

Thomas Levi UBC

polarize:

- JCAP 0804:034,2008 (arXiv: 0712.2261)
- JCAP 0904:025,2009 (arXiv:
- 0810.5128) with Spencer Chang and Matthew Kleban
- JCAP 1008:034,2009 (arXiv: 0910.4159) with Klaus Larjo
- JCAP 1012: 0832 (arXiv:1006.0832) with Bartek Czech, Matt Kleban, Klaus Larjo and Kris Sigurdson
- In progress with Matt Kleban and Kris Sigurdson

Motivation

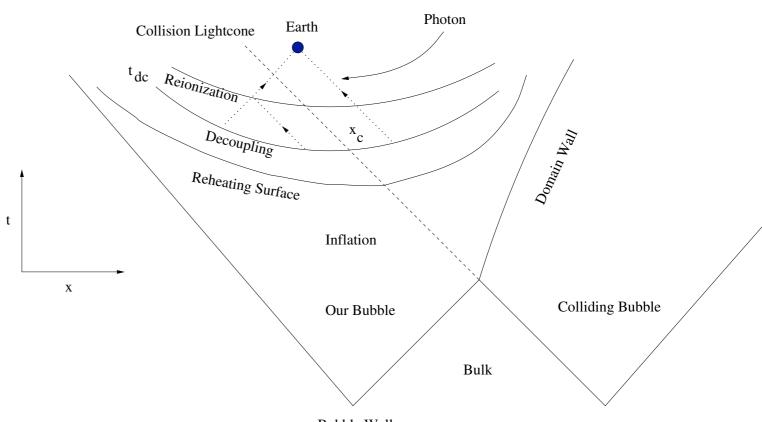
- Up to now, most of our analysis of effects of bubble collisions has been analytic and semi-analytic, ignoring details of the fluid components, evolution of perturbations etc.
- These approximations are valid above a degree scale (though we'd like to check that)
- Below a degree scale we need the full evolution
- We'll use full perturbation theory and a combination of analytic and numerical analysis to carry this out

Outline

- Brief review of setup
- The pieces
 - Initial conditions
 - Transfer functions
- Signals
 - Temperature
 - Polarization

The setup

- We assume that a bubble collision happens to create a DW moving away from us
- As Matt told you yesterday, we'll calculate the perturbation during inflation
- We'll then evolve it in a full cosmology with WMAP concordance parameters using perturbation theory
- We can then calculate temperature, polarization and track the evolution of overdensities



Bubble Walls

Setting up the calculation

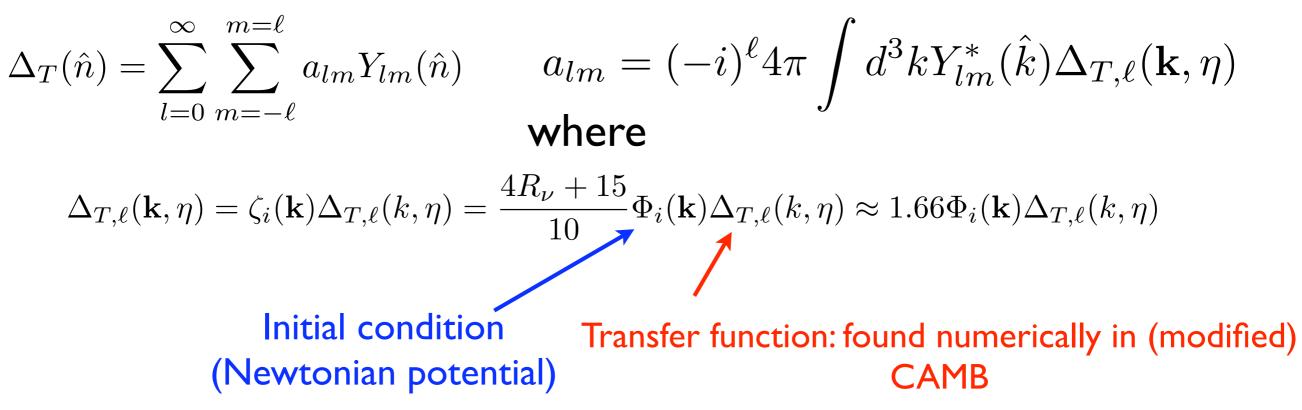
- For each quantity we compute, we need two pieces:
 - An initial condition found during inflation for the Newtonian potential or curvature perturbation that encodes a bubble collision → Independent of subsequent evolution and calculated analytically to first order in slow-roll
 - A transfer function that can take the initial condition and allow us to compute the physical quanties we are interested in → Independent of bubble collision and calculated numerically in CAMB

Example: Temperature

• We can express the temperature anisotropy as

$$\Delta_T(\mathbf{x}, \hat{n}, \eta) = \int d^3 k e^{i\mathbf{k}\cdot\mathbf{x}} \Delta_T(\mathbf{k}, \hat{n}, \eta)$$
$$= \int d^3 k e^{i\mathbf{k}\cdot\mathbf{x}} \sum_{l=0}^{\infty} (-i)^{\ell} (2\ell+1) \Delta_{T,\ell}(\mathbf{k}, \eta) P_{\ell}(\mathbf{k}\cdot\hat{n})$$

at the origin (our sky)



• Similar formulas for polarization and overdensities can be found

The initial condition

As Matt told you, we use Newtonian gauge, and expand the scalar to first order in slow-roll $ds^2 = a^2(\tau) \left(-(1+2\Phi)d\tau^2 + (1+2\Psi)d\mathbf{x}^2 \right) , \quad \Psi = \Phi \quad \text{during inflation (no anisotropic stress)}$ $\varphi = \varphi_0 + \delta\varphi$

We need to solve the linearized Einstein and Klein-Gordon equations

$$\begin{split} \nabla^2 \Phi &- 3\mathcal{H}\Phi' - (\mathcal{H} + 2\mathcal{H}^2)\Phi = \frac{3}{2}l_p^2 \left(\varphi'_0 \delta \varphi' + V_{,\varphi} a^2 \delta \varphi\right) \\ \Phi' &+ \mathcal{H}\Phi = \frac{3}{2}l_p^2 \varphi'_0 \delta \varphi \\ \Phi'' &+ 3\mathcal{H}\Phi' + (\mathcal{H} + 2\mathcal{H}^2)\Phi = \frac{3}{2}l_p^2 \left(\varphi'_0 \delta \varphi' - V_{,\varphi} a^2 \delta \varphi\right) \\ \varphi''_0 &+ 2\mathcal{H}\varphi'_0 + V_{,\varphi} a^2 = 0 \\ \delta \varphi'' &+ 2\mathcal{H}\delta \varphi' - \nabla^2 \delta \varphi + V_{,\varphi\varphi} a^2 \delta \varphi - 4\varphi'_0 \Phi' + 2V_{,\varphi} a^2 \Phi = 0 \\ \frac{3}{2}l_p^2 \varphi'_0^2 &= \mathcal{H}^2 - \mathcal{H}' \end{split}$$

During slow-roll we can approximate the potential as

$$V = V_0 + \mu\varphi + \dots \qquad \epsilon = \frac{1}{2l_p^2} \left(\frac{V_{,\varphi}}{V}\right)^2 \sim \frac{\mu^2}{V_0^2} \qquad |\eta| = \frac{1}{l_p^2} \left|\frac{V_{,\varphi\varphi}}{V}\right| < \epsilon$$

The initial condition

As Matt told you, we use Newtonian gauge, and expand the scalar to first order in slow-roll $ds^2 = a^2(\tau) \left(-(1+2\Phi)d\tau^2 + (1+2\Psi)d\mathbf{x}^2 \right) , \quad \Psi = \Phi \quad \text{during inflation (no anisotropic stress)}$

 $\varphi = \varphi_0 + \delta \varphi$

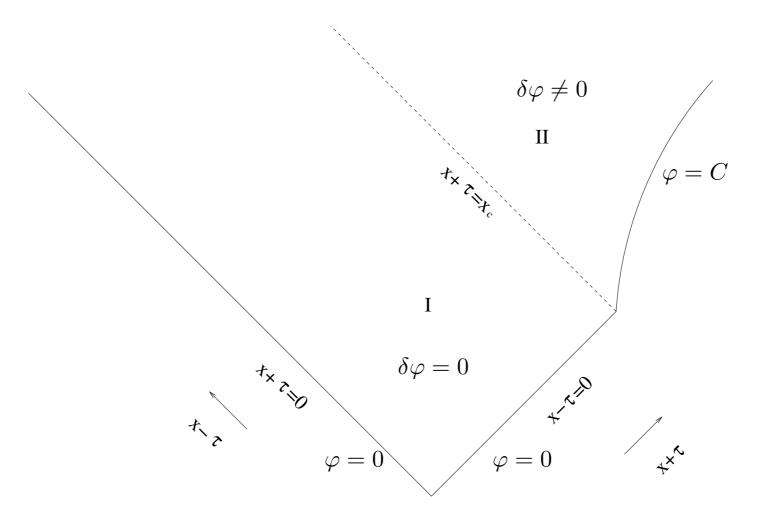
We need to solve the linearized Einstein and Klein-Gordon equations

$$\begin{split} \nabla^2 \Phi &- 3\mathcal{H}\Phi' - (\mathcal{H} + 2\mathcal{H}^2)\Phi = \frac{3}{2}l_p^2 \left(\varphi'_0 \delta\varphi' + V_{,\varphi} a^2 \delta\varphi\right) \\ \Phi' &+ \mathcal{H}\Phi = \frac{3}{2}l_p^2 \varphi'_0 \delta\varphi \\ \Phi'' &+ 3\mathcal{H}\Phi' + (\mathcal{H} + 2\mathcal{H}^2)\Phi = \frac{3}{2}l_p^2 \left(\varphi'_0 \delta\varphi' - V_{,\varphi} a^2 \delta\varphi\right) \\ \varphi''_0 &+ 2\mathcal{H}\varphi'_0 + V_{,\varphi} a^2 = 0 \\ \delta\varphi'' &+ 2\mathcal{H}\delta\varphi' - \nabla^2 \delta\varphi + \underline{V_{,\varphi\varphi}} a^2 \delta\varphi - 4\varphi'_0 \Phi' + 2V_{,\varphi} a^2 \Phi = 0 \end{split}$$
 Higher order in slow-roll, as Matt (we supposed) showed yesterday
$$\frac{3}{2}l_p^2 \varphi_0'^2 &= \mathcal{H}^2 - \mathcal{H}' \end{split}$$

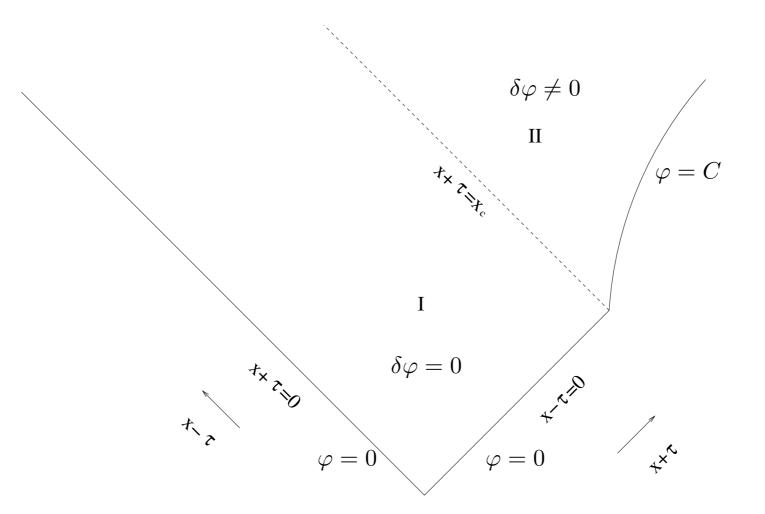
During slow-roll we can approximate the potential as

$$V = V_0 + \mu\varphi + \dots \qquad \epsilon = \frac{1}{2l_p^2} \left(\frac{V_{,\varphi}}{V}\right)^2 \sim \frac{\mu^2}{V_0^2} \qquad |\eta| = \frac{1}{l_p^2} \left|\frac{V_{,\varphi\varphi}}{V}\right| < \epsilon$$

Boundary conditions



Boundary conditions



To first order in slow-roll the solution is

$$\varphi_{0} = \frac{\mu}{3}\ln(-\tau) \qquad \qquad \mathcal{H} \approx -\frac{1}{\tau} - \frac{\mu^{2}l_{p}^{2}}{6\tau} \qquad \qquad a(\tau) \approx \frac{1}{\tau} - \frac{\mu^{2}l_{p}^{2}}{6}\frac{\ln\tau}{\tau} \\ \delta\varphi = \lambda(x - x_{c})\Theta(x + \tau - x_{c}) \qquad \qquad \Phi = -\frac{1}{2}\mu l_{p}^{2}\lambda(x + \tau - x_{c})\Theta(x + \tau - x_{c}) \\ \approx -\frac{1}{2}\mu l_{p}^{2}\lambda(x - x_{c})\Theta(x - x_{c})$$
Initial condition

The transfer functions

- All of the transfer functions are independent of the initial conditions and hence the collision
- They take any initial curvature perturbation and evolve it to the appropriate time and quantity
- Their evolution is governed by solving the relevant Boltzmann, gravitational and fluid equations
- We use a modified version of CAMB to compute each transfer function, using WMAP-7 best fit values and a single reionization model
- We then reconstruct the temperature, polarization and overdensities in position space by performing a numerical Fourier series transform in Mathematica with periodic BCs, ensuring the size of the box is much larger than our Hubble patch
- Our results are accurate up to a multipole of $\ell = 2000$

The temperature (analytic result)

• On large scales we expect the temperature anisotropy to be dominated by the SW effect

$$\frac{\delta T}{T} = -\frac{1}{3}\Phi_{ls} \sim (x - x_c)\Theta(x - x_c)$$

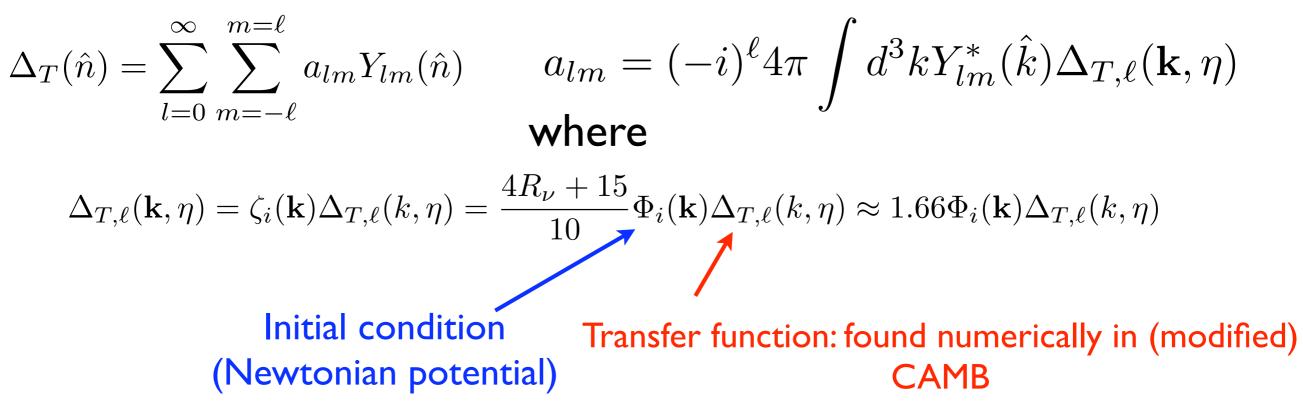
- This in fact was our analytic result from before, and gives a dipole inside the spot with no edge
- The full result (notably on smaller scales) requires solving the full evolution equations, which we have numerically

Review: Temperature

• We can express the temperature anisotropy as

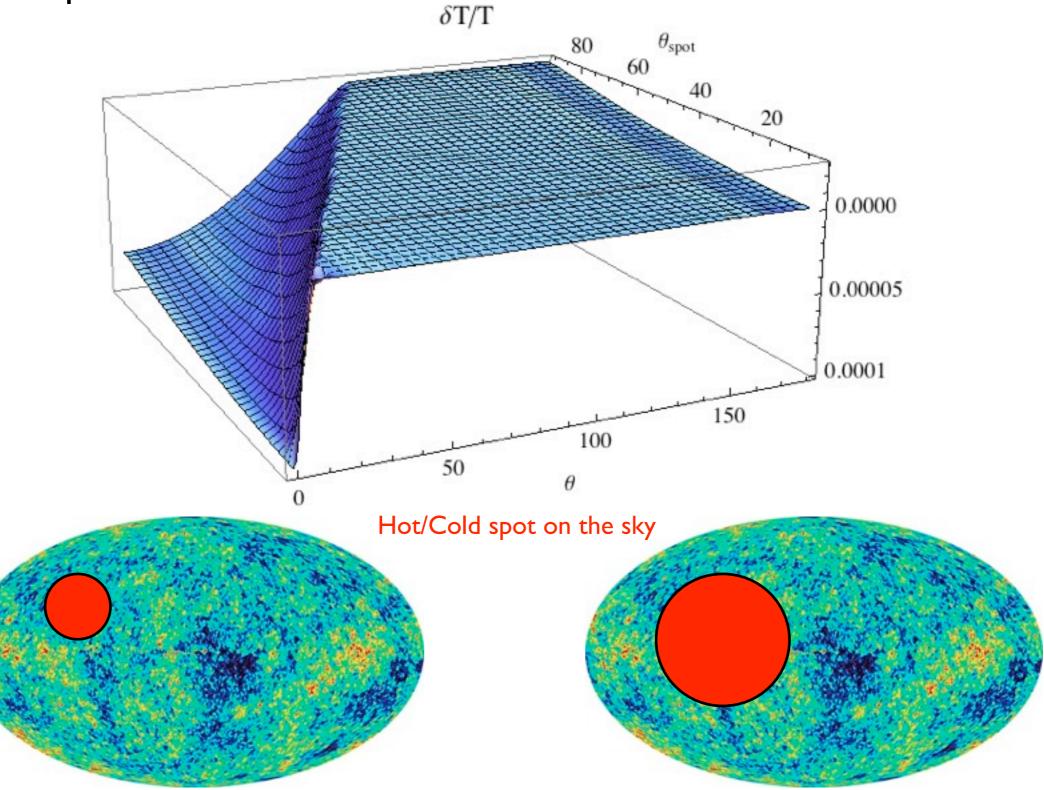
$$\Delta_T(\mathbf{x}, \hat{n}, \eta) = \int d^3 k e^{i\mathbf{k}\cdot\mathbf{x}} \Delta_T(\mathbf{k}, \hat{n}, \eta)$$
$$= \int d^3 k e^{i\mathbf{k}\cdot\mathbf{x}} \sum_{l=0}^{\infty} (-i)^{\ell} (2\ell+1) \Delta_{T,\ell}(\mathbf{k}, \eta) P_{\ell}(\mathbf{k}\cdot\hat{n})$$

at the origin (our sky)



Temperature: The full result

• It turns out for temperature, the analytic approximation is quite accurate

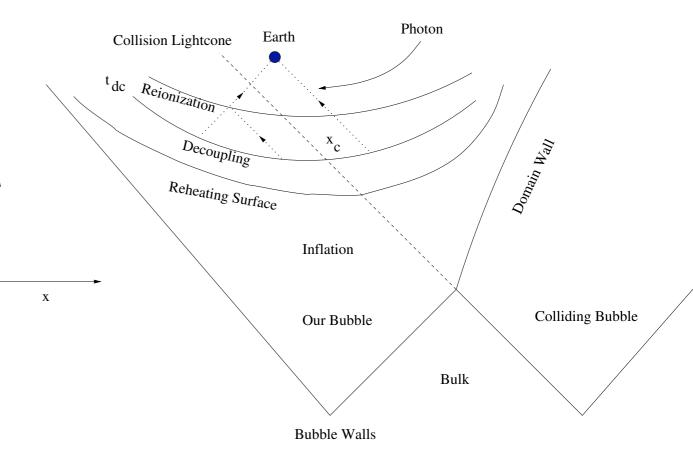


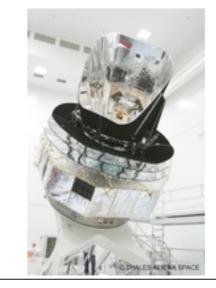
Temperature: Features

- For any collision, we obtain a hot or cold spot
- The size of the spot depends on where we are compared to the collision lightcone
- The magnitude of the temperature depends on details of the collision and the number of efolds of inflation. Roughly it goes like $\frac{\delta T}{T} \sim e^{N_* - N}$ where $e^{N_*} = T_{reh}/T_0$
- There is no edge to a spot from a collision at any size

Polarization

- We've seen that each bubble collision naturally leads to a cold/hot spot on the sky with a temperature dipole inside the spot
- Other models can be used to explain the cold spot (textures, voids, even Gaussian fluctuations if they are really large)
- We can use polarization (and possibly other effects) to correlate with the temperature pattern and predict a unique signal from a bubble collision
- The magnitude of polarization is within reach of current and next generation experiments (e.g. Planck, SPIDER,...)



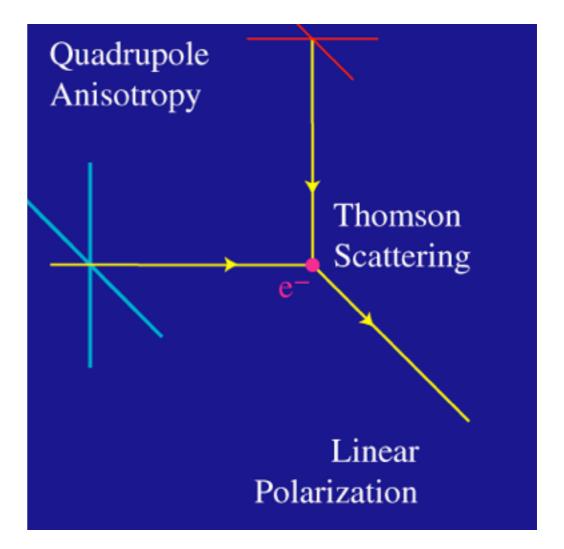


What causes CMB polarization?

 Thomson Scattering of photons by free (ionised) electrons causes polarization if the *electron* sees a distribution of incident radiation with a non-zero quadropole

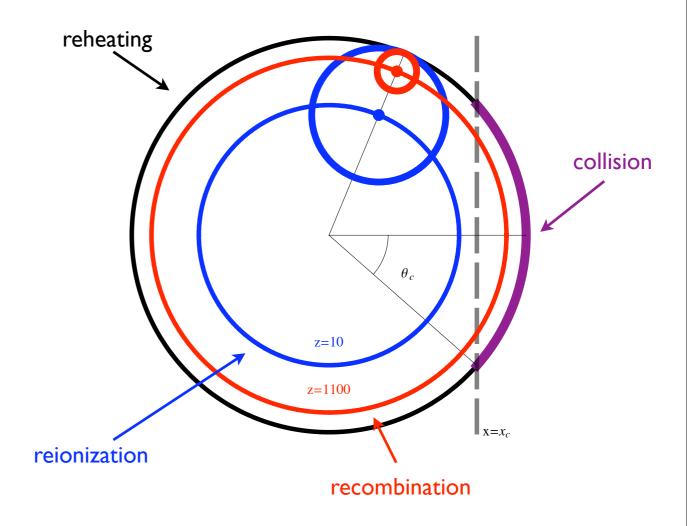
What causes CMB polarization?

 Thomson Scattering of photons by free (ionised) electrons causes polarization if the *electron* sees a distribution of incident radiation with a non-zero quadropole



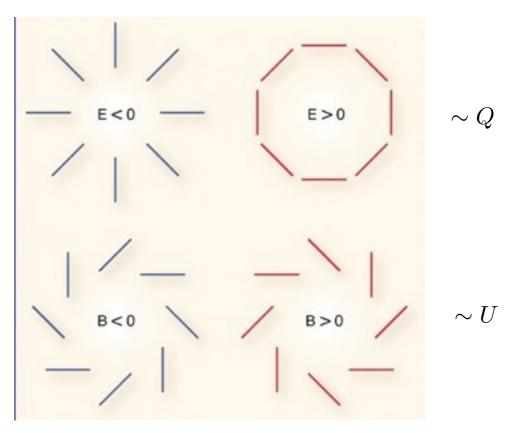
What causes CMB polarization?

- Thomson Scattering of photons by free (ionised) electrons causes polarization if the *electron* sees a distribution of incident radiation with a non-zero quadropole moment
- Scattering occurs primarily at recombination (z~1100) and reionization (z~10)
- Since we have a spot on the sky, some of these electrons will see a quadrupole and so we would expect a disk or ring of polarization centered on the cold/hot spot

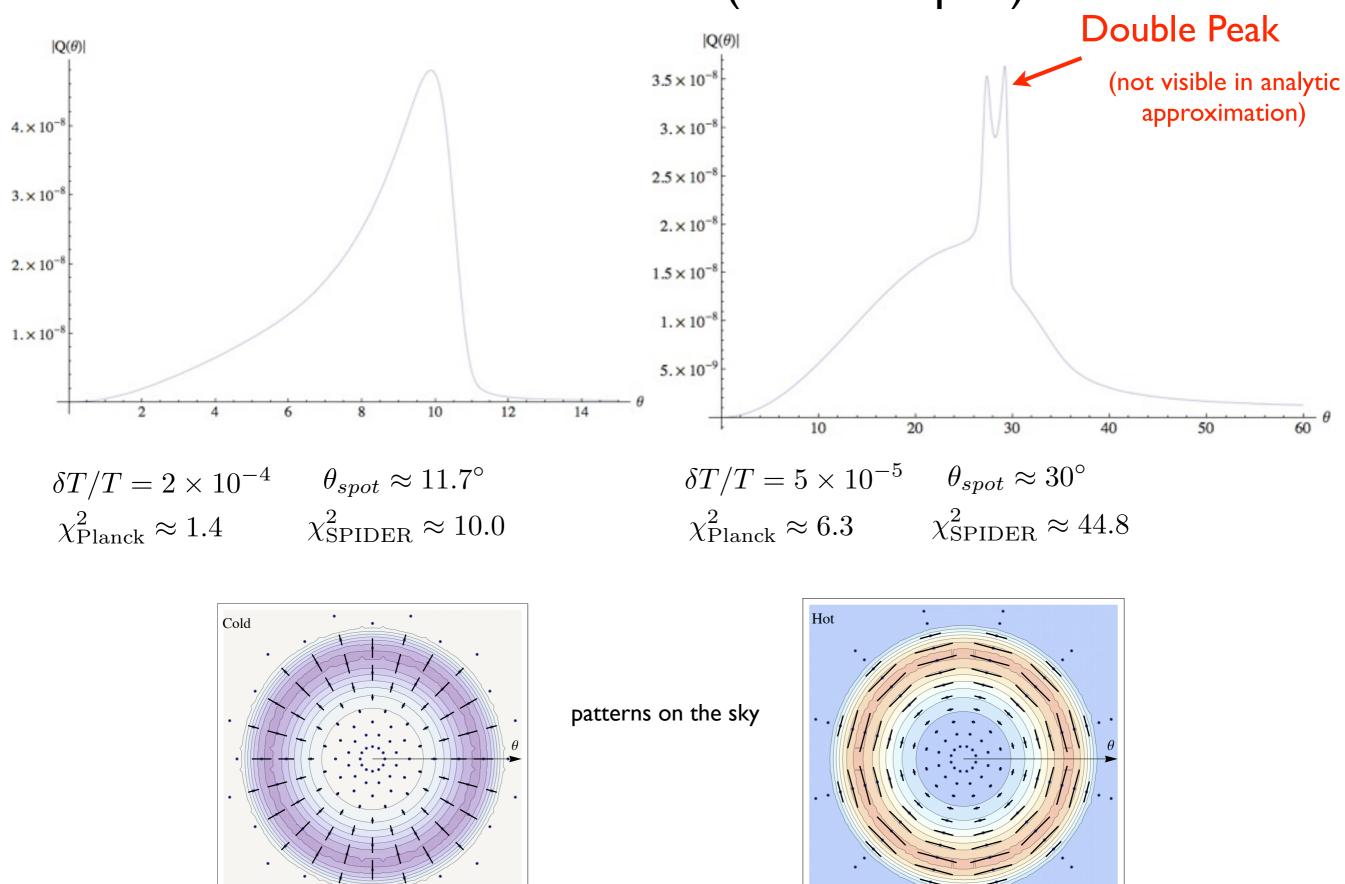


What polarization do we expect?

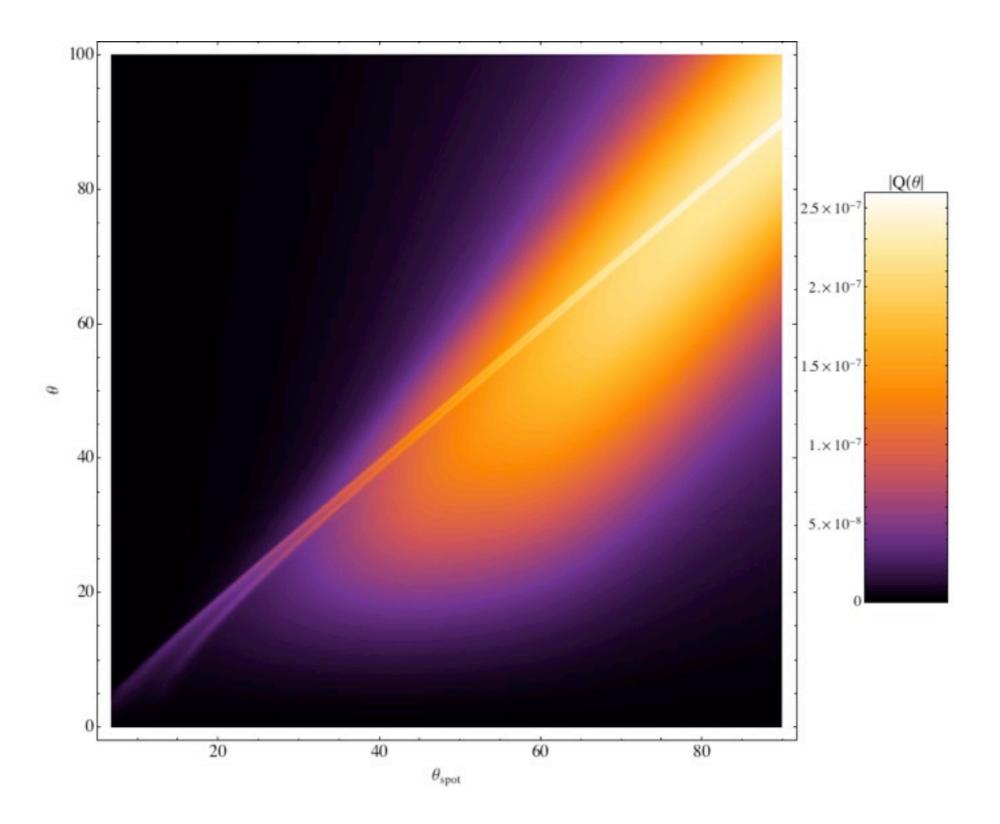
- By symmetry the polarization should only depend on the angular distance from the center of the spot and its temperature (hot vs. cold)
- This is called E-mode polarization (as opposed to B-mode), which is what we expect for a scalar perturbation
- If we choose our coordinates so the pole is at the center of the spot this is purely the Stokes parameter Qmode (as opposed to U), in this case the difference between E and Q is just a prefactor related to spherical harmonics vs. spin weighted ones



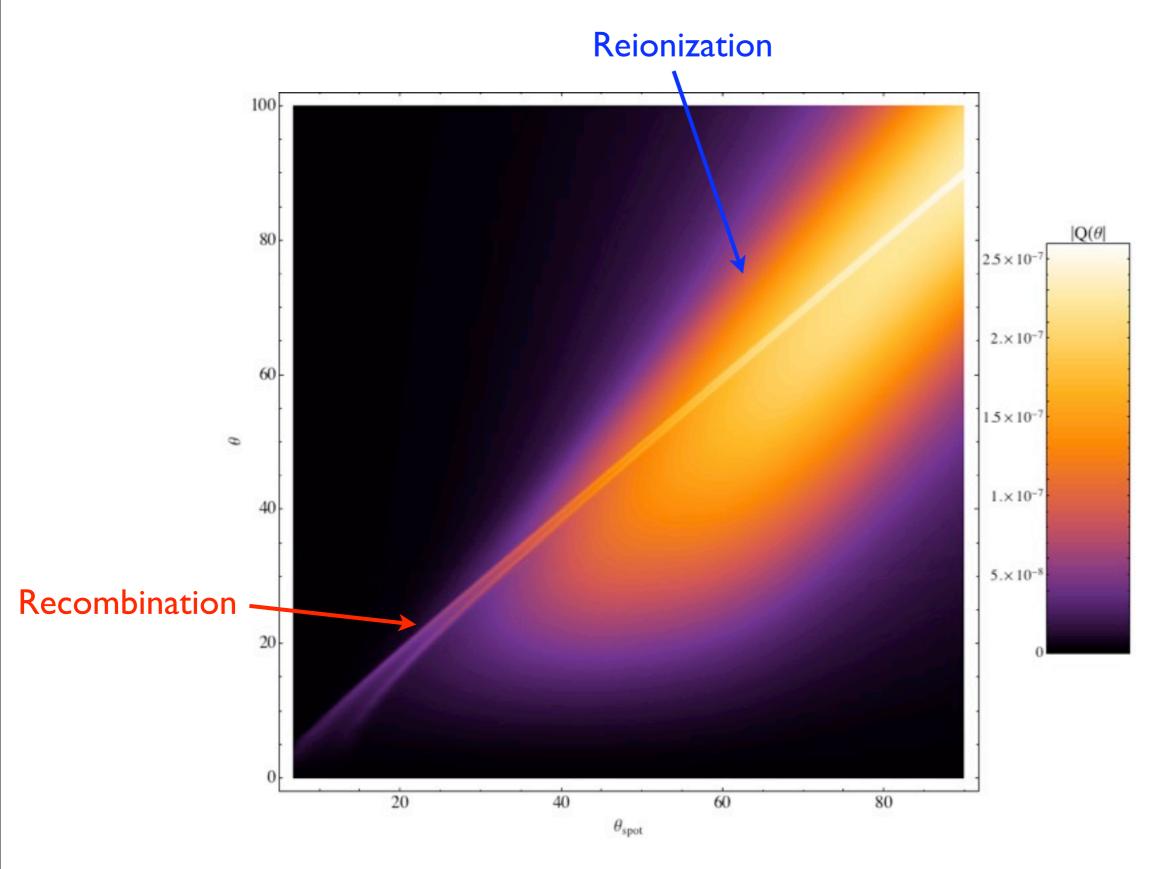
Polarization: results (two examples)



Polarization: Full results

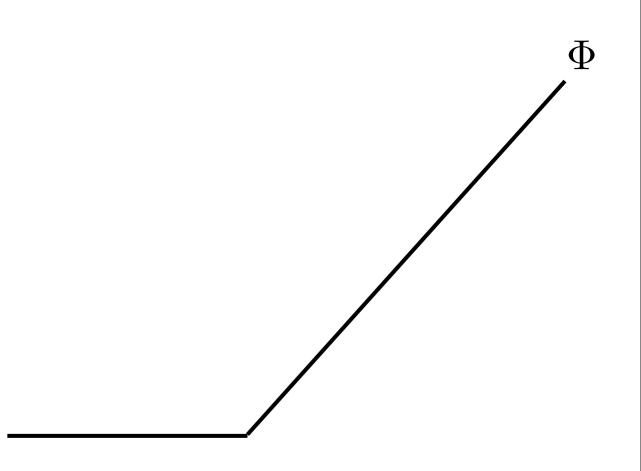


Polarization: Full results



Why a double peak?

• The initial condition near the end of inflation is a kink in Φ



Why a double peak?

- The initial condition near the end of inflation is a kink in Φ
- This kink evolves into a smooth function within the soundcone from the end of inflation to recombination (sum of left and right moving waves)
- However, at the edge of the soundcone, the first derivative is still discontinuous
- So the second derivative is still large there, and hence the quadrupole seen by electrons are large
- Any electron whose LSS intersects one of the sub-kinks will see a quadrupole and give a peak for that sub-kink. If the LSS is larger than the twice the width of the soundcone, it instead makes a broader, single peak

Summary of Effects

• Temperature

- For any collision, we obtain a hot or cold spot
- The size of the spot depends on where we are compared to the collision lightcone
- The magnitude of the temperature depends on details of the collision and the number of efolds of inflation.
- There is no edge to a spot from a collision at any size

• Polarization

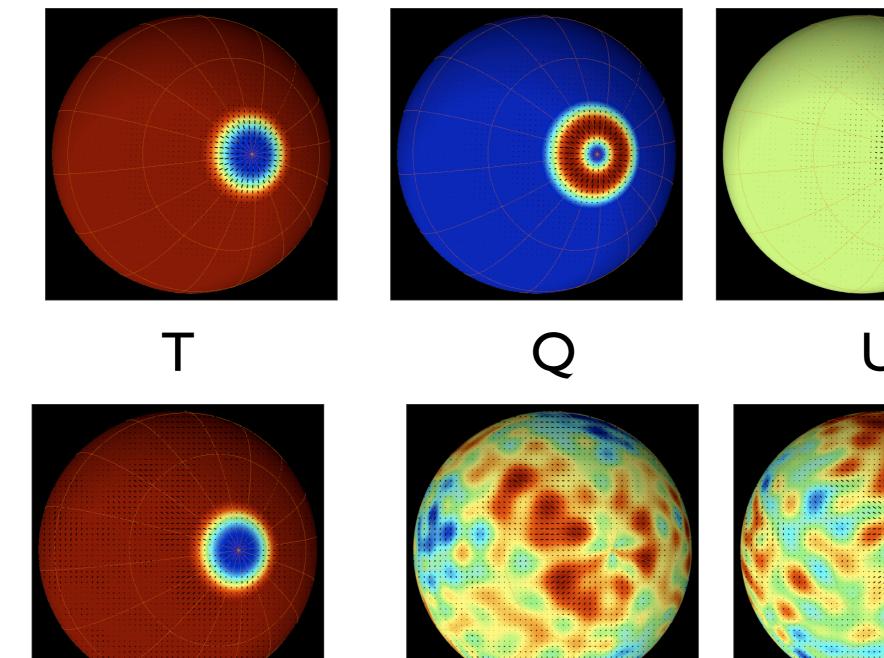
- Polarization is pure E (or Q)-mode
- It is centered on the temperature spot
- For spots larger than ~ 12 degrees (angular radius) we see a double peak around a degree scale or below (from scattering at recombination)
- Can correlate with signal in temperature and should be detectable by current and next generation polarization experiments

Comparison to other causes (textures and voids)

- How unique is this signal?
- Other explanations for the cold spot are textures, voids and random fluctuations
 - Textures and voids occur relatively late (z<5) and do not produce a measurable polarization signal, so completely different signal
- Planck, SPIDER and other experiments should be able to tell us

Comparison with random fluctuations

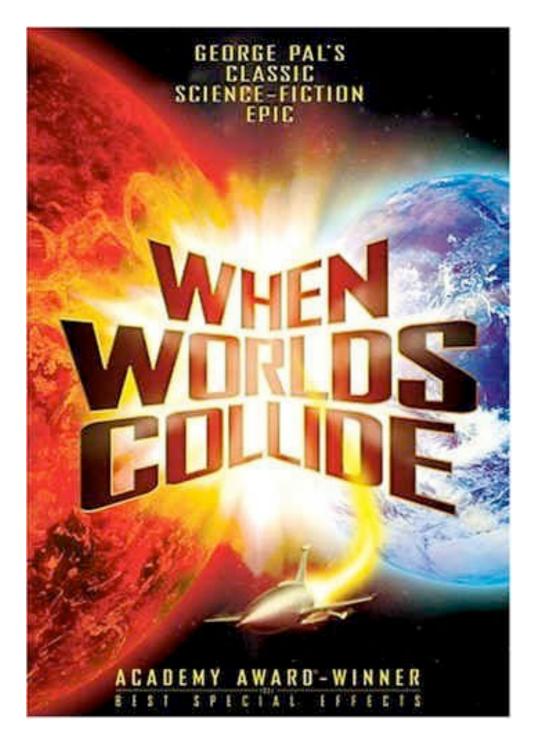
- To fully determine this, a statistical study on simulations needs to be run
- We can generate a few though and show it's not likely to be the same
- Collisions have a unique (planar) symmetry for all times, so the more effects we sample, the more "times" we're seeing this at



Bubble Collision

Gaussian fluctuation

Conclusions and future directions



- We've analyzed the dynamics of bubble collisions analytically and numerically up to a multipole of 2000
- Effects can be detected in the CMB, and polarization. Have we already seen some of these (preliminary analysis carried out by Feeney et al. in temperature)? Need polarization data
- The predictions for correlation of temperature and polarization for the cold spot seem to be unique → chance to test predictions of the string landscape!
- We encourage observations/analysis in real space (as opposed to momentum) to try and detect more, fainter spots
- Didn't have time here, but ask me later about overdensities and their evolution
- Lots of things to do, all of which could lead to observable effects!