A Composite Light Stop

John Terning UC Davis Csaba Csaki and Lisa Randall hep-ph/1201.1293

Outline

Motivation Seiberg Duality Composite Models Composite SUSY Breaking Light Stop Conclusion

Discovering Hierarchies

SPS: W,Z --> gauge hierarchy LEP: no light Higgs --> little hierarchy Tevatron: top --> Yukawa hierarchy LHC: no light SUSY --> squark mass hierarchy

Discovering Hierarchies

SPS: W,Z --> gauge hierarchy LEP: no light Higgs --> little hierarchy Tevatron: top --> Yukawa hierarchy LHC: no light SUSY --> squark mass hierarchy

> Minimal Composite SSM can resolve all these hierarchy problems

 $\mathcal{Q}_i = (\phi_i, \psi_i)$

 $\overline{\mathcal{Q}}_i = (\overline{\phi}_i, \overline{\psi}_i)$

Dual Theory $W = \frac{\tilde{M}q\overline{q}}{\Lambda}$ $\tilde{M} = M \Lambda_{\rm el}$ $W = y M q \overline{q}$ $y = \frac{\Lambda_{\rm el}}{\Lambda} < 4\pi$

Magnetic Coupling

$$y = \frac{\Lambda_{\rm el}}{\Lambda} < 4\pi$$

$$g_{\mathrm{mag}}^2(\Lambda_{\mathrm{el}}) > \frac{8\pi^2}{F\log(4\pi)} \approx \frac{31}{F}$$

realistic dual for SM gauge groups need to mix with weakly coupled gauge group

Electric TheorySU(6) $SU(8)_1$ $SU(8)_2$ $U(1)_V$ $U(1)_R$ Q \Box \Box 1 $\frac{1}{24}$ $\frac{4}{4}$ \bar{Q} \Box 1 \Box $-\frac{1}{24}$ $\frac{1}{4}$

 $W = y M q \overline{q}$

 $SU(8)_1 \supset SU(3) \times SU(3) \times SU(2)_{R,1}$ $SU(8)_2 \supset SU(3)_G \times SU(3) \times SU(2)_{R,2}$

Csaki, Shirman, JT hep-ph/1106.3074

Hypercharge $Y = Q_V + \left(T_{(1)}^{R,3} - T_{(2)}^{R,3}\right) + \frac{1}{24}\left(T_{(1)}^8 - T_{(2)}^8\right) - \frac{1}{3}T_{(2)}^3$

Yukawas

$W = y M q \overline{q}$

 $W \supset y \left[L_i H_u \bar{\nu}_i + L_i H'_d \bar{e}_i + Q_1 H_u \bar{u}_1 + Q_1 H'_d \bar{d}_1 + Q_j H_d \bar{d}_j + Q_j H'_u \bar{u}_j \right]$

i = 1, 2, 3 and j = 2, 3

SU(2)_L coupling either

add spectators to get a ridiculous amount of running

mix with a elementary SU(2)

$$\frac{1}{g^2} = \frac{1}{g_{\rm comp}^2} + \frac{1}{g_{\rm elem}^2}$$

Minimal Composite SSM

Minimal Composite SSM

Csaki, Shirman, JT hep-ph/1106.3074

Minimal Composite SSM

MCSSM

$W \supset yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + y\mathcal{H}EX$ $\langle \mathcal{H} \rangle = \mathcal{F} \gg f$ $m_{W'} \sim g_{\mathrm{comp}}\mathcal{F} \qquad m_{E,X} \sim y\mathcal{F}$

EWSB

$$V = y^{2} |H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2} (|H_{u}|^{2} + |H_{d}|^{2})$$

+ $m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2}$
+ $(ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8} (|H_{u}|^{2} - |H_{d}|^{2})^{2}$

$$\langle S \rangle = \frac{\sqrt{2} \left(A v^2 \sin \beta \cos \beta - 2T \right)}{2m_S^2 + y^2 v^2}$$

Fine Tuning

$$\langle S \rangle = \frac{\sqrt{2} \left(A v^2 \sin \beta \cos \beta - 2T \right)}{2m_S^2 + y^2 v^2}$$

neglecting g² terms

$$y^{2}v^{2} = \frac{2(y^{2}f^{2} - AS)}{\sin 2\beta} - 2y^{2}S^{2} - m_{H_{u}}^{2} - m_{H_{d}}^{2}$$
$$tuning: \quad \frac{y^{2}v^{2}}{m_{H_{u}}^{2}}$$

Fine Tuning

$$\frac{y^2 v^2}{m_{H_u}^2}$$

two-loop:

$$\Delta m_{H_u}^2 \sim -\frac{2y_t^2 \alpha_s^2}{\pi^3} |m_{\tilde{g}}|^2 \log^2 \frac{\Lambda}{\text{TeV}}$$

3 TeV gluino $\rightarrow 10\%$ tuning

CP Even Scalars

 $\beta = 0.7, f = 200 \text{ GeV}, A = -800 \text{ GeV}, T = 0, \text{ and } y = 2$

for a fixed Higgsino mass $y \langle S \rangle = 100$ GeV (upper line) and $y \langle S \rangle = 150$ GeV (lower line)

Soft SUSY Breaking $\mathcal{L} = \int d^{4}\theta \left(\mathcal{Q}^{\dagger} Z e^{V} \mathcal{Q} + \bar{\mathcal{Q}}^{\dagger} Z e^{V} \bar{\mathcal{Q}} \right) \\ + \int d^{2}\theta \left(SW^{\alpha}W_{\alpha} + \mu_{f}\bar{\mathcal{Q}}\mathcal{Q} \right) + h.c.$

$$Z = 1 - \theta^2 B - \bar{\theta}^2 B - \theta^2 \bar{\theta}^2 (m^2 - |B|^2)$$
$$S = \frac{1}{2g} - i \frac{\theta_{YM}}{32\pi^2} + \theta^2 \frac{m_\lambda}{g^2}$$
$$\Lambda_h = \mu e^{-16\pi S(\mu)/b}$$

Arkani-Hamed, Giudice, Luty, Rattazzi hep-ph/9803290

Soft SUSY Breaking

$$\begin{aligned} \mathcal{Q} &\to e^{A}\mathcal{Q} \ , \qquad \bar{\mathcal{Q}} \to e^{A}\bar{\mathcal{Q}} \\ Z &\to e^{-A-A^{\dagger}} \ , \qquad \Lambda_{h} \to e^{2F/bA}\Lambda_{h} \\ \Lambda^{2} &= \Lambda_{h}^{\dagger}Z^{2F/b}\Lambda_{h} \to \Lambda^{2} \end{aligned}$$

$$\log\frac{\Lambda}{\mu} = \frac{-8\pi^2}{bg^2} + \frac{-8\pi^2 m_\lambda}{bg^2} (\theta^2 + \bar{\theta}^2) + \frac{F}{b} m^2 \theta^2 \bar{\theta}^2$$

Composites

$$\mathcal{Q}\bar{\mathcal{Q}} \leftrightarrow M , \qquad \mathcal{Q}^N \leftrightarrow q^{F-N} , \qquad \bar{\mathcal{Q}}^N \leftrightarrow \bar{q}^{F-N}$$

$$q \to e^{AN/(F-N)}q$$
$$\bar{q} \to e^{AN/(F-N)}\bar{q}$$
$$M \to e^{2A}M$$

Composite Soft SUSY Breaking

$$\mathcal{L} = \int d^4\theta \left[\frac{M^{\dagger}Z^2M}{\Lambda^2} + \frac{q^{\dagger}Z^{N/(F-N)}e^{\tilde{V}}q}{\Lambda^{(4N-2F)/(F-N)}} + \frac{\bar{q}^{\dagger}Z^{N/(F-N)}e^{\tilde{V}}\bar{q}}{\Lambda^{(4N-2F)/(F-N)}} \right]$$
$$+ \int d^2\theta \left[S\tilde{W}^{\alpha}\tilde{W}_{\alpha} + \frac{yMq\bar{q}}{\Lambda_h^{b/(F-N)}} + \mu_f M \right] + h.c.$$
$$m_M^2 = 2\frac{3N-2F}{b}m^2 \ , \qquad m_q^2 = -\frac{3N-2F}{b}m^2$$

Arkani-Hamed, Rattazzi hep-th/9804068

Composite Soft SUSY Breaking

$$m_{\tilde{\lambda}} = -\frac{3N-2F}{3N-F}m_{\lambda}$$

 $A = 0$
 $T = \mu_f \Lambda \left(\frac{m_{\lambda}}{g^2} + \frac{3(F-N)}{3N-F}B\right)$
 $y f^2 \equiv \mu_f \Lambda$
cf Luty, Rattazzi hep-th/9908085

Hierarchy of Soft SUSY Breaking

$$A \sim m_{\tilde{t}} \sim m_H \sim \frac{m_{UV}^2}{\Lambda} \ll m_{UV}$$
$$T \sim f^2 m_{UV} \ll m_{UV}^3$$

Light Stop

$$\mathbf{m}_{\tilde{\mathbf{t}}}^{\mathbf{2}} = \begin{pmatrix} m_{Q33}^{2} + m_{t}^{2} + \delta_{u} & v(As_{\beta} - \mu_{\text{eff}} y_{t} c_{\beta})/\sqrt{2} \\ v(As_{\beta} - \mu_{\text{eff}} y_{t} c_{\beta})/\sqrt{2} & m_{\overline{u}33}^{2} + m_{t}^{2} + \delta_{\overline{u}} \end{pmatrix}$$

 $\mu \sim A \ll m_{UV}$ $m_{Q_{33}} \sim m_{\bar{u}_{33}} \ll m_{UV}$

large mixing, light stop

00					jterning/MCSSMTools -					GitHub				(O. c l.				
60		Eacebook	Amazon	Comix v	Twitter	/github.co Google •	m/jternir Laura ▼	Yahoo	Hotmail	bit.ly	GitHub, Inc. Evernote	Later	LLater	Clip	Davis Wiki		×	
Μ	CSSMT	ools /															Τ	
	name			8	ige				mes	sage						history	y	
E	BMPGMS	B/		C	October 04	, 2011			# On	branch	n master [jt	erning]						
	BMPSUG	RA/		c	October 04	, 2011			# On	branch	n master [jt	erning]						
E	EXPCON			c	October 04	, 2011			# On	branch	n master [jt	erning]						
E	SAMPLES	3/		N	lovember	03, 2011			upda	ted dar	nple files [j	terning]						
E	main/			N	lovember	03, 2011			simp	lified in	put [jternin	g]						
E	micromega	as_2.2/		C	October 13	, 2011			tab v	varning	s fixed [jter	ming]						
E	sources/			N	lovember	03, 2011			simp	lified in	put [jternin	g]						
	.gitignore			C	October 13	, 2011			tab v	varning	s fixed [jter	ming]						
	Makefile			C	October 04	, 2011			# On	branch	n master [jt	erning]						
	README			N	lovember	03, 2011			impro	oved R	EADME [jte	erning]						
	run			C	October 04	, 2011			# On	branch	n master [jt	erning]						

README

This program calculates the spectrum of the Minimal Composite Supersymmetric Standard Model. It was hacked by Csaba Csaki and John Terning, based on the code NMSSMTools by Ulrich Ellwanger, John F. Gunion, Cyril Hugonie, C.-C. Jean-Louis, Debottam Das, and Ana M. Teixeira for more information on NMSSMTools see http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html For those familiar with NMSSMTools we have kept the same file names and structure.

HOW TO USE MCSSMTOOLS:

COMPILATION:

On Mac OS X you will need a modern fortran compiler, which can be downloaded from http://hpc.sourceforge.net/ .

Spectrum for the Minimal Composite SSM

Conclusions

SUSY Composite Models solve the four hierarchy problems: gauge, Yukawa, little, and squark mass

they predict a sparse superpartner spectrum with a very light stop