MFV SUSY: A Natural Alternative to R-parity

Ben Heidenreich

with Csaba Csáki and Yuval Grossman

Cornell University, LEPP

Hidden SUSY Workshop, Weds., Nov. 9th, 2011

arXiv:1111.1239

The many problems of the MSSM

How to make the MSSM phenomenologically acceptable?

• Proton decay? \longrightarrow R-parity

 $W_{\text{dangerous}} = \lambda L L \bar{e} + \lambda' Q L \bar{d} + \lambda'' \bar{u} \bar{d} \bar{d} + \bar{\mu} L H_u$

- FCNCs? → flavor universality
- LHC results? \longrightarrow heavy squarks...?

Heavy stop leads to fine tuning of Higgs mass JR: The MSSM is on the edge of being fine-tuned

A different approach

Minimal flavor violation (MFV) can solve all these problems

- FCNCs ✓
- Proton decay? ✓ (Even without R-parity)*
- LHC results? Violate R-parity!
 - LSP decays promptly
 - No missing energy / displaced vertices
 - Squarks can be light

Replace several assumptions with a single one: "MFV SUSY"

*Nikolodakis & Smith, '07

Minimal Flavor Violation

Impose a spurious $SU(3)^5$ symmetry.

 $W_{\rm MSSM} = \mu H_u H_d + Y_u Q \bar{u} H_u + Y_d Q \bar{d} H_d + Y_e L \bar{e} H_d$

Minimal Flavor Violation, cont.

- Assume Yukawas are the only spurions breaking SU(3)⁵.
- Agnostic about high-scale physics
- RGE stable
- FCNCs suppressed by the GIM mechanism, as in SM
- Don't impose $U(1)^5$ flavor symmetry
 - Not needed to suppress FCNCs
 - Contains R-parity

MFV SUSY Superpotential

- Spurions are holomorphic: Y^{\dagger} cannot appear in W
- Superpotential built from holomorphic flavor singlets:

	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_B$	$\mathrm{U}(1)_L$	\mathbb{Z}_2^R
(QQQ)	1		1/2	1	0	-
(QQ)Q	8		1/2	1	0	_
$(Y_u\bar{u})(Y_u\bar{u})(Y_d\bar{d})$	$8 \oplus 1$	1	-1	-1	0	_
$(Y_u\bar{u})(Y_d\bar{d})(Y_d\bar{d})$	$8 \oplus 1$	1	0	-1	0	_
det \bar{u}	1	1	-2	-1	0	_
$\det \overline{d}$	1	1	1	-1	0	_
$QY_u\bar{u}$	$8 \oplus 1$		-1/2	0	0	+
$QY_d\bar{d}$	$8 \oplus 1$		1/2	0	0	+
$LY_e\overline{e}$	1		1/2	0	0	+
H _u	1		1/2	0	0	+
H_d	1		-1/2	0	0	+

No lepton number violation!

Proton Stability

- Proton decay requires LNV (if no light unflavored fermions)
- Lepton number preserved by W
- $\mathbb{Z}_3^{(L)} = \mathrm{U}(1)_L \cap [\mathrm{SU}(3)_L \times \mathrm{SU}(3)_e]$ an exact symmetry
- $|\Delta L| = 3$ operators first at dim. eight in Kähler potential
 - Cutoff suppression more than sufficient
 - Proton very long lived
- Story will change for $m_{\nu} \neq 0$

Baryon number violation

A single RPV coupling allowed:

$$W_{
m BNV} = rac{1}{2} w'' arepsilon_{ijk} arepsilon^{abc} (Y_u ar{u})^i_a (Y_d ar{d})^j_b (Y_d ar{d})^k_c$$

where w'' an $\mathcal{O}(1)$ parameter.

$$\lambda_{ijk}^{\prime\prime} = w^{\prime\prime} \varepsilon_{lmn} \left[Y_u \right]_i^l \left[Y_d \right]_j^m \left[Y_d \right]_k^n = w^{\prime\prime} y_i^{(u)} y_j^{(d)} y_k^{(d)} \epsilon_{jkl} V_{il}^{\star}$$

$$Y_u = rac{1}{v_u} V_{CKM}^{\dagger} \operatorname{diag}(m_u, m_c, m_t) \; , \; \; Y_d = rac{1}{v_d} \operatorname{diag}(m_d, m_s, m_b) \; , \; \; Y_e = rac{1}{v_d} \operatorname{diag}(m_e, m_\mu, m_ au)$$

Ben Heidenreich (Cornell)

The λ''_{ijk} coupling

$$\begin{split} \lambda_{usb}^{\prime\prime} &\sim t_{\beta}^{2} \frac{m_{b}m_{s}m_{u}}{m_{t}^{3}} , \qquad \lambda_{ubd}^{\prime\prime} \sim \lambda t_{\beta}^{2} \frac{m_{b}m_{d}m_{u}}{m_{t}^{3}} , \qquad \lambda_{uds}^{\prime\prime} \sim \lambda^{3} t_{\beta}^{2} \frac{m_{d}m_{s}m_{u}}{2 m_{t}^{3}} , \\ \lambda_{csb}^{\prime\prime} &\sim \lambda t_{\beta}^{2} \frac{m_{b}m_{c}m_{s}}{m_{t}^{3}} , \qquad \lambda_{cbd}^{\prime\prime} \sim t_{\beta}^{2} \frac{m_{b}m_{c}m_{d}}{m_{t}^{3}} , \qquad \lambda_{cds}^{\prime\prime} \sim \lambda^{2} t_{\beta}^{2} \frac{m_{c}m_{d}m_{s}}{m_{t}^{3}} , \\ \lambda_{tsb}^{\prime\prime} &\sim \lambda^{3} t_{\beta}^{2} \frac{m_{b}m_{s}}{m_{t}^{2}} , \qquad \lambda_{tbd}^{\prime\prime} \sim \lambda^{2} t_{\beta}^{2} \frac{m_{b}m_{d}}{m_{t}^{2}} , \qquad \lambda_{tds}^{\prime\prime} \sim t_{\beta}^{2} \frac{m_{d}m_{s}}{m_{t}^{2}} . \end{split}$$
where $m_{t} \sim v \sim \sqrt{v_{u}^{2} + v_{d}^{2}} , \qquad \langle H_{u,d} \rangle = v_{u,d} , \qquad w^{\prime\prime} \sim 1$

$$|V_{CKM}| \sim \begin{pmatrix} 1 & \lambda & \lambda^{3}/2 \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} , \qquad \lambda \sim \frac{1}{5}$$

Numerical estimate

for $\tan \beta = 45$, using

$$m_u \sim 3 \text{ MeV}$$
 , $m_c \sim 1.3 \text{ GeV}$, $m_t \sim 173 \text{ GeV} \sim v$,
 $m_d \sim 6 \text{ MeV}$, $m_s \sim 100 \text{ MeV}$, $m_b \sim 4 \text{ GeV}$.

Flavor changing

- BNV constrained by $|\Delta B| = 2$ processes
- $\lambda_{tsb}^{\prime\prime}$ the biggest, $\mathcal{O}(10^{-4})$, all 2nd/3rd gen. (s)quarks
- Not the whole story: flavor-changing suppressed Soft masses:

$$\mathcal{L}_{\text{soft}} \supset m_{\text{soft}}^2 \tilde{Q}^{\star} \left[1 + \alpha (Y_u Y_u^{\dagger})^T + \beta (Y_d Y_d^{\dagger})^T + \dots \right] \tilde{Q} + \dots$$

Mass mixing:

$$V_{ij}^{(ext{neutral})} \equiv rac{\delta m_{ij}^2}{m_{ ext{soft}}^2} \sim \sum_k V_{ik}^{\dagger} \left[y_k^{(u)}
ight]^2 V_{kj}$$
 (down-type)

Flavor changing, cont.

Estimate:

$$\begin{split} V_{ds}^{(\text{neutral})} &\sim \lambda^5 \quad , \quad V_{db}^{(\text{neutral})} \sim \lambda^3 \quad , \quad V_{sb}^{(\text{neutral})} \sim \lambda^2 \; , \\ V_{uc}^{(\text{neutral})} &\sim y_b^2 \, \lambda^5/2 \quad , \quad V_{ut}^{(\text{neutral})} \sim y_b^2 \, \lambda^3/2 \quad , \quad V_{ct}^{(\text{neutral})} \sim y_b^2 \, \lambda^2 \; . \end{split}$$

Also suppressed:

- ullet Charged flavor changing \longrightarrow CKM suppression
- Left-right mixing \longrightarrow Yukawa suppression

Constraints on baryon number violation

- Baryon number violation suppressed by
 - $\bullet \ \mathcal{O}(10^{-4})$ vertex factor
 - Yukawa and CKM suppression for flavor changing
- Proton stable because LNV very small
- Limits on $|\Delta B| = 2$ processes:

$$au_{n-ar{n}} \geq 2.44 imes 10^8 ext{ s} \ au_{pp o K^+K^+} \geq 1.7 imes 10^{32} ext{ yrs}$$

Super-K data

$n-\bar{n}$ oscillations

No constraint!

Dinucleon decay

$$\Gamma \sim \rho_N \frac{128\pi \alpha_s^2 \tilde{\Lambda}^{10}}{m_N^2 m_{\tilde{g}}^2 m_{\tilde{q}}^8} \left(\frac{\lambda^3 m_d m_s m_b^2}{2m_t^4} \tan^4 \beta\right)^4$$

cf. Goity and Sher

Best guess: $\tilde{\Lambda} \sim 150 \text{ GeV}$

A nontrivial constraint

Using $ho_N \sim 0.25~{
m fm}^{-3}$ and $lpha_s \sim 0.12$, get

$$au_{NN \to KK} \sim \left(1.9 \times 10^{32} \text{ yrs}\right) \left(\frac{150 \text{ MeV}}{\tilde{\Lambda}}\right)^{10} \left(\frac{m_{\tilde{q},\tilde{g}}}{100 \text{ GeV}}\right)^{10} \left(\frac{17}{\tan\beta}\right)^{16}$$

Ben Heidenreich (Cornell)

The story so far...

- Moderate constraint from dinucleon decay
- $n \bar{n}$ oscillations slow enough
- Proton effectively stable
- What about neutrino masses?

Dirac masses don't change anything:

$$W_{\text{lept}} = Y_e L \bar{e} H_d + Y_N L \bar{N} H_u$$

 Y_N leaves \mathbb{Z}_3^L unbroken

The seesaw mechanism

•
$$W_{\text{lept}} = Y_e L \bar{e} H_d + Y_N L \bar{N} H_u + \frac{1}{2} M_N \bar{N} \bar{N}$$

• Spurious flavor symmetry now $SU(3)_L \times SU(3)_e \times SU(3)_N$

- Now M_N breaks \mathbb{Z}_3^L , $|\Delta L| = 1$ possible
- Use dimensionless spurion $rac{1}{\Lambda_R}M_N, \quad \Lambda_R \gtrsim M_N$ heavy scale

Lepton number violation

Renormalizable LNV terms:

•
$$W_{\text{LNV}} = \frac{1}{2\Lambda_R} w'(LL) \left(\tilde{Y}_N M_N \tilde{Y}_N \right) \left(Y_e \bar{e} \right)$$
 $(\tilde{Y}_N = \operatorname{cof} Y_N = (\det Y_N) Y_N^{-1})$

• Kähler correction: $K_{\text{LNV}} = \mathcal{V}L^{\dagger}H_d + c.c.$

$$\mathcal{V}_{a} = rac{1}{\Lambda_{R}} arepsilon_{abc} \left[ilde{Y}_{N}^{\dagger}
ight]_{i}^{b} \left[M_{N}^{\dagger}
ight]^{ij} \left[Y_{N}
ight]_{j}^{c} + rac{1}{\Lambda_{R}} arepsilon_{abc} \left[Y_{e} Y_{e}^{\dagger}
ight]_{d}^{b} \left[Y_{N} M_{N}^{\dagger} Y_{N}
ight]^{cd}$$

•
$$\mathcal{L}_{\text{soft}}^{\text{LNV}} = m_{\text{soft}}^2 \mathcal{V} \tilde{L}^* \tilde{H}_d + c.c. + \text{A term}$$

- After EWSB
 - Sneutrino VEV: $\left< ilde{L}_a \right> \sim v_d \mathcal{V}_a$
 - Gaugino/lepton mixing: $\mathcal{L}_{mix} \sim -v_d \lambda(\mathcal{V}^{\dagger}L)$

Lepton number violation, cont.

• Casas & Ibarra: $Y_N^T = rac{1}{v_u} \operatorname{diag}\left(\sqrt{M_{Ri}}\right) R \operatorname{diag}\left(\sqrt{m_{\nu i}}\right) \, U_{\mathrm{PMNS}}^\dagger$

- U_{PMNS} non-hierarchical
- R and M_{Ri} not constrained by expt
- Neutrino mass scale unknown
- For simplicity, take $M_{Ri} \sim M_R$, $R \sim \mathcal{O}(1)$, $m_{\nu i} \sim m_{\nu} \sim 0.1 \text{ eV}$

Proton decay

- $\tau_{p \to K^+ \nu} \gtrsim 2.3 \times 10^{33} \text{ yrs}$ (Super K)
- Matrix element $\tilde{\Lambda}^2 \sim (250 \text{ MeV})^2$ (Lattice QCD)

Constraints from proton decay

- Bound on LNV: $\mathcal{V} \tan^3 \beta \lesssim (3 \times 10^{-14}) \left(\frac{m_{\tilde{q}}}{100 \text{ GeV}}\right)^2 \left(\frac{m_{\tilde{N}}}{100 \text{ GeV}}\right)$
- Upper bound on M_R in 10⁶ GeV: Lower bound on $m_{3/2}$ in KeV:

(For $\Lambda_R = 10^{16} \text{ GeV}$)

The LSP

- LHC pheno will depend on LSP
- LSP not stable: can be charged, colored!

• Up-type squarks:
$$M_{\tilde{U}}^2 = m_{\text{soft}}^2 \begin{pmatrix} 1 + \alpha Y_u Y_u^{\dagger} + \beta Y_d Y_d^{\dagger} & \delta Y_u \\ \delta^* Y_u^{\dagger} & 1 + \gamma Y_u^{\dagger} Y_u \end{pmatrix} + \dots$$

• Down-type:
$$M_{\tilde{D}}^2 = m_{\text{soft}}^2 \begin{pmatrix} 1 + \alpha' Y_u Y_u^{\dagger} + \beta' Y_d Y_d^{\dagger} & \delta' Y_d \\ \delta'^{\star} Y_d^{\dagger} & 1 + \gamma' Y_d^{\dagger} Y_d \end{pmatrix} + \dots$$

- One stop naturally light; \tilde{b}_L also possible LSP
- stau LSP \longrightarrow nearly degenerate spectrum
- Neutralino, chargino, gluino also possible LSPs

Stop LSP

- Generically prompt (no E_T , no displaced vertices)
- No tops / leptons in final state...more *b*-jets, resonance?

Other LSPs

• Sbottom decay *y_b* suppressed

• Neutralino/chargino: 3-body decay, $\sim \frac{1}{16\pi^2}$ suppressed $\tau_{\tilde{b}_L} \sim (41 \ \mu m) \left(\frac{10}{\tan\beta}\right)^6 \left(\frac{300 \ \text{GeV}}{m_{\tilde{b}_L}}\right) , \ \tau_{\tilde{N}} \sim (12 \ \mu m) \left(\frac{20}{\tan\beta}\right)^4 \left(\frac{300 \ \text{GeV}}{m_{\tilde{N}}}\right)$ • \tilde{b}_L, \tilde{N} : final-state tops, \tilde{C} : many *b*-jets

Lifetimes

 \tilde{b}_L LSP:

Displaced vertices can be avoided!

Stau LSP

Four-body decay
$$\rightarrow \left(\frac{1}{16\pi^2}\right)^2$$

$$c au_{ au} \sim (44 \ \mu \mathrm{m}) \left(\frac{45}{\tan\beta}\right)^4 \left(\frac{500 \ \mathrm{GeV}}{m_{ au}}\right)$$

Displaced vertices! Missing $E_T!$ (neutrinos) final state leptons/tops

RPV searches

- Many searches look for $\lambda' LQ\bar{d} \longrightarrow$ irrelevant!
- Searches for $\lambda'' \bar{u} \bar{d} \bar{d}$:
 - CMS/CDF: look for 3-jet resonance $\longrightarrow m_{\tilde{g}} \gtrsim 280 \text{ GeV}^*$
 - ATLAS: look for colored-scalar in 4-jet events:

*Analysis assumes gluino LSP

Ben Heidenreich (Cornell)

Dark matter?

- SM LSP short-lived... not dark matter
- Gravitino could be true LSP

- Generically long-lived —> DM candidate
- Relic abundance depends on thermal history

Conclusions

A different approach to low-scale SUSY

- MFV instead of R-parity
- Many fewer parameters than generic $RPV \longrightarrow predictive$
- LNV strongly suppressed; proton stable
- Weak bound on $\tan \beta$ from dinucleon decay
- Stop LSP decays promptly, no E_T , no displaced vertices \longrightarrow hard to detect
- Other LSPs have interesting phenomenology

Future Directions

- Detailed collider studies for different LSPs
- LHC searches
- Better understanding of dinucleon decay matrix elements
- Baryogenesis from BNV coupling?
- Gravitino dark matter?
- Model building: UV completions of MFV SUSY