.348 {\pm} 0.080$
data $\chi^2 < 3.0$	338	$0.030 {\pm} 0.054$	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	$0.062 {\pm} 0.028$	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	$0.058{\pm}0.031$	-0.015 ± 0.038	$0.224{\pm}0.056$
data double b-tag	281	$0.053 {\pm} 0.059$	-0.023 ± 0.076	$0.178 {\pm} 0.095$
data anti-tag	3019	$0.033{\pm}0.018$	$0.029 {\pm} 0.021$	$0.044{\pm}0.035$
pred anti-tag	-	$0.010 {\pm} 0.007$	$0.013 {\pm} 0.008$	$0.001 {\pm} 0.014$
pre-tag	4279	$0.040 {\pm} 0.015$	0.017 ± 0.018	$0.100{\pm}0.029$
pre-tag no-b-fit	4279	$0.042 {\pm} 0.015$	$0.023 {\pm} 0.018$	$0.092{\pm}0.029$

★ Plus:

- * M_{ttbar} spectrum: good data-MC agreement
- * Study njets dependence (not enough stats to conclude)

$CDFVS D \emptyset: A_{FB}VS M_{TTBAR} AND \Delta Y$

21

 $\frac{|\Delta y| \ge 1.0}{0.208 \pm 0.062}$ $0.2|3 \pm 0.097$

★ Both DØ and CDF observe an increase of A_{fb} vs Δy

★DØ doesn't confirm nor rule out CDF mass dependence result

★ Situation needs clarification

CDF DILEPTON AFB (5.1 FB-1)

- ★ Sample of 334 events with 87±17 bkgd
- * Measure the $\Delta \eta_{I}$ asymmetry, unfold using simulation to Δy_{t}
- ★ Signal region (≥2-jets, E^{miss}>25 GeV) after unfolding:

 $A_{fb} = 0.42 \pm (0.15)^{stat} \pm (0.05)^{syst}$

★ Cross-checks: A_{fb} in the 0, 1, 2jets bins (w/o E_T^{miss}) consistent with 0

- ★ Not enough stats to be sensitive at high M_{ttbar}
- ★ Combination with L+jets inclusive (2.9**σ** away from SM):

 $A_{fb} = 0.20 \pm 0.07_{stat} \pm 0.02_{sys}$

MY CONCLUSIONS ABOUT THE TEVATRON RESULTS

- ★ Discrepancy with the SM at the level of 2 up-to 3.3σ observed by both CDF and DØ for the inclusive A_{fb}
- \star CDF dependence over M_{ttbar} neither confirmed nor ruled out by DØ
 - * But both see a larger A_{fb} at large Δy
- ★ There are theory issues: SM predictions only effectively at LO, modeling problems observed by DØ
- Results are statistically limited, increasing datasets by x2 but probably won't give unambiguous conclusions (i.e. neither clear 5σ excess nor completely rule out the current deviation)

⇒ Clarification will be needed from the LHC

LHC Measurements

L+jets ATLAS: <u>https://cdsweb.cern.ch/record/1372916/files/ATLAS-CONF-2011-106.pdf</u> L+jets CMS: <u>https://cdsweb.cern.ch/record/1369205/files/TOP-11-014-pas.pdf</u>

SM LHC PREDICTIONS

- ★ No forward-backward asymmetry at a pp collider
- ★ However a positive A_{fb} at the Tevatron would result in the top be produced less centrally and the antitop be more central
 - * Because the quark (anti-quark) tends to be a valence (sea) quark

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_{\bar{t}}| > |y_t|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_{\bar{t}}| > |y_t|)},$$

- * Measurement is also complicated by the fact the gg production dominates (≈70% at √s=7 TeV) and dilutes any A_c
- * However we have **huge datasets**! ~x35 more ttbar reco. on tape than Tevatron meas.

EVENT SELECTIONS AND DATASETS

- ★ Dataset: 0.7 fb⁻¹
- *** Event selections:**

***MC** simulations:

*Signal: MC@NLO+Herwig

* $e(\mu)$: Isolated + $E_T(p_T) > 25(20)$ GeV + $|\eta| < 2.47(2.5)$

```
* E<sub>T</sub><sup>miss</sup>>35(20) GeV e(µ) + M<sub>T</sub>
cuts
```

 $* \geq 4$ jets with E_T>25 GeV, $|\mathbf{\eta}| < 2.5$

* ≥ Ib-tag (secondary vertex tagger) * W+jets: ALPGEN+Herwig

BACKGROUNDS

Channel	μ + je	ets pr	retag	μ + je	ets ta	gged	e + je	ets p	retag	e + je	ets ta	gged
tī	4784	±	5	3247	±	4	3293	±	4	2218	±	4
Single top	306	±	2	171	±	2	219	±	2	124	±	2
Z+jets	632	±	7	43	±	2	535	±	7	35	±	1
Diboson	90	±	2	8	±	1	56	±	1	5	±	0
W+jets	5741	±	915	494	±	234	3436	±	628	309	±	144
QCD	1103	±	552	227	±	227	665	±	332	84	±	84
Total background	7871	±	1068	943	±	326	4910	±	711	557	±	167
Signal + background	12655	±	1068	4189	±	326	8203	±	711	2775	±	167
Observed			12705			4392			8193			2997

*** Background estimates**

*W+jets:W_{tagged} = W_{pretag}×f_{tagged} (both terms estimated in a data-driven manner)

*QCD (fake): matrix-method

* Others: MC simulation

TTBAR EVENT RECONSTRUCTION

*Likelihood fitter based on ttbar event hypothesis:

★Top and W mass constraints

★Lepton, E^{Tmiss} and jet energy (and angle) non-gaussian resolution transfer function

★Includes up-to 5 jets

★b-tagging probability

★Fraction of correct assign.: 74%

UNFOLDING AND SYSTEMATICS

Unfolding used to correct for detector and acceptance effects. Shown to be unbiased plus for large range of input A_C

	Electron channel	Muon channel		
Source of systematic uncertainty	ΔA_C			
Signal and background modelling				
tī generator	0.0243	0.0100		
Parton shower/fragmentation	0.0108	0.0079		
ISR/FSR	0.0074	0.0074		
PDF uncertainty	0.0008	0.0008		
Top mass	0.0059	0.0059		
QCD normalisation	0.0062	0.0059		
W+jets normalisation	0.0054	0.0097		
W+jets shape	0.0043	0.0043		
Z+jets normalisation	0.0002	0.0002		
Z+jets shape	0.0010	0.0010		
Single Top normalisation	0.0002	0.0002		
Diboson normalisation	0.00001	0.00001		
MC sample sizes	0.0043	0.0029		
Detector modelling				
Muon efficiencies	(n.a.)	0.0002		
Muon momentum scale and resolution	0.0004	0.0004		
Electron efficiencies	0.0004	(n.a.)		
Electron energy scale and resolution	0.0004	0.0004		
Lepton charge misidentification	0.0002	0.0002		
Jet energy scale	0.0041	0.0046		
Jet energy resolution	0.0105	0.0040		
Jet reconstruction efficiency	0.0003	0.0003		
b-tagging scale factors	0.0038	0.0038		
Charge asymmetry in b-tagging efficiency	0.0007	0.0007		
Calorimeter readout	0.0015	0.0029		
Combined uncertainty	0.032	0.022		

Theory uncert. are important!

RESULTS (AFTER UNFOLDING)

Asymmetry	detector and acceptance unfolded
A_C (muon pretag)	-0.016 ± 0.028 (stat.) ± 0.064 (syst.)
A_C (muon <i>b</i> -tag)	-0.028 ± 0.019 (stat.) ± 0.022 (syst.)
A_C (electron pretag)	-0.023 ± 0.034 (stat.) ± 0.065 (syst.)
A_C (electron <i>b</i> -tag)	-0.009 ± 0.023 (stat.) ± 0.032 (syst.)

Combination (B-tag): $A_{\rm C} = -0.024 \pm 0.016 \, (\text{stat.}) \pm 0.023 \, (\text{syst.})$

CMS MEASUREMENTS

Inclusive asymmetry: $A_C^y = -0.013 \pm 0.026 \text{ (stat.)}^{+0.026}_{-0.021} \text{ (syst.)}$

*No dependence vs M_{ttbar} observed, **but no unfolding** applied

LHC CONCLUSIONS

★ No significant A_C observed at LHC

***** However this does not contradict the Tevatron results

- * Inclusive asymmetry not very sensitive to new physics at LHC
- * Results vs M_{ttbar} from CMS is only at reconstructed level

***** Results already systematics-limited

- * Dominated by signal modeling uncertainties which will not improve quickly (require better understanding of ttbar production like differential cross-section measurements)
- To have a chance to be sensitive to new physics effects, need to select corners of phase space to increase the asymmetry

Increasing Ac

Presented today:

M. Freytsis, Z. Ligeti, JFA, Phys. Rev. D 84, 071504 (2011) <u>Other similar work exist:</u> [Kagan, Kamenik, Perez, Stone, 1103.3747] [Wang, Xiao, Zhu, 1008.2685; Aguilar-Saavedra, Juste, Rubbo, 1109.3710]

FUTURE DIRECTIONS: GOING FORWARD

- ★gg→ttbar dominates (~85%), but is really a **background** to A_C measurement
- * The signal qqbar produced events tends to be produced forwardly since the q (qbar) tend to be valence (sea) quarks
- ★ The ttbar physics program of both ATLAS and CMS uses jet only up-to [n] ~2.5
- ★ However the ATLAS and CMS calorimeters are capable to reconstruct jets up-to |n|~4.5

* This is exemplified by important measurements such as single-top observation and inclusive jet cross-section which use forward jets

→ Can increase A_c by using forward jets

METHODOLOGY

- ★ Choose a few representative models that:
 - * Yield roughly Tevatron A_{fb}
 - * Survive experimental bounds
 - * Scan range of possibilities (e.g. different channels s, t, u)

Predictions	new physics models				
Tredictions	Z'	Axigluon	Scalar 3		
$A_{t\bar{t}}^{\rm TEV}(m_{t\bar{t}} > 450{\rm GeV})$	0.30	0.26	0.29		
$A_{tar{t}}^{ ext{TEV}}$	0.15	0.14	0.17		
$\sigma_{t\bar{t}}^{\mathrm{TEV}}/\sigma_{t\bar{t}}^{\mathrm{TEV,SM}}$	0.85	1.08	1.19		
$\sigma_{t\bar{t}}^{ m LHC}/\sigma_{t\bar{t}}^{ m LHC,SM}$	1.01	1.16	1.11		

Axigluon: $m_A = 2$ TeV, $g_A = 2.4$,Scalar 3: $m_S = 750$ GeV, $\lambda = 3.0$.

★SM contributions using MCFM

- ★ New physics using Madgraph+Pythia
- Study is performed at the parton-level (no bkgd)

EVENT SELECTIONS

- ★RI: LHC-like cuts, including jets $|\eta|$ <2.5
- ★R2: Same as above plus jets |n|<4.5. One of the b-jet has to be within |n|<2.5 to allow b-tagging.</p>
- *****R3: Same as above but require the hadronic top: $|\mathbf{\eta}_t|$ > 2.5
 - $*|\eta_t|$ can be >4.5 since the decay products in the opposite ϕ hemisphere
- ★MI: M_{ttbar}>450 GeV
- ★M2: M_{ttbar}>550 GeV

RESULTS

- ★ RI-R3 alone hopeless to find new physics, need a mass cut in addition
- ★ M1&M2 increase A_C to ~5-9% but would like more given systematics are ~2-3%
- ★ Combinations of R&M cut increase A_C up-to 28% for Z'! Also 14% for scalar but only 9% for axigluon
 - * Different behavior will help distinguish between models
- ★ Large price to pay in efficiency → need large samples

	Cute	SM	new physics models						
	Outs	MCFM	Z'	Axigluon	Scalar 3				
	B.	4 - 0.014	$A_c = 0.022$	$A_{c} = 0.032$	$A_c = 0.041$				
	n_1	$A_c = 0.014$	$\varepsilon = 0.55$	$\varepsilon = 0.56$	$\varepsilon = 0.56$				
	Ra	$A_{-} = 0.019$	$A_{c} = 0.032$	$A_{c} = 0.033$	$A_c = 0.042$				
	102	$n_c = 0.015$	$\varepsilon = 0.65$	$\varepsilon = 0.65$	$\varepsilon = 0.65$				
	Re	4 - 0.020	$A_{c} = 0.083$	$A_{c} = 0.048$	$A_c = 0.054$				
	113	$A_c = 0.020$	$\varepsilon = 0.14$	$\varepsilon = 0.14$	$\varepsilon = 0.13$				
	D. 8. M.	$A_c = 0.022$	$A_c = 0.049$	$A_c = 0.050$	$A_c = 0.062$				
	$K_1 \propto M_1$		$\varepsilon = 0.30$	$\varepsilon = 0.28$	$\varepsilon = 0.33$				
	Ro & M.	$A_{c} = 0.023$	$A_c = 0.067$	$A_{c} = 0.051$	$A_c = 0.068$				
	$n_2 \propto m_1$		$\varepsilon = 0.36$	$\varepsilon = 0.33$	$\varepsilon = 0.38$				
	Ro & M	$A_c = 0.042$	$A_{c} = 0.18$	$A_{c} = 0.077$	$A_c = 0.099$				
	113 @ 111		$\varepsilon = 0.072$	$\varepsilon=0.057$	$\varepsilon = 0.060$				
	R. & Ma	$A_c = 0.025$	$A_c = 0.079$	$A_{c} = 0.070$	$A_c = 0.092$				
	$n_1 \propto m_2$		$\varepsilon = 0.15$	$\varepsilon = 0.13$	$\varepsilon = 0.17$				
	Ro & Mo	4 - 0.023	$A_c = 0.12$	$A_c = 0.072$	$A_{c} = 0.10$				
	112 @ 112	$A_c = 0.025$	$\varepsilon = 0.18$	$\varepsilon = 0.15$	$\varepsilon = 0.20$				
	Ro & Mo	A = 0.044	$A_{c} = 0.28$	$A_{c} = 0.092$	$A_c = 0.14$				
	103 00 1012	$A_c = 0.044$	$\varepsilon = 0.041$	$\varepsilon = 0.026$	$\varepsilon = 0.029$				

AC AND EFFVS MTTBAR AND R CUTS

- ★ Assuming current stat. uncert. from ATLAS:
 - * R2&M2: δ ~1% (stat.) for 5 fb⁻¹
 - * R3&M2: δ~1.5% (stat.) for 15 fb⁻¹
- ★ But need full simulation to confirm results!

EXPERIMENTAL CHALLENGES OF USING FORWARD JETS

* JES uncertainty is significantly worse

- ★ This could be mitigated by performing in-situ W→jj measurement
- ★ The effect of **pile-up** will be worse and tracking is not available to help
 - * But pile-up jets will be reduced with the likelihood fit to the ttbar hypothesis

* More boosted tops (i.e. decay products merged in a single jet) in the forward region

*True, but we found the fraction of boosted tops inside R=0.6 to be 10-25%, so manageable

CONCLUSIONS: IMPROVING Ac AT LHC

* Inclusive asymmetry measurement not sensitive to new physics at LHC

- ★ We studied the effect of M_{ttbar} and η_{jet} and η_{top} cuts using representative models yielding A_{fb} similar to what is observed the Tevatron
- * Combinations of cuts can increase the asymmetry close or above ~0.1, so observable with enough data

* This assumes statistical uncertainty of I-2% and systematics of ~2% can be achieved with the 2011-2012 dataset

* Work on **reducing the signal modeling systematics would help** the LHC A_C measurement

* Results need to be demonstrated in a realistic environment using full simulation

MODELS

 $Z': m_{Z'} = 260 \text{ GeV}, \qquad lpha_{Z'} = 0.048 \,,$ Axigluon: $m_A = 2 \text{ TeV}, \qquad g_A = 2.4 \,,$ Scalar **3**: $m_S = 750 \text{ GeV}, \qquad \lambda = 3.0 \,.$