
Dark Matter in a dark place: DM annihilation in IceCube

Spencer Klein, LBNL & UC Berkeley for the IceCube Collaboration

The IceCube Collaboration

Internation! Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen
(FWO-Vlaanderen)
Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG)
Deutsches Elektronen-Synchrotron (DESY)
Knut and Alice Wallenberg Foundation
Swedish Polar Research Secretariat

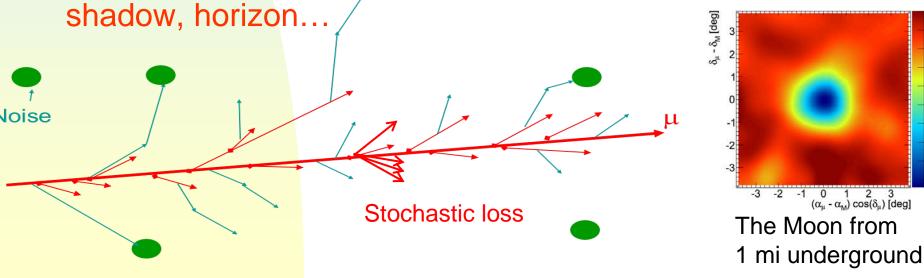

The Swedish Research Council (VR)
University of Wisconsin Alumni Research
Foundation (WARF)
US National Science Foundation (NSF)

IceCube & DeepCore

- 1 km³ neutrino detector
- 5,160 optical modules

◆ 10" PMT + Complete DAQ system。

- 78 'standard' strings
 - ◆ 125 m string spacing
 - ◆ 17 m DOM spacing
 - → ~100 GeV energy threshold
- 8 DeepCore Infill strings
 - with denser spacing
 - ◆ 50/60DOMs w/7 m spacing
 - In clearest, deepest ice
 - → ~ 10 GeV energy threshold

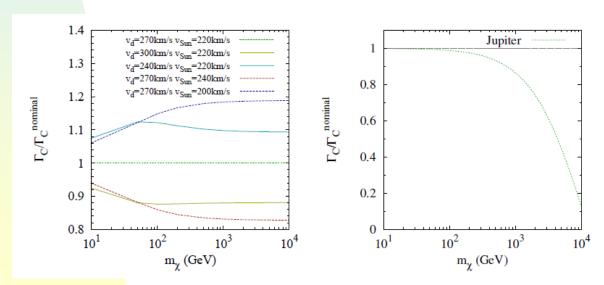


From light to particle tracks

- All data is sent to surface
- Trigger requires 8 hit HLC (paired) DOMs within 5 μs
- 1st guess algorithms fit light pattern to plane.
- Maximum likelihood fits find final tracks
 - ◆ Optical scattering & absorption length of ice vary with depth.
- Background from coincident overlapping events is removed by splitting event in time/space & reconstructing separately.

-1000 -2000 -3000 -4000 -5000 -6000 -7000

Resolution & pointing checked with cosmic-ray μ Moon



Neutrinos from dark matter - assumptions

- What we measure is a limit on the neutrino flux from different dark matter 'reservoirs.' These limits are then interpreted in terms of a dark matter model.
- Dark matter spatial & velocity distributions
 - Maxwellian distribution usually assumed
 - ◆ Different halo matter distributions do not give very different answer for matter abundance at Earth
- Searches for dark matter capture (via inelastic interactions) and annihilation in Sun/Earth
 - ◆ Sun is the best place to probe spin-dependent couplings
- Searches for dark matter annihilation in the galactic halo and core.
- These assumptions apply to Super-K equally.
 - ◆ Many also apply to PAMELA, Fermi results...

Capture in the Sun - rate uncertainties

- Capture rate depends on inelastic cross-section
- 15- 20% variation from velocity profile variations
- For heavy WIMPs, 3-body calculations find a large capture rate decrease caused by the presence of Jupiter.
 - ◆ Capture takes a long time.
 - ◆ Compensated by WIMPs scattered by Jupiter into the Sun?
- These effects also pertain to Earth WIMPs

C. Rott et al., JCAP 09, 029 (2011); Sivertsson & Edsjo, arXiv:1201.1895

WIMPs build up in Sun & annihilate

At equilibrium: annihilation rate = capture rate

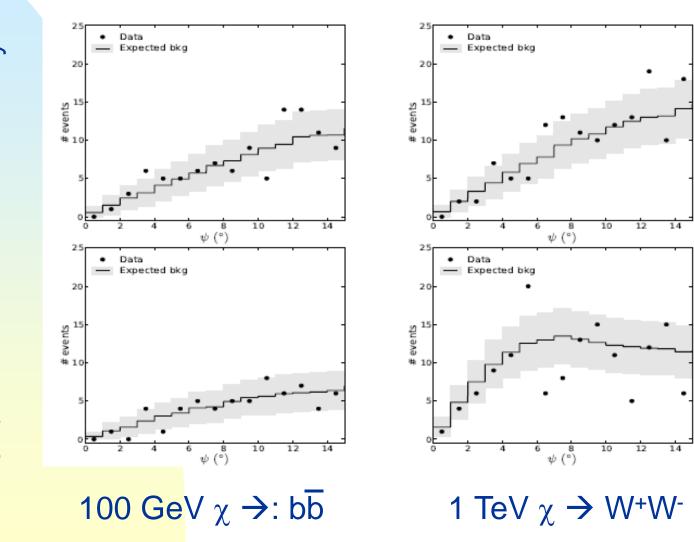
$$\frac{d\mathcal{N}}{dt} = C_{\rm C} - C_{\rm A} \mathcal{N}^2$$
 Evaporation is negligible

- For most of considered SUSY parameter range, the Sun has reached equilibrium
- Dark matter annihilates (must be Majorana particle) or decays
- Mass and final states are unknown. Final state choices)
 - \bullet $\chi\chi -> \nu \overline{\nu}$
 - "Hard" $\chi \chi$ -> W+W- $(\tau^+ \tau^- \text{ for } M_{\gamma} \text{ below threshold})$

 - ◆ Dark matter decay also considered.
- Consider these variables by scanning over different possibilities (mass, decays), or as systematic uncertainties

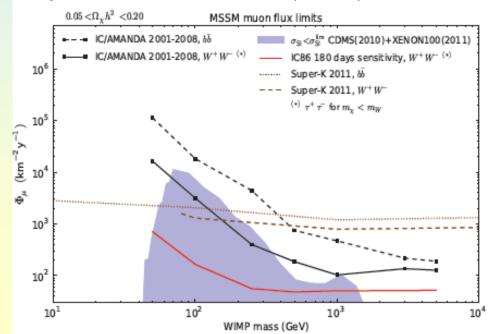
Solar analyses - I

- The sun is dense enough so that neutrinos with
 E > ~ 200 GeV interact before escaping
 - ♦ NC & some CC interactions produce lower energy v
 - ◆ Neutrino energy spectrum is of lesser diagnostic value
- Sun is below horizon 6 months/year
- Combined analysis
 - ◆ IceCube 40-string +AMANDA 2008/9
 - ◆ AMANDA-II data 2001-2006
 - Denser string spacing, so better for lower masses
 - DeepCore will perform same function in future
- Results from separate analyses were combined.

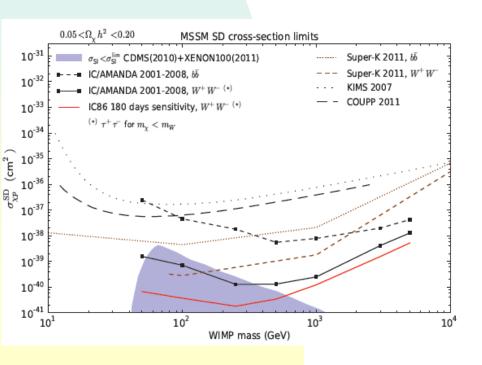

Solar analyses - II

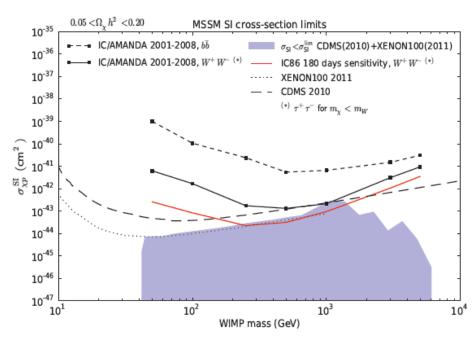
- Initial straight cuts, followed by machine learning (boosted decision tree/support vector machine)
 - Final cut was optimized to maximize model discovery potential/sensitivity
 - Different optimizations for different masses and hard/soft decays
 - Led to relatively loose cuts
- Background determined by time-scrambling data
- The shape of the space angle distribution (ψ) wrt. the sun was used to determine the size of the signal
- Systematic uncertainties due to optical properties of ice, sensitivity of optical modules, v cross-sections

AMANDA only IC40+ AMANDA

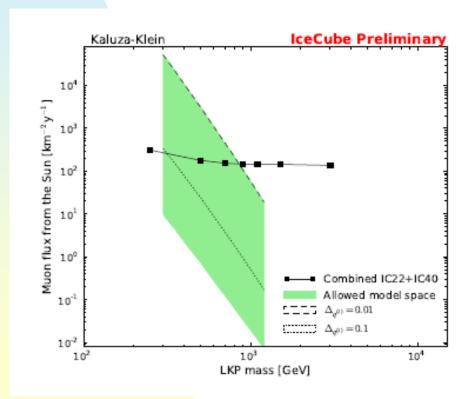

Solar results

No excess seen at small ψ


90% CL v flux combined limits

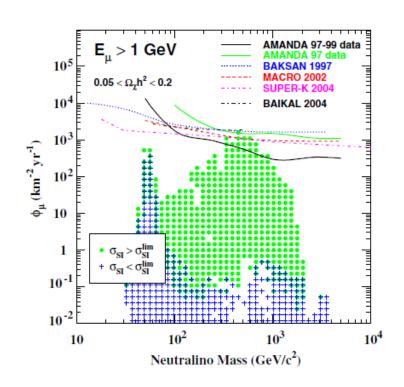

- A model-independent flux limit is obtained for the 2 analyses.
 - ◆ Then combined, including IC22 limits.
- Limits are put on the v flux for specific annihilation products
 - Mass and branching mode
- These limits are compared with the range of predictions from a 7-parameter MSSM scan using DarkSUSY (shaded area)
 - Incorporates LEP, CDMS(2010) and Xenon100 (2011) limits

Cross-section limits


- Assuming equilibrium, these limits are converted to spindependent (SD, left) & spin-independent (SI) limits
 - ◆ Independent of WIMP model.
- Shaded band shows predictions based on MSSM scans
 - Already, IceCube is sensitive to new regions of MSSM parameter space.

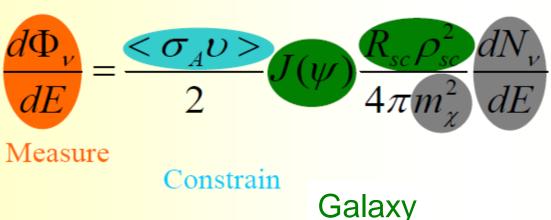
Kaluza-Klein dark matter

- The IC22 & IC40 analyses were also used to put limits on Kaluza-Klein dark matter
 - ◆ Probes allowed phase space for LKPs
- Same data, reinterpreted in different parameter space

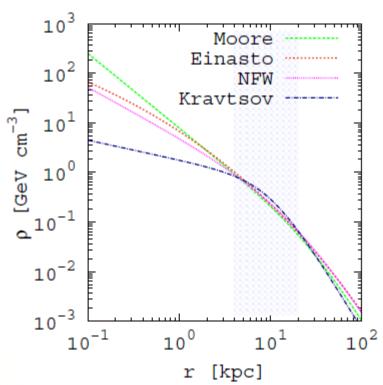


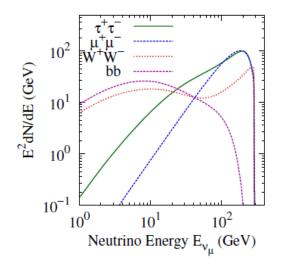
 Δq is the mass splitting between q and γ

IceCube - 2011 ICRC, arXiv:1111.2738

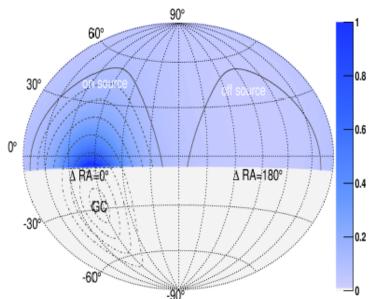

The Earth

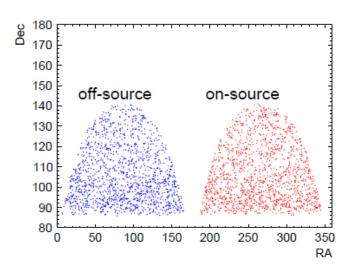
- Best for lighter WIMPs
- Mostly spin-independent couplings
- AMANDA analysis set limits from 50 GeV to 5 TeV
- IC79/86 analysis is in progress



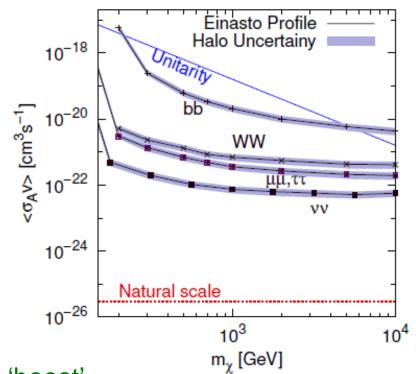

Galactic halo search

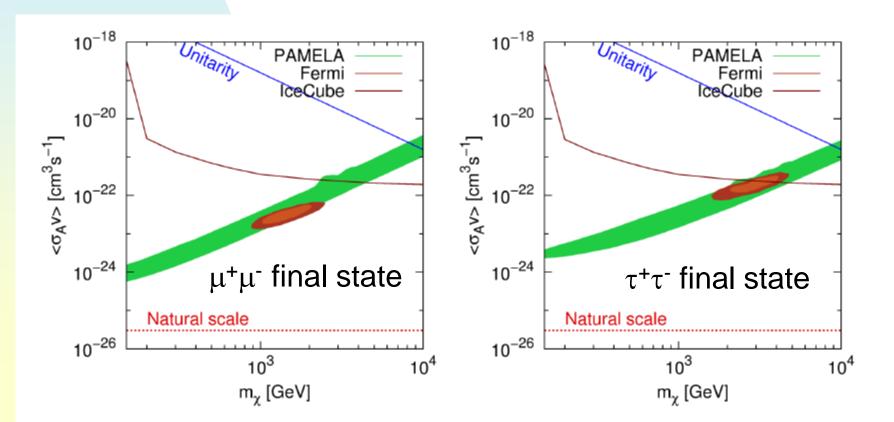
- Search for v from WIMP annihilation in the galactic halo
- 1 year of IC22 data
- 4 models of halo density profile
- Sets limits on <σ_A, v>
- Distant enough for full mixing


IceCube – Phys. Rev. D84, 022004 (2011)

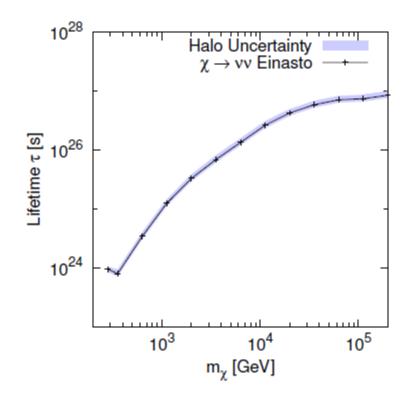


IceCube field of view

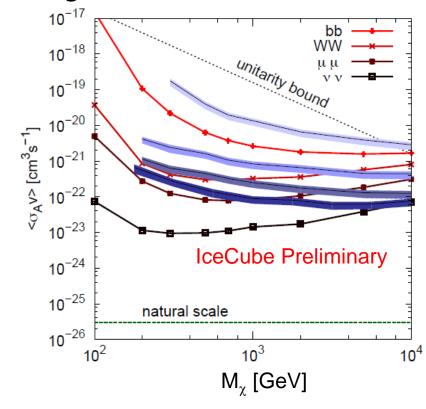

- The galactic center is above the horizon at the South Pole
- This search is limited to the outer that is in the Northern hemisphere
- For each direction in the sky, integ annihilation likelihood ~ density² along line of sight.
- On-source region is within 80 degrees of galactic center
 - ◆ Only portion below IceCube horizon
- Off-source region is the same declination but shifted 180 degrees in RA


Galactic halo results

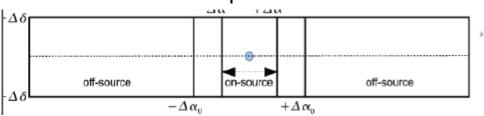
- 1367 on-source,
- 1389 off-source
- Limits conservatively assume that dark matter is evenly distributed
 - ◆ Substructure will increase the annihilation rate by boosting <ρ²>
 - Accounting for substructure might 'boost' the limits by a factor of ~2
 - Not very sensitive to size of galactic halo & choice of halo model.
 - Widths of lines to right show uncertainty due to halo model.
- "Natural Scale" = consistency with thermal relics


IceCube, PAMELA & Fermi

- PAMELA, Fermi & HESS report excess positrons, electrons & electrons respectively from the galactic center.
 - ◆ If from leptophilic dark matter, annihilation should also produce v.
 - ◆ Due to e[±] energy loss, the annihilation must be nearby (1 kpc)
 - IceCube can constrain the masses of this dark matter


WIMP decay

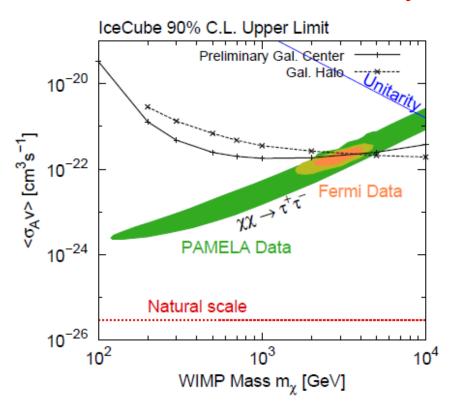
- The same analysis set limits on WIMP decay, χ-> νν
- Lifetimes >10²⁴ s



IC40 galactic center analysis

- The galactic center is above the horizon, so there is a much larger background from muons from downgoing cosmic rays
 - ◆ Reduce rate by using top/sides of detector to veto incoming particles
- Select events in $\pm 8^{0}$ ($\Delta \delta$) by $\pm 9^{0}$ ($\Delta \alpha$) box around the galactic center
- 798842 events in signal region
- 798819 (scaled) events in background region
 - Same declination, all azimuth, less 'guard' region

Blue bands – IC22 halo Lines w/points IC40 center

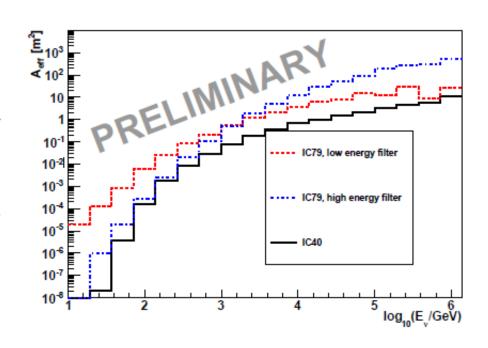


IceCube - 2011 ICRC - arXiv:1111.2738, updated

Back to PAMELA & Fermi

- The galactic center provides a similar constraint as the halo analysis
- N.b. IC40 ~ 2* the data of IC22

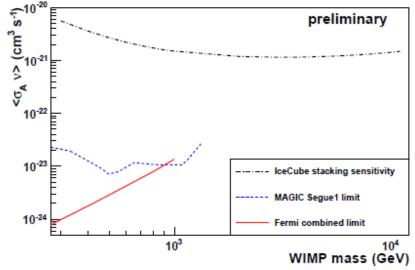
IceCube Preliminary



Future plans

- More data
 - ◆ IC86 > 2 * IC40
- DeepCore will provide a huge increase in sensitivity down to 10 GeV
- Using the rest of IceCube as a veto, DeepCore should have good sensitivity to neutrinos coming from above the horizon.
 - ◆ More sensitive galactic center search
 - ♦ 12 month/year solar search
- IceCube Earth WIMP search
- Studies with ν_e
 - Lower backgrounds & good energy resolution
 - ◆ Hard because of very limited angular resolution
- Search for v from dwarf spheroidal galaxies

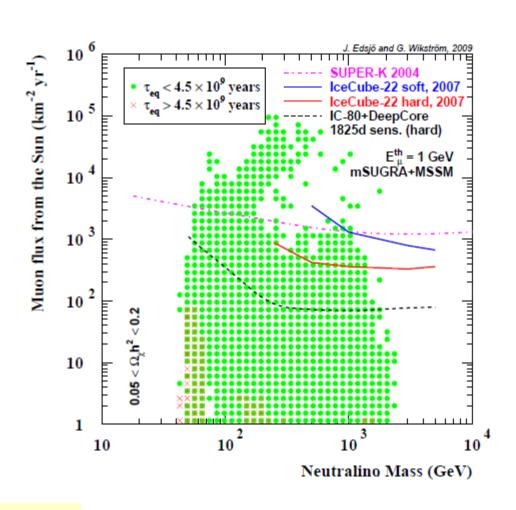
Sensitivity vs. energy


- Effective area increases with energy.
 - Neutrino cross-section and μ range both increase with energy
- At energies from 10-100 GeV DeepCore provides ordersof-magnitude improvement in sensitivity.
- In longer term, the proposed PINGU/MICA may push this down to ~1 GeV

Filter level effective area for IC40 & IC79 low-energy & high-energy filters.

v from WIMP annihilation in nearby dwarf spheroidal galaxies

- Dwarf spheroidal galaxies have a high mass to light ratio, so may be a particularly promising place to search for dark matter annihilation.
 - ◆ 13 Northern hemisphere galaxies
 - within 417 kpc of Earth
 - from Sloan digital sky survey
- Quasi-point sources
- Stack sources for improved sensitivity


- Current search uses 1 year of IC59 data
- Will set limits on v flux and $\langle \sigma_A v \rangle$

Conclusions

- Searches for v from WIMP annihilation with ¼ or ½ of IceCube have already yielded interesting limits on WIMP annihilation in the Sun, the galactic halo and the galactic center.
- IceCube limits on v from the Sun set the best limits on WIMPs with spin-dependent coupling to matter.
- Over the next few years, IceCube analyses using the full power of the full detector will either see a signal or set much tighter limits, while DeepCore will push down to lower masses.

Backups

Equilibrium Times vs. T_{Sun}

