simple boosted objects and novel views of top

Daniel Whiteson UC Irvine Featuring brand new ATLAS, CDF results!

Seminar, UC Davis, Feb 2012

Whiteson, ZZ->4I, 4I searches

Postdocs

Ning Zhou, SS 2I, SS tops, Y+MET Andy Nelson, ZZ + searches

Grads

Robert Porter, CDF SS dileptons Michael Werth, t' in OS dileptons 34/pb t' in OS dileptons 1/fb Kanishka Rao, CDF top+MET b' in l+jets t+j resonance (CDF+ATLAS) resonances in top Eric Albin, Y+MET

Color Key CONF Published In Review

Undergrads

Johnny Ho, t+j resonance (ATLAS) Jared Vasquez, CDF ZZ+met, t' to OS dilep 5/fb Four younger students Z' to gluons, resonances in top

Whiteson, ZZ->4I, 4I searches

Postdocs

Ning Zhou, SS 2I, SS tops, Y+MET Andy Nelson, ZZ + searches

Grads

- Robert Porter, CDF SS dileptons Michael Werth, t' in OS dileptons 34/pb t' in OS dileptons 1/fb Kanishka Rao, CDF top+MET b' in l+jets t+j resonance (CDF+ATLAS) resonances in top Y+MET

Color Key CONF Published In Review Planned

Undergrads

Eric Albin,

Johnny Ho, t+j resonance (ATLAS) Jared Vasquez, CDF ZZ+met, t' to OS dilep 5/fb Four younger students Z' to gluons, resonances in top

Outline

I. Introduction: experimental innovation

- II. Simple boosted objects
- III. Novel views of top quark events
- VI. Concluding rant: open data

History of biology PhDs

<u>1980s</u> Choose a gene

Manually sequence <5

Crude comparisons <u>1990s</u> Choose a set of genes 2000s Choose a genome

Automatically sequence 10s

Cheo 1M

Cheaply sequence 1M in < 1 week

Compare to databases of genes Invent new analytics to compare genomes

Still don't understand correlation vs causation

History of experimental HEP PhDs

<u>1980s</u> Choose a channel/signal

Enumerate backgrounds

Estimate backgrounds

Estimate uncertainties

Set limits

<u>1990s</u> Choose a channel/signal

Enumerate backgrounds

Estimate backgrounds

Estimate uncertainties <u>2000s</u> Choose a channel/signal

Enumerate backgrounds

Estimate backgrounds

Estimate uncertainties

Set limits

Set limits

Of course advances have been made for each step

So what is modern?

New experimental tools

Sophisticated triggering Multi-variate analysis/ Machine learning jet flavor tagging monopoles lepton-jets track-less jets boosted objects new resonances

So what is modern?

New experimental tools

Sophisticated triggering Multi-variate analysis/ Machine learning jet flavor tagging monopoles lepton-jets track-less jets boosted objects new resonances

Outline

I. Introduction: experimental innovation

II. Simple boosted objects

III. Novel views of top quark events

VI. Concluding rant: open data

Theory papers

Identifying Boosted Objects with N-subjettiness

Jesse Thaler and Ken Van Tilburg

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail: jthaler@jthaler.net, kvt@mit.edu

Counting sub-jets

(c)

Performance

How realistic?

Hard process →Pythia →Toy Calorimeterization →FastJet

To partially simulate detector effects and to speed up jet reconstruction, observable final-state particles with $|\eta| < 4$ are collected into "calorimeter" cells arranged in a rectangular lattice with 80 rapidity (η) and 64 azimuth (ϕ) bins (corresponding to approximately 0.1×0.1 sized cells). The calorimeter momenta are interpreted as massless pseudo-particles with energy given by the calorimeter energy.

Play time

theory performance : results in data

LEGO ATLAS : real ATLAS

How I read these plots

<u>Summary</u>: a lot of work for minor improvements which may be irrelevant

b'→ttbar→l+jets

Heavy particles decaying to top+jets

<u>Selection</u>

One lepton (e or µ) MET>20 At least five jets

Dataset ATLAS 1/fb

Analysis done largely by a single grad student: Kanishka Rao, UCI

b'→ttbar→l+jets

Heavy particles decaying to top+jets

b'→ttbar→l+jets

Heavy particles decaying to top+jets with boosted W's

Validate in ttbar

results

<u>Selection</u> Two OS lepton (e or μ) MET>60 At least two jets

Dataset ATLAS 1/fb

Analysis done largely by a single grad student: Michael Werth, UCI

OS QQ->WqWq

More W p_T means smaller opening angle between lepton and neutrino

OS QQ->WqWq

Results

TABLE V. Expected background, expected signal and observed data in *ee*, $\mu\mu$, and $e\mu$ channels for $m_Q = 300 - 500$ GeV after final selection. The uncertainties shown include both statistical and systematic contributions.

m_Q	Expected	Expe	ected	Observed
(GeV)	Background	Signal		Data
300	$300 \ ^{+40}_{-40}$	95	$^{+14}_{-12}$	315
350	$148 \ _{-18}^{+22}$	35	$^{+5}_{-4}$	180
400	$75 \begin{array}{c} +11 \\ -10 \end{array}$	17.1	$^{+2.5}_{-2.1}$	89
450	$49 \ ^{+8}_{-6}$	8.4	$^{+1.2}_{-1.0}$	57
500	$30 \ ^{+5}_{-4}$	4.4	$^{+0.6}_{-0.5}$	36

Outline

I. Introduction: experimental innovation

II. Simple boosted objects

III. Novel views of top quark events

VI. Concluding rant: open data

Tops

Studied to death?

- M_t, V_{tb}, BRs, charge, total cross-section, W helicity. top width & lifetime, gg vs qq, X->tt, etc...

What is left?

- Understand AFB anomaly

- Resonances inside top-like events

Testable hypothesis

Also predicts

same-sign tops through MxFV coupling

Rates

Testable at the Tevatron, enormous at the LHC

Same sign tops

b

t

<u>Same-sign tops</u>

Gives ss W's Gives ss dileptons

<u>LHC</u>

pp means ++ > --Smaller backgrounds I+jets charge asymmetry

CDF like-sign dileptons

1/fb PRL 2007

ls dileptons 6.1/fb

<u>Total 123.0 ± 24.6</u>

Data

145

same-sign tops

Many models

<u>Use 4f effective operators</u> (LL,LR,RR) modes

same-sign leptons+2jets

Process	Total $\ell\ell$
$t\bar{t}$	0.1 ± 0.0
$Z \to \ell \ell$	5.9 ± 1.7
WW, WZ, ZZ	7.2 ± 0.5
$W(ightarrow \ell u) \gamma$	0.9 ± 0.7
Fakes	13.8 ± 7.2
Total	28.0 ± 7.5
Data	27

coupling $|C|/\Lambda^2$ cross-section $\propto C^2/\Lambda^4$

Rule out a bunch of Z models

ATLAS

Selection

Two SS lepton (e or μ) MET>40 At least two jets

Dataset ATLAS 1/fb

> Analysis led by UCI postdoc : Ning Zhou

ATLAS

	e^-e^-	$\mu^-\mu^-$	$e^-\mu^-$
Fake	$0.2\pm0.3\pm0.1$	$0.7\pm0.3^{+0.6}_{-0.3}$	$0.5\pm0.2^{+0.7}_{-0.3}$
Charge flip	$0.3\pm0.1^{+0.3}_{-0.1}$	$0\pm0^{+0.01}_{-0}$	$0.3\pm0.1^{+0.2}_{-0.1}$
Real	$0.8\pm0.3^{+0.2}_{-0.5}$	$1.0\pm0.3^{+0.3}_{-0.6}$	$2.3\pm0.5^{+0.6}_{-1.8}$
Total	$1.4\pm0.4^{+0.3}_{-0.6}$	$1.7\pm0.4\pm0.7$	$3.1\pm0.6^{+1.0}_{-1.8}$
Data	1	2	2
tt_{LL}	$0.2\pm0.1\pm0.03$	$0.2\pm0.1\pm0.02$	$0.5\pm0.3\pm0.1$
tt_{LR}	$0.02 \pm 0.01 \pm 0.01$	$0.001^{+0.01}_{-0.001}\pm 0.001$	$0.02 \pm 0.02 \pm 0.01$
tt_{RR}	$0.5\pm0.3\pm0.1$	$0.1\pm0.1\pm0.2$	$0.8\pm0.3\pm0.1$
$b' \ 450 \ { m GeV}$	$1.8\pm0.2\pm0.2$	$2.1\pm0.2\pm0.2$	$4.3\pm0.3\pm0.4$
	e^+e^+	$\mu^+\mu^+$	$e^+\mu^+$
Fake	$e^+e^+ \ 0.8 \pm 0.6^{+0.2}_{-0.4}$	$\mu^+\mu^+ onumber 1.0 \pm 0.3^{+0.6}_{-0.4}$	$e^+\mu^+ \ 3.3 \pm 1.1^{+1.6}_{-1.4}$
Fake Charge flip	$e^+e^+ \ 0.8 \pm 0.6^{+0.2}_{-0.4} \ 0.3 \pm 0.1^{+0.3}_{-0.1}$	$\mu^+\mu^+ \ 1.0 \pm 0.3^{+0.6}_{-0.4} \ 0 \pm 0^{+0.01}_{-0.0}$	$\begin{array}{c} e^+\mu^+ \\ 3.3 \pm 1.1 ^{+1.6}_{-1.4} \\ 0.4 \pm 0.1 ^{+0.3}_{-0.1} \end{array}$
Fake Charge flip Real	$\begin{array}{r} e^+e^+ \\ 0.8\pm 0.6^{+0.2}_{-0.4} \\ 0.3\pm 0.1^{+0.3}_{-0.1} \\ 1.9\pm 0.5^{+0.5}_{-1.4} \end{array}$	$egin{array}{c} \mu^+\mu^+ \ 1.0\pm 0.3^{+0.6}_{-0.4} \ 0\pm 0^{+0.01}_{-0.0} \ 1.6\pm 0.3^{+0.6}_{-0.9} \end{array}$	$\begin{array}{c} e^+\mu^+ \\ 3.3\pm1.1^{+1.6}_{-1.4} \\ 0.4\pm0.1^{+0.3}_{-0.1} \\ 4.4\pm0.7^{+1.1}_{-3.0} \end{array}$
Fake Charge flip Real Total	$\begin{array}{r} e^+e^+ \\ 0.8 \pm 0.6 \substack{+0.2 \\ -0.4 \\ 0.3 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 1.9 \pm 0.5 \substack{+0.5 \\ -1.4 \\ 3.0 \pm 0.8 \substack{+0.6 \\ -1.4 \end{array}} \end{array}$	$\begin{array}{r}\mu^+\mu^+\\1.0\pm0.3^{+0.6}_{-0.4}\\0\pm0^{+0.01}_{-0.0}\\1.6\pm0.3^{+0.6}_{-0.9}\\2.6\pm0.4^{+0.9}_{-1.1}\end{array}$	$\begin{array}{r} e^+\mu^+ \\ 3.3 \pm 1.1 \substack{+1.6 \\ -1.4 \\ 0.4 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 4.4 \pm 0.7 \substack{+1.1 \\ -3.0 \\ 8.1 \pm 1.3 \substack{+2.1 \\ -3.3 \end{array}}}$
Fake Charge flip Real Total Data	$\begin{array}{c} e^+e^+ \\ 0.8 \pm 0.6 \substack{+0.2 \\ -0.4 \\ 0.3 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 1.9 \pm 0.5 \substack{+0.5 \\ -1.4 \\ 3.0 \pm 0.8 \substack{+0.6 \\ -1.4 \\ 2 \end{array}}$	$\begin{array}{r}\mu^+\mu^+\\1.0\pm0.3^{+0.6}_{-0.4}\\0\pm0^{+0.01}_{-0.0}\\1.6\pm0.3^{+0.6}_{-0.9}\\2.6\pm0.4^{+0.9}_{-1.1}\\1\end{array}$	$\begin{array}{c} e^+\mu^+ \\ 3.3 \pm 1.1 \substack{+1.6 \\ -1.4 \\ 0.4 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 4.4 \pm 0.7 \substack{+1.1 \\ -3.0 \\ 8.1 \pm 1.3 \substack{+2.1 \\ -3.3 \\ 10 \end{array}}$
$\begin{tabular}{c} Fake \\ Charge flip \\ Real \\ \hline Total \\ Data \\ \hline tt_{LL} \end{tabular}$	$\begin{array}{c} e^+e^+ \\ 0.8 \pm 0.6 \substack{+0.2 \\ -0.4 \\ 0.3 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 1.9 \pm 0.5 \substack{+0.5 \\ -1.4 \\ 3.0 \pm 0.8 \substack{+0.6 \\ -1.4 \\ 2 \\ 30.1 \pm 1.9 \pm 4.6 \end{array}$	$\begin{array}{r} \mu^+\mu^+ \\ 1.0\pm 0.3^{+0.6}_{-0.4} \\ 0\pm 0^{+0.01}_{-0.0} \\ 1.6\pm 0.3^{+0.6}_{-0.9} \\ 2.6\pm 0.4^{+0.9}_{-1.1} \\ 1 \\ 30.4\pm 1.9^{+4.3}_{-4.4} \end{array}$	$\begin{array}{r} e^+\mu^+ \\ 3.3 \pm 1.1 \substack{+1.6 \\ -1.4 \\ 0.4 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 4.4 \pm 0.7 \substack{+1.1 \\ -3.0 \\ 8.1 \pm 1.3 \substack{+2.1 \\ -3.3 \\ 10 \\ 64.2 \pm 2.8 \substack{+9.8 \\ -9.9 \end{array}}$
$\begin{tabular}{c} Fake \\ Charge flip \\ Real \\ \hline Total \\ Data \\ \hline tt_{LL} \\ tt_{LR} \\ \end{tabular}$	$\begin{array}{c} e^+e^+ \\ 0.8 \pm 0.6 \substack{+0.2 \\ -0.4 \\ 0.3 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 1.9 \pm 0.5 \substack{+0.5 \\ -1.4 \\ 3.0 \pm 0.8 \substack{+0.6 \\ -1.4 \\ 2 \\ 30.1 \pm 1.9 \pm 4.6 \\ 3.8 \pm 0.2 \pm 0.6 \end{array}$	$\begin{array}{c}\mu^+\mu^+\\1.0\pm0.3^{+0.6}_{-0.4}\\0\pm0^{+0.01}_{-0.0}\\1.6\pm0.3^{+0.6}_{-0.9}\\2.6\pm0.4^{+0.9}_{-1.1}\\1\\30.4\pm1.9^{+4.3}_{-4.4}\\4.2\pm0.3\pm0.6\end{array}$	$\begin{array}{r} e^+\mu^+ \\ 3.3 \pm 1.1 \substack{+1.6 \\ -1.4 \\ 0.4 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 4.4 \pm 0.7 \substack{+1.1 \\ -3.0 \\ 8.1 \pm 1.3 \substack{+2.1 \\ -3.3 \\ 10 \\ 64.2 \pm 2.8 \substack{+9.8 \\ -9.9 \\ 8.3 \pm 0.4 \pm 1.2 \end{array}$
$\begin{tabular}{c} Fake \\ Charge flip \\ Real \\ \hline Total \\ Data \\ \hline tt_{LL} \\ tt_{LR} \\ tt_{RR} \\ tt_{RR} \\ \end{tabular}$	$\begin{array}{c} e^+e^+ \\ 0.8 \pm 0.6 \substack{+0.2 \\ -0.4 \\ 0.3 \pm 0.1 \substack{+0.3 \\ -0.1 \\ 1.9 \pm 0.5 \substack{+0.5 \\ -1.4 \\ 3.0 \pm 0.8 \substack{+0.6 \\ -1.4 \\ 2 \\ \end{array}} \\ 30.1 \pm 1.9 \pm 4.6 \\ 3.8 \pm 0.2 \pm 0.6 \\ 35.5 \pm 2.1 \pm 5.6 \end{array}$	$\begin{array}{r} \mu^+\mu^+ \\ 1.0\pm 0.3^{+0.6}_{-0.4} \\ 0\pm 0^{+0.01}_{-0.0} \\ 1.6\pm 0.3^{+0.6}_{-0.9} \\ 2.6\pm 0.4^{+0.9}_{-1.1} \\ 1 \\ 30.4\pm 1.9^{+4.3}_{-4.4} \\ 4.2\pm 0.3\pm 0.6 \\ 29.5\pm 1.9\pm 4.2 \end{array}$	$\begin{array}{c} e^+\mu^+ \\ 3.3\pm1.1^{+1.6}_{-1.4} \\ 0.4\pm0.1^{+0.3}_{-0.1} \\ 4.4\pm0.7^{+1.1}_{-3.0} \\ 8.1\pm1.3^{+2.1}_{-3.3} \\ 10 \\ 64.2\pm2.8^{+9.8}_{-9.9} \\ 8.3\pm0.4\pm1.2 \\ 65.7\pm2.8\pm10.0 \end{array}$

negative charge

positive charge

ATLAS sees a few events, but consistent with background.

tt+u

M not self-conjugate, so no ss tops!

 $qg \rightarrow Mt \rightarrow$ (tbar +q) t \rightarrow ttbar + q

Look for resonance in t+j

But...

<u>s- channel</u>: can't generate asymmetry to explain top A_{FB} measurement

<u>t- channel:</u>

light mediators constrained by overall ttbar cross-sec

heavy mediators constrained by CDF invariant mass distribution

t+j resonance

<u>Resonance</u>

t+j resonance has never been examined

t+j mass at 500 and 800 GeV Events / 20 GeV tŦ $\int L = 5 \, \text{fb}^{-1}$ W+jets M(500) 10^{3} **M(800) 10²** 10<u></u> 1<u>,</u> 200 800 400 600 1000 1200 1400 Mass (GeV)

Analysis done largely by a single grad student: Kanishka Rao, UCI

Selection & dataset

Selection

One lepton (e or µ) MET>20 At least five jets

Dataset CDF 8.7/fb

Reconstruction

<u>Identify top, antitop</u> use standard kinematic fitter

<u>Choose additional jet</u> maximize m_{tj}

Validation

5-jet, 1tag, low HT

CDF t+j

Interpretation

Z'->gg giving ttj resonance

With Alwall, Rajaraman (to appear)

Higgs in WWbb

2+ b-tags

M_{h1}=125,M_{b1}=225,M_{h2}=325

300

300

Higgs in WWbb

With Evans, Luty, Kilminster (arXiv:1201.3691)

Outline

I. Introduction: experimental innovation

II. Simple boosted objects

III. Novel views of top quark events

VI. Concluding rant: open data

Open data

<u>"big learn": machine learning in big data</u> Lots of smart people & good ideas Few real applications (Netflix)

Number of people who wanted to work on HEP after my talk: > 25 after I said the data is not public: 0

Standard Model Production

SM Forbidden

Backgrounds?

WZ+jet

 $\begin{array}{l} Z+jet\\ tt \rightarrow ll \ bb \ vv \end{array}$

Lepton types

Final State	$e^{+}e^{-}e^{+}e^{-}$	$\mu^+\mu^-\mu^+\mu^-$	$e^{+}e^{-}\mu^{+}\mu^{-}$	$\ell^+\ell^-\ell^+\ell^-$
Observed	2	8	2	12
Bkg(data-driven)	$0.01^{+0.03+0.05}_{-0.01-0.01}$	$0.3^{+0.9}_{-0.3}\pm0.3$	$< 0.01^{+0.03}_{-0.01}$	$0.3^{+0.9+0.4}_{-0.3-0.3}$
Expected ZZ	$1.57 \pm 0.03 \pm 0.11$	$3.09 \pm 0.04 \pm 0.06$	$4.5 \pm 0.1 \pm 0.2$	9.1±0.1±0.3

Table 2: Summary of observed events, total background contributions and expected signal in the individual four-lepton and combined channels. The first error is statistical while the second is systematic. The uncertainty on the luminosity is not included. The errors on the background estimates span the 68% confidence interval, which is not symmetric about the best estimate because the background cannot be negative.

PRL 2011

Lepton types

Final State	$e^{+}e^{-}e^{+}e^{-}$	$\mu^+\mu^-\mu^+\mu^-$	$e^+e^-\mu^+\mu^-$	$\ell^+\ell^-\ell^+\ell^-$
Observed	2	8	2	12
Bkg(data-driven)	$0.01\substack{+0.03+0.05\\-0.01-0.01}$	$0.3^{+0.9}_{-0.3}\pm0.3$	$< 0.01^{+0.03}_{-0.01}$	$0.3^{+0.9+0.4}_{-0.3-0.3}$
Expected ZZ	$1.57 \pm 0.03 \pm 0.11$	3.09±0.04±0.06	.5±0.1±0.2	9.1±0.1±0.3

Table 2: Summary of observed events, total background contributions and expected signal in the individual four-lepton and combined channels. The first error is statistical while the second is systematic. The uncertainty on the luminosity is not included. The errors on the background estimates span the 68% confidence interval, which is not symmetric about the best estimate because the background cannot be negative.

PRL 2011

Mass distribution

ATLAS ZZ resonances

Process	Total
ZZ	$1.85 \pm 0.11 \pm 0.09$
Fakes	$0.02^{+1.03}_{-0.01} \ {}^{+0.75}_{-0.02}$
Total Bkg.	$1.87^{+1.04}_{-0.11} {}^{+0.75}_{-0.09}$
Data	3
$G(350\mathrm{GeV})$	$71 \pm 3 \pm 4$
G(500 GeV)	$12 \pm 0.5 \pm 0.6$
$G(750\mathrm{GeV})$	$1.5 \pm 0.08 \pm 0.07$
G(1000 GeV)	$(2.7 \pm 0.2 \pm 0.1) \times 10^{-1}$
$G(1250\mathrm{GeV})$	$(6.6 \pm 0.4 \pm 0.3) \times 10^{-2}$
G(1500 GeV)	$(1.9 \pm 0.1 \pm 0.1) \times 10^{-2}$

fiducial limits

 $\sigma_{ZZ \text{ fid}} < \frac{N_{ZZ}}{\epsilon_{ZZ} \times BF(ZZ \rightarrow \ell\ell\ell\ell) \times \mathcal{L}} = \frac{5.7}{0.61 \times 0.010 \times 1.02 \text{ fb}^{-1}} = 0.92 \text{ pb}$

fiducial limits

Graviton	Theory	Fiducial	Selection
Mass [GeV]	[pb]	Acceptance	Efficiency
350	41.70	27%	61%
500	6.45	28%	63%
750	0.69	31%	66%
1000	0.13	32%	66%
1250	0.03	33%	67%
1500	0.01	35%	66%

Anomalous 4

Process	Total
ZZ	$0.10 \pm 0.01 \pm 0.01$
Fakes	$0.61^{+1.25}_{-0.61}$
Total Bkg.	$0.71^{+1.25}_{-0.61}$
$H_{200}^{\pm\pm}$	$1.27 \pm 0.04 \pm 0.03$
Data	0

fiducial limits

$$\sigma_{41 \text{ fid}} < \frac{N_{4\ell}}{\epsilon_{\text{non}-ZZ} \times \mathcal{L}} = \frac{3.0}{0.62 \times 1.02 \text{ fb}^{-1}} = 4.7 \text{ fb}$$

fiducial limits

$$\sigma_{41 \text{ fid}} < \frac{N_{4\ell}}{\epsilon_{\text{non-ZZ}} \times \mathcal{L}} = \frac{3.0}{0.62 \times 1.02 \text{ fb}^{-1}} = 4.7 \text{ fb}$$

$H^{\pm\pm}$	Fiducial	non-ZZ
Mass [GeV]	Acceptance	Selection efficiency
100	7%	62%
150	12%	66%
200	16%	67%
300	22%	67%

Backup

Background strategy

Background strategy

Background strategy

systematic uncertainties

Lepton efficiencies

electron efficiencies (7% in eeee) muon efficiencies (2% in μμμμ)

<u>Fake background</u> (up to 80%) Light/heavy flavor composition quark/gluon composition

Z momenta

