
Trigger and DQM at CMS

Sho Maruyama Fermilab Feb 14 2012

Outline

Collider Experiment

- Large Hadron Collider and Compact Muon Solenoid
- Physics Results in 2011
 - Supersymmetry and Standard Model Higgs searches
- Trigger System

Physics Example

Data Quality Monitoring System

Focus on Graduate Students' Work

Collider Experiment

Collider Experiment

- One of main experimental inputs to High Energy (Particle) Physics
- Consists of an accelerator and detector(s)
 - Accelerator boosts particles and make them collide
 - Can produce 'new' particles
 - Detector measures properties of particles coming out from collided particles

How to Produce An Apple from Oranges?

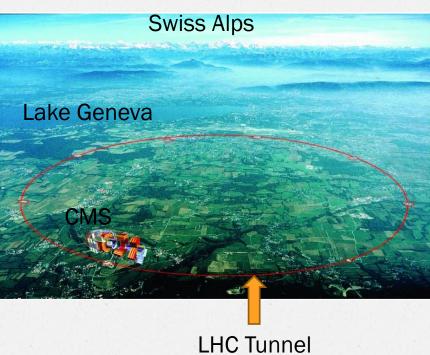
 Zero-th degree approximation of Collider Physics is to make an apple from oranges
 Of course it doesn't happen!

But if we replace fruits with particles, what happens?

LHC and CMS

 Large Hadron Collider is the proton-proton (heavy ion) collider which delivers the highest center of mass energy

p-p run 7TeV so far, and 8TeV in 2012


It is on the French-Swiss border

Opportunity to stay in France or Swiss

 Compact Muon Solenoid is one of the general purpose detectors at LHC (more than 3000 collaborators)

LHC and CMS

7

LHC Tu Human Beings

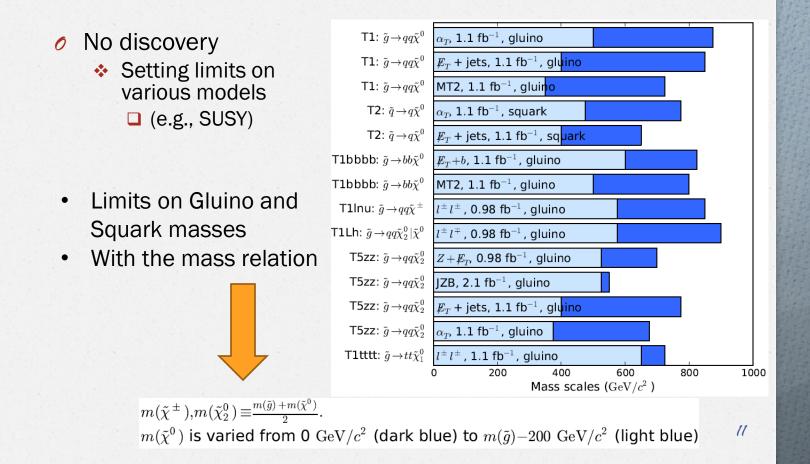
What HEP Experimentalists Do?

Design and Build a detector

- Less likely in these days as a detector became huge and expensive
- May work on detector upgrade (e.g., Pixel, Tracker, Muon Chamber)
- Perform Analysis
 - Writing analysis code (most likely in C++) and paper
 - Giving talks internally and going to conference (APS, Moriond, etc)
- Work for experiment
 - 'Service' is required
 - □ Hardware & software maintenance/update
 - □ Run operation (participating in shifts)
 - Coordination, peer-review paper
- Better chance of being funded
 - Typically only 2 years of Teaching

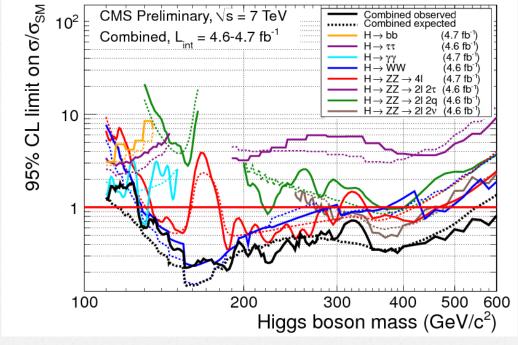
UC Davis on CMS

Contribution

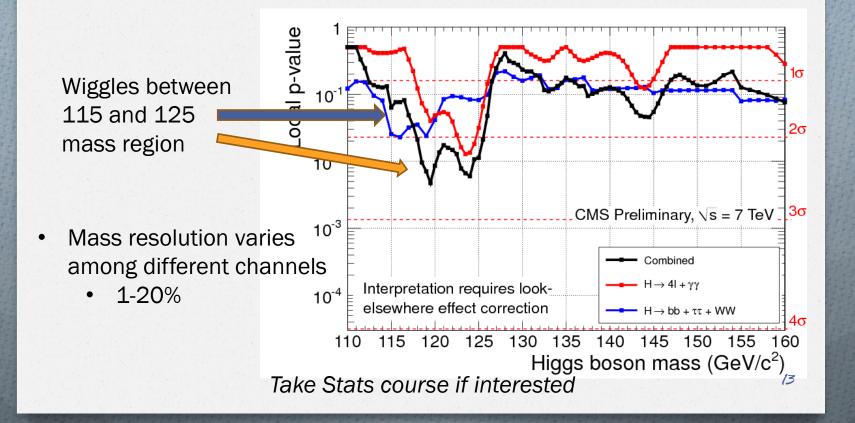

- pixel and muon detector
- □ tau, top, exotics, and higgs physics
- New faculty
 - Mike
- New Postdocs
 - Justin and Scott
- 1st Generation Graduate Students & Postdoc left
 - Evan, Jorge, Christian, and myself
- 2nd Generation graduating
 - James, Tia, and more
- CDF graduate students graduated or graduating as well

New Graduate Students should join!

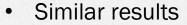
Physics Results in 2011


CMS SUSY Results in 2011

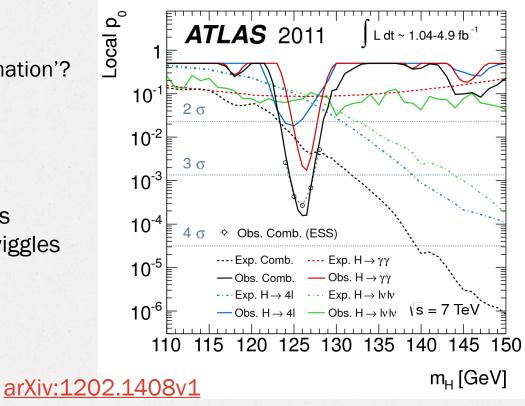
CMS Higgs Results in 2011


CMS-PAS-HIG-11-032

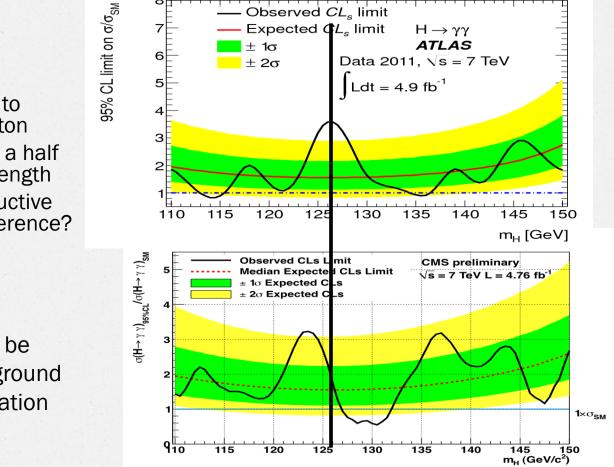
SM Higgs Evidence?


Excluded SM Higgs mass from 127 to 600 GeV/c² at 95% C.L.

CMS Higgs Results in 2011 (2)



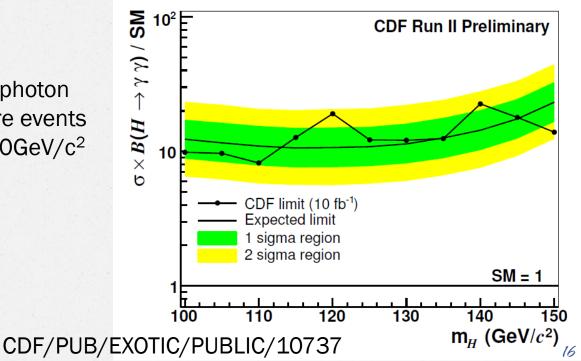
ATLAS Higgs Results in 2011


ATLAS 'confirmation'?

 ATLAS sees wiggles as well

LHC Higgs Results in 2011

15


- Higgs to diphoton
- Off by a half • wavelength
- Destructive • Interference?

Could be Background fluctuation

CDF Higgs Results in 2011

CDF 'confirmation'?

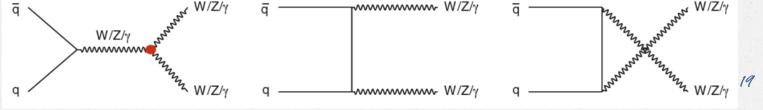
- Higgs to diphoton
- A little more events around 120GeV/c²

Implication of SM Higgs (1)

- If SM Higgs has been seen at LHC
 - The new energy scale could be low enough to be probed at LHC
 600
 Triviality
 - 500 If Nature tolerates • Higgs mass (GeV) 400 O(1%) fine tuning & SM Higgs mass Electroweak 300 ~120GeV/c² 10% 200 New Physics Energy • 1% Scale ~7TeV 100 Vacuum Stability

Kolda et al, hep-ph/0003170

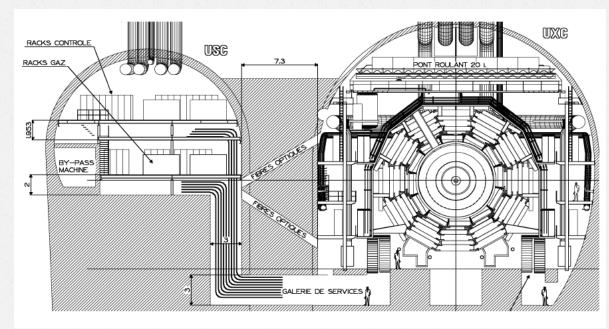
10 Λ (TeV) 10^{2}


Implication of SM Higgs (2)

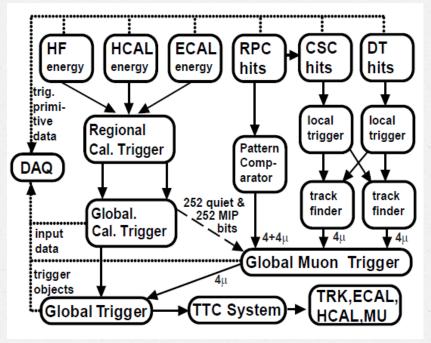
If SM Higgs has been seen at LHC

- LHC Physics will be centered on measurements of Higgs properties
 - □ Mass, spin, cross section, etc
 - Good/bad news for BSM theories
 - Simple SUSY models prefers low mass Higgs
 - Constrains such models otherwise
 - Good news for linear collider advocates
 - Center of mass energy doesn't have to be so high; can be built with existing technologies?

If it's a fluctuation...


Is existing theory/model right in higher energies?
No! SM remains incomplete
Is it the end of LHC?
No! Wider parameter space can be probed
Relax/constrain assumptions accordingly
Even within EWK, we can study multi-boson processes
Many di-boson events already in 2011
Leptonic WZ events alone > 300 after event selection
Tri-boson O(100fb⁻¹) needed, beyond 2012
Theorists will tell us what to do

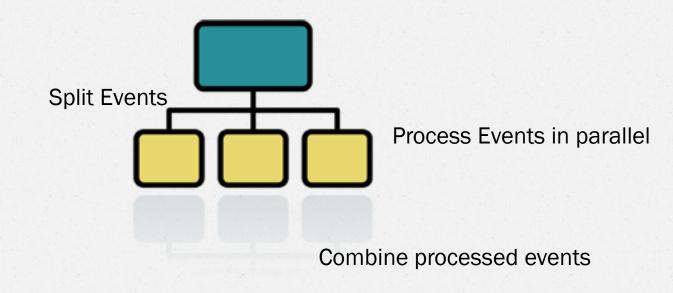
Trigger at CMS


Trigger

- Hadron collider produces tons of soft QCD jets
 Cannot save all events, and signal is tiny
- Two-Level Trigger System
 - Level 1 and High Level

Level 1

- Custom electronics
 FPGA and ASIC
- Placed on detector and in Counting Room
 - Radiation Hardness
- Bunch crossing time; 50ns
 Fast decision
- Pipelined Memory
 Latency; 3.2 microns
- Reduce 40MHz to 100kHz



High Level

CPU farm

Sophisticated even selection is possible

- Iterative algorithm may take too much time
- Reduce 100kHz to 300Hz

Physics Example

One day, some theorist...

- Gets up in morning and writes down a godsend lagrangian
- He/she checks the signal is visible at LHC
- He/she asks experimentalists to confirm the signal
- Then experimentalists will say...

Experimentalists say...

Data is too small

- □ If the signal is single medium P_T lepton/jet
 - Only 2010 data can be used; 36pb⁻¹
 - Single Muon with P_T > 13 GeV/c
- Data is not adequate
 - \Box If the signal is medium P_T two-objects, or (M)E_T sum
 - 2010 plus some fraction of 2011 data O(fb⁻¹)
 - > Two Muons with $P_T > (17,8)$ GeV/c
 - (M)E_T sum > 200 or 750 GeV
- Ø Great! Let's find out
 - Otherwise, multi-object cross trigger have lower threshold in general

Trigger Strategies

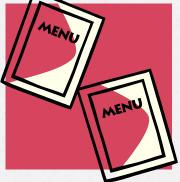
Elect your graduate student trigger contact

- Your trigger need is well maintained
- Considerably high workload
 - Trigger menu reviewed and revised every 2 weeks (2011)
 - Unattended paths will be dropped
- Not considered as service work, but other people free-ride your effort
- Choose decay chain similar to important SM background
 - Your trigger need is always guaranteed by someone else
 - May suffer from large BG
 - Still be careful with trigger threshold
 - E.g, inclusive W was quite difficult in 2011
 - Leptonic Z will be harder in 2012

Analysis Specific Trigger

You may tailor-made your trigger
 As an example, here is 'α_T' trigger in SUSY

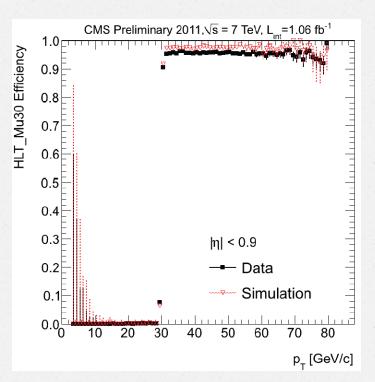
arXiv:1101.1628v2


$$\alpha_{\rm T} = \frac{E_{\rm T}^{\rm jet_2}}{M_{\rm T}} = \frac{E_{\rm T}^{\rm jet_2}}{\sqrt{\left(\sum_{i=1}^2 E_{\rm T}^{\rm jet_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{\rm jet_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{\rm jet_i}\right)^2}}$$

$$\mathbf{M}_{\mathrm{T}} = \sqrt{\left(\sum_{i=1}^{n} E_{\mathrm{T}}^{j_{i}}\right)^{2} - \left(\sum_{i=1}^{n} p_{x}^{j_{i}}\right)^{2} - \left(\sum_{i=1}^{n} p_{y}^{j_{i}}\right)^{2}} = \sqrt{H_{\mathrm{T}}^{2} - (H_{\mathrm{T}}^{\mathrm{miss}})^{2}}$$

QCD dijet events have $\alpha_{T} = 0.5$ Different mass points in SUSY have preferred α_{T} value

Trigger Menu


- Level 1 Trigger paths
 - □ Algorithm = 2^7 bits for 'physics'
 - **\Box** Technical = 2^6 bits for sanity check
 - Usually open slots available
- High Level Trigger paths
 - Unlimited slots (~500 in 2011)
 - New paths need to be approved by Physics Office and Trigger Study Group
 - Motivation plus Performance
 - Usually maintained by graduate students and postdocs
- Prescale 'columns'
 - L1 and HLT have separate prescales
 - Prescale = accept an event in N events
 - For BG estimation

Trigger Performance

Signal Efficiency

- How much signal can be obtained?
- Purity of Trigger
 - How many triggered events can be used?
 - □ Often purity is low (as low as O(5%))
- Trigger Rate
 - Estimated from data and simulation
 - Usually O(1Hz)
- CPU time at HLT
 - OK if it doesn't increase total time significantly

Bandwidth Allocation

- Trigger System Capability is limited Large chunks are allocated to analysis groups; EWK, TOP, EXOTICA, SUSY
 - Each group allocate bandwidth to each analysis sub-group
- Cannot make everyone happy (hard time in 2011 due to budget)
 - Even harder competition with higher **Iuminosity and Pileups**

Trigger Trend (1)

- Trigger threshold is Level 1 limited
 - Rate reduction at HLT may not be sufficient
- Non-linear increase in almost all paths
 - Few exceptions are non-isolated multi-lepton cross triggers
- No drastic improvement expected in 2012
 - Trigger conditions will be tightened
- Improvements in 2011
 - Particle-flow (better E_T resolution) with fast enough PF Tracking at HLT
- Improvements in 2012
 - L1 Pileup subtraction (better turn-on)?
- Energy will be 8TeV, but most likely less increase in instantaneous luminosity in 2012 compared to 2011
 - ~16 fb⁻¹ integrated luminosity projection is based on ~6E33
 - 8TeV impacts at the begging, and less change after that?

Upgrade

<u>Direct</u> Indirect

- Long Shutdown Phase I (~2014)
 - Replacing Sub-detector electronics, Forward Muon
- Long Shutdown Phase II (~2017?)
 - New Pixel, HCAL photo-detector, Forward Muon, <u>micro-TCA</u> (better debugging and maintenance)
- Long Shutdown Phase III (~2021?)
 - New Tracker, <u>Tracking Trigger</u>
- Not easy to lower trigger threshold

DQM at CMS

DQM

Data Quality Monitoring

- Is for maximizing the amount of usable data
- Delivered Luminosity is always larger than recorded luminosity (human error, hardware/software crash)
- Recorded Luminosity is always larger than certified luminosity (sub-detector conditions, calibration)
- To accomplish this goal, each sub-detector and physics object is monitored online and certified offline by DQM shifter and corresponding experts
 - Data Certification is crucial for publication in timely manner
 - Recorded data is certified everyday after event reconstruction (~2days delay)
 - Each analysis group updates results accordingly

DQM Shifts

Two types of shifts

- Online at Control room (P5) in France
 - Focus on detector response
- Offline at CERN, DESY (Germany), and FNAL (IL)
 - Physics object reconstruction is checked
- Each institution is asked to deliver 'central' shift points based on #collaborators
 - DQM shifts are considered as central shifts
 - 2010, there was punishment for violators
 - 2011, no penalty as far as I know
 - 2012, 7.3 points times #collaborators
 - About 200 for UCD, ~40 signed up so far

DQM GUI

Example Summary Plots Usually Green = Good, and Red = Bad

DQM Software

- DQM needs updated inputs for each sub-detector and physics object
 - Reference plots are provided and updated as often as necessary in DQM GUI
 - This is considered as 'service' work in DPG, POG, and PAG
- DQM shifters check that incoming data is consistent with past 'good' data

Certify runs good or bad

- Experts are notified if new data seem much different from the past good one
 - On-call' shifts are available for experienced shifters

DQM Upgrade

DQM was not a part of CMS Technical Design Report

- □ Thus there was no upgrade plan!
- A proposal is just made and under review
 - Main goal is to have a clear picture and keep experts funded
 - Integrate various tools and groups for DQM
 - Needs to be approved

Recap

- LHC 2012 data will be a big impact in HEP whether SM Higgs is there or not
- Trigger conditions will be most likely tightened continuously until 2021(?)
- Reviewed trigger system and implementation, and DQM system and operation, where you may contribute and be credited

For Students

- No problem to graduate on time
 - Enough Data to write your thesis!
 - Talk to theorists and cook up something
- Opportunity to learn something different
 - Living abroad (and accumulate mileage flew)
 - Working with people from other US universities, non-US organization
- Keep up the good work for distinction
 - CMS Thesis Award
 - CMS Achievement Award (each sub-detector)

Thank you!