New particle mass spectrometry at the LHC using M_{CT2} variable

Won Sang Cho (IPMU)

Ref) arXiv:0912.2354 arXiv:1008.0391

UC Davis 2010. 09. 28

Contents

1. Comparison of $M_T \& M_{CT} / M_{T2} \& M_{CT2}$ - General event topology at hadron collider

- 2. Amplification of singular structures in endpoint region by $M_{CT/CT2}$ - Reducing systematic uncertainties in endpoint extraction
- 3. A variety in transverse boost for $M_{CT/CT2}$ - Transversification VS Magnifying/Utilizing the boost effect

Dark matter production at the LHC

- BSM models with WIMP DM candidate
 - Supersymmetry(R-parity)
 - Universal Extra Dimension (KK-parity)
 - Little Higgs(T-parity)
- Measurement of new particle masses is not an easy task.
 - ✓ Several missing particles
 (N ≥ 2)
 - ✓ Partonic CM frame ambiguity
 - ✓ Complex event topologies

Mass Measurement with Missing Particle(s)

 $\vec{\delta}_T$: Transverse momentum from ISR or initial decays of $Y_{1,2}$

In the Standard Model ...

• M_T (Transverse mass) • M_T (Transverse mass) • M_T (Transverse mass) • M_T (measurement in $p\overline{p} \rightarrow \delta_T + W$ ($\rightarrow \ell + \nu$): Single Y/X • $M_T^2 = m_\ell^2 + m_\nu^2 + 2 (E_T^{\ell} E_T^{\nu} - p_T^{\ell} p_T^{\nu}) = 2p_T^{\ell} p_T^{\nu} (1 - \cos\varphi) \leq M_W^2$

J. Smith et. al. Phys. Rev. Lett 50, 1738 (1983)

FIG. 1. $\sigma^{-1}d\sigma/dm_T$ for $M = 80 \text{ GeV}/c^2$ and $\Gamma = 2.5 \text{ GeV}/c^2$. The solid line is for $p_T^W = 0 \text{ GeV}/c$, while the dashed line is for $p_T^W = 50 \text{ GeV}/c$.

 $\Rightarrow M_W = 80.401 \pm 0.021$ (stat) ± 0.038 (sys) GeV

D0 Collaboration, Phys. Rev. Lett 103, 141801 (2009)

Questions for New Physics at the LHC

- 1) What if we don't know M_X as well as M_Y ?
 - ⇒ The endpoint relation $M_T^{max} = M_Y$ is not conserved anymore for trial missing particle mass, $\chi \neq M_X$.
- 2) What if there exist multiple missing particles in the boosted decay system ?? (DM candidates in Z₂-parity conserving NP models)
 - \Rightarrow Only the sum of Tr. momenta is known.
- 3) Can we determine both of the masses, simultaneously, in such a non-reconstructable event with short decay chains ???

•For reconstructable events, see Refs) M. Nojiri, et al 2006, H.Cheng, J. Gunion, Z. Han and B. McElrath et al, 2007-2009 Basic properties of M_T and M_{CT}(Contransverse mass)

$$pp \rightarrow \delta_T + Y(\rightarrow V + X)$$

• Let's consider a system Y, where its \sqrt{S} is resonant / non-resonant.

• M_T of V and X (for resonant Y with $\sqrt{S} = M_Y$):

$$M_{T}(Y)^{2} \equiv m_{X}^{2} + m_{V}^{2} + 2\sqrt{m_{V}^{2} + |V_{T}|^{2}}\sqrt{m_{X}^{2} + |X_{T}|^{2}} - 2V_{T} \cdot X_{T}$$

$$\leq S(=M_{Y}^{2})$$

 \Rightarrow Colinear boost (or Frame) invariant endpoint as $\sqrt{S} = M_{\gamma}$!

Basic properties of M_T and M_{CT}(Contransverse mass)

• M_{CT} for non-resonant Y :

$$M_{CT}(Y)^{2} \equiv m_{X}^{2} + m_{V}^{2} + 2\sqrt{m_{V}^{2} + |V_{T}|^{2}}\sqrt{m_{X}^{2} + |X_{T}|^{2}} + 2V_{T} \cdot X_{T}$$

$$\leq$$

$$M_{C}(Y)^{2} \equiv m_{X}^{2} + m_{V}^{2} + 2\sqrt{m_{V}^{2} + |V|^{2}}\sqrt{m_{X}^{2} + |X|^{2}} + 2V \cdot X$$

- \Rightarrow Contra-linear boost (Back to back boosts of V and X) invariant endpoint!
- $\Rightarrow \sqrt{S}$ invariant endpoint in a fixed frame.

Example of M and point for non record on the first .

Example of
$$M_{CT}$$
 endpoint for non-resonant system (qq)
 $q^{(1)}$
 \tilde{q}_{R}
 \tilde{q}_{R}
 $q^{(2)}$
 \tilde{q}_{R}
 $q^{(2)}$
 $M_{CT}(qq, \sqrt{S} > 2M_{\tilde{q}})^{2} \equiv 2 |q_{T}^{(1)}| |q_{T}^{(2)}| + 2q_{T}^{(1)} \cdot q_{T}^{(2)}$
 \leq
 $M_{C}(qq, \sqrt{S} > 2M_{\tilde{q}})^{2} \equiv 2 |q^{(1)}| |q^{(2)}| + 2q^{(1)} \cdot q^{(2)}$
 \equiv In CM frame,
 $M_{C}(qq, \sqrt{S} = 2M_{\tilde{q}})^{2} = 2 |q_{0}^{(1)}| |q_{0}^{(2)}| + 2q_{0}^{(1)} \cdot q_{0}^{(2)}$
 $\leq 4 |q_{0}^{(1)}| |q_{0}^{(2)}| = 4 \left(\frac{m_{\tilde{q}}^{2} - m_{\tilde{\chi}_{0}^{2}}}{2m_{\tilde{q}}}\right)^{2}$
 $\xrightarrow{}$
The inequality holds as long as the RH-squark pair system is Tr. rest.

Large Jacobi Factor in the Endpoint Region of $M_{CT}/M_{CT2} \Leftrightarrow M_T/M_{T2}$:

- Compact distribution
 - for the internal momentum scale from the decay in system.
- Controlled by trial missing particle mass, χ
- Accentuation of singular structure in the endpoint region
- Reduction of systematic error in endpoint extraction

M_{CT2} (ConStransverse mass) W.S.Cho, J.E.Kim and J.H.Kim, Phys.Rev.D81,095010(2010)

$$M_{CT2/T2}$$
 for $pp \rightarrow \delta_T + Y_1 Y_2 (\rightarrow V_1 X_1 + V_2 X_2)$

 $M_{CT2/T2} \equiv \min[\max\{M_{CT/T}(Y_1), M_{CT/T}(Y_2)\}],$

$$M_{CT/T}(Y_i)^2 \equiv \chi^2 + 2 |V_{iT}| \sqrt{\chi^2 + |X_{iT}|^2} + -2V_{iT} \cdot X_{iT}$$

- χ = Trial missing particle mass, massless visible assumed.
- min & max over all possible missing Tr. Momentum, $X_{1T} + X_{2T} = E_T$
- M_{CT2} =Mixture of M_{T2} [C. Lester and D. Summers (1999)] and M_{CT} [Tovey (2008), Cho et al, Serna(2008), M_{CT} as a part of M_{T2} sol. (χ =0) for non-resonant massless visibles]

• IF $m_v \sim 0$, $M_{CT2}(\chi)$ projection can have significantly amplified endpoint structure (χ = Trial missing particle mass)

 $J_{max}(\chi) \Rightarrow \infty \text{ as } \chi \Rightarrow 0$

• One can control $J_{max}(\chi)$ by judicious value of χ

$$\sigma^{-1} \frac{d\sigma}{dM_{CT}(\chi)} \sim J\sigma^{-1} \frac{d\sigma}{dM_{T}(\chi)}$$
$$J = \frac{M_{CT}(\chi)}{M_{T}(\chi)} \frac{(e_{X} + |\mathbf{p}_{0T}|)^{2}}{(e_{X} - |\mathbf{p}_{0T}|)^{2}}$$
$$\rightarrow \begin{cases} \frac{M_{C}(\chi)}{M(\chi)} \frac{(E_{X} + |\mathbf{p}_{0}|)^{2}}{(E_{X} - |\mathbf{p}_{0}|)^{2}} & \text{Endpoint region, } J_{max} \\ 1 & \text{Minimum region} \end{cases}$$

• A faint Break Point (~ signal endpoint with irred. BGs) with small slope difference is amplified by $J_{max}^{2}(\chi)$:

$$\Delta a \rightarrow \Delta a' = J_{max}^{2}(\chi) \Delta a$$
, $\delta_{BP}^{2} \sim \frac{\sigma^{2}}{\Delta a^{2}}$

With the accentuated BP structure, the fitting scheme (function/range) can be elaborated, and it can significantly reduces the systematic uncertainties in extracting the position of the BPs !

→ The most reliable range for local fitting for BP.

Simple Example :

$\tilde{g}\tilde{g} \rightarrow (q+\tilde{q}) + (q+\tilde{q}) \rightarrow (qq\tilde{\chi}_1^0) + (qq\tilde{\chi}_1^0)$

4jets → 6 possible pairs of jets / 3 Independent decay crossing pairs exist

1) $\alpha(1)-\beta(1)$ 2) $\alpha(1)-\beta(2)/\alpha(2)-\beta(1)$ 3) $\alpha(2)-\beta(2)$

$$\tilde{g}\tilde{q} \rightarrow (qq\tilde{\chi}_1^0) + (q\tilde{\chi}_1^0)$$

- 3 jets → 3 pairs / 2 Independent decay crossing pairs exist
- 2) $\alpha(1)-\beta(2)/\alpha(2)-\beta(1)$ 3) $\alpha(2)-\beta(2)$

Partonic level results : C-M_{T2}

Partonic level results : C-M_{CT2}

 → Systematic errors for physical constraints reduced by O(1/J_{max}) in local fitting of break points.
 J_{max} : Jacobian factor near the endpoint region This enhances our observability for several endpoints.

(Previously)

Impose hard cut, and remove the BG events near the endpoint.

(Now)

Well, moderate cut & irreducible BGs are okay, if there exist dim BPs from signal endpoints. We can magnify it !

• M_{CT2} for $\delta_T \neq 0$??

W.S. Cho, W. Klemm and M. M. Nojiri, [arXiv:1008.0391]

→ *Resolving power to determine both the mother and missing particle masses.*

Can we measure both the M_Y and M_X ? $\rightarrow M_{T2}$ - kink Methods

- Using $M_{T2}^{max}(\chi)$ / kink position at true masses, (M_Y, M_X)
- The kink is from the variety of kinematic configurations for $M_{T2}^{max}(\chi)$

 However, the BK structure may not be easy to identify as it requires very large δ_T.

> → ``M_{T2}-bowl" (Statistical approach to pinpoint BK) P. Konar, et al, 0910.3679; T. Cohen, et al, 0905.1201

$M_{CT2}^{max}(\chi)$ with Non-zero Tr. Boost : Magnifying the boost effect

W.S. Cho, W. Klemm and M. M. Nojiri, [arXiv:1008.0391]

$$M_{CT2} \text{ for } pp \to \delta_{T} + Y_{1} Y_{2} (\to V_{1}X_{1} + V_{2}X_{2})$$

$$M_{CT2}^{\text{max}} = \begin{pmatrix} 2\chi^{2} + \frac{|\delta_{T}|^{2}}{4} & \text{for } \chi \leq \chi_{*} \\ \chi^{2} + 2\alpha(\frac{|\delta_{T}|}{2} - \alpha) + 2\alpha\sqrt{\chi^{2} + (\frac{|\delta_{T}|}{2} - \alpha)^{2}} & \text{for } \chi \geq \chi_{*} \end{pmatrix}$$

$$\alpha = \left(\frac{m_{Y}^{2} - m_{X}^{2}}{2m_{Y}}\right) \left[\frac{|\delta_{T}|}{2m_{Y}} + \sqrt{1 + (\frac{|\delta_{T}|}{2m_{Y}})^{2}}\right], \quad \chi_{*}^{2} = \frac{|\delta_{T}|}{2} \left(2\alpha - \frac{|\delta_{T}|}{2}\right)$$

 $\delta_{\rm T}$ =20 GeV

 $\delta_{\rm T}$ =250 GeV

Sensitive and elastic recoiling of the endpoint with respect to external boost momentum

- Especially for near degenerate mass spectrum Provides enhanced experimental resolution for M_Y and M_X with moderate value of boost momentum

SUSY example : $m_{\tilde{\chi}_1^{\pm}} \& m_{\tilde{v}}$ measurement using same sign dileptonic events More ref) K. Matchev, et al. arXiv:0909.4300,0910.1584; P. Konar, et al. Phys. Rev. Lett 105,051802(2010)

 M_{CT2} for $pp \rightarrow \delta_T$ (ISR/initial decays) + $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} (\rightarrow \ell^{\pm} \tilde{\nu}_{\ell} + \ell^{\pm} \tilde{\nu}_{\ell})$

Result) $M_{CT2}(\chi)-\chi$ distribution of SS Dileptonic events with $\delta_T \leq 200,400$ GeV

Result) True/Reconstructed $M_{CT2}^{max}(\chi)$, Reconstructed Masses

***** : Position of the kink, $\chi_*^2 = \frac{|\delta_T^{\max}|}{2} \left(2\alpha - \frac{|\delta_T^{\max}|}{2} \right)$ = (94.8,120.7) GeV $\boldsymbol{\alpha} \equiv \left(\frac{m_Y^2 - m_X^2}{2m_Y}\right) \left| \frac{|\boldsymbol{\delta}_T^{\text{max}}|}{2m_Y} + \sqrt{1 + \left(\frac{|\boldsymbol{\delta}_T^{\text{max}}|}{2m_Y}\right)^2} \right|$ Segmented fitting with $M_{CT2}^{max}(\chi, \delta_T^{max})$ provides two α values. $\alpha(\delta_{\tau}^{\max} = 200 \mid 400) \quad (GeV)$ $= (92.4 \pm 2.5 | 132.6 \pm 3.4)$ $\Rightarrow (M_{\tilde{\gamma}_1^{\pm}}, M_{\tilde{v}_{\ell}})$ $= (231.2 \pm 9.9 | 159.3 \pm 5.9)$

Summary

1. M_{CT2} distribution can have compact endpoint structure with respect to the internal momentum scale from decay system.

→ Small slope discontinuities are amplified by $J(x)^2$, accentuating the breakpoint structures clearly, reducing sys. uncertainties.

- 2. It shows very sensitive endpoint recoiling by the external boost momentum of the decay system like a flubber ball.
- → Can have significant resolving powers by the boost effect.
 - 3. It can be utilized for the mass measurement in boosted decay systems which must be the most fundamental and general element of complex event topologies at future hadron colliders.

Backup slides

Error analysis with histogram : $(x_i, y_i \pm \sigma_i)$ σ_i = statistical error of the i-th bin

Statistical error for breakpoint(BP) (using Least Square methods)

$$\delta_{BP}^{2} \sim \frac{\sigma^{2}}{\Delta a^{2}} \rightarrow \frac{J^{2}\sigma^{2}}{J^{4}\Delta a^{2}} \sim \frac{1}{J^{2}} \delta_{BP}^{2}$$
$$\therefore \delta_{BP}^{(stat)}(M_{\pi T2}) \sim \frac{1}{J} \delta_{BP}^{(stat)}(M_{T2})$$

However, the error propagation factor ~ J for getting p^0 ,

 $\delta_{p^0}^{(stat)}(M_{\pi T2}) \sim \delta_{p^0}^{(stat)}(M_{T2})$: No advantage for statistical errors.

Systematic error for BP using Segmented Linear Regression:

 $(x_i, y_i) \rightarrow$ Find the BP with maximal "Coefficient of Explanation"

$$\delta_{BP}^{2} \sim \frac{\Sigma \varepsilon^{2}}{\Delta a^{2}} \rightarrow \frac{\Sigma \varepsilon'^{2}}{J^{4} \Delta a^{2}} \sim \frac{1}{J^{4}} \delta_{BP}^{2}$$

 $(\sum \varepsilon'^2 \sim \sum \varepsilon^2)$, similar square sum of residuals after maximization *with* elaborated fitting functions)

$$\therefore \delta_{BP}^{(sys)}(M_{\pi T2}) \sim \frac{1}{J^2} \delta_{BP}^{(sys)}(M_{T2})$$

Taking into account the error propagation factor,

 $\delta_{p^0}^{(sys)}(M_{\pi T2}) \sim \frac{1}{J} \delta_{p^0}^{(sys)}(M_{T2})$: O(1/J) reduction is expected!

Combinatoric - M_{CT2}(\alpha_i - \beta_j) [work in progress] Let's take a system of interest with transverse momentum, - δ_T .

$$C - M_{CT2}^{2}(\alpha_{i} - \beta_{j}) \equiv \min[\max\{M_{CT}(A_{i}), M_{CT}(B_{j})\}]$$
$$M_{CT} \equiv \chi^{2} + 2 |\mathbf{p}_{T}| \sqrt{\chi^{2} + |\mathbf{k}_{T}|^{2}} + 2\mathbf{p}_{T} \cdot \mathbf{k}_{T},$$

• $\mathbf{p}_{\mathbf{T}}$ = visible transverse momenta

• $\chi = universal test mass for A_{i+1} \& B_{j+1} (in general M_{A_{i+1}} \neq M_{B_{i+1}})$

•
$$\mathbf{k}_{\mathrm{T}}(\alpha) + \mathbf{k}_{\mathrm{T}}(\beta) = -(\alpha_{iT} + \beta_{jT}) - \delta_{T} = \mathbb{E}_{T}'$$

• min&max over all possible invisible missing momentum \mathbf{k}_{T}