

Sparticle mass reconstruction in supersymmetry with long-lived staus

Sanjoy Biswas

Harish-Chandra Research Institute Allahabad, India

Talk at University of California, Davis

October 27, 2010

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

List of publications

- Neutralino reconstruction in supersymmetry with long-lived staus, SB and Biswarup Mukhopadhyaya. Published in Phys. Rev. D79:115009, (2009), arXiv:0902.4349 [hep-ph]
- Chargino reconstruction in supersymmetry with long-lived staus, SB and Biswarup Mukhopadhyaya. Published in Phys. Rev. D81:015003, (2010), arXiv:0910.3446 [hep-ph]
- Reconstruction of the left-chiral tau-sneutrino in supersymmetry with a right-sneutrino as the lightest supersymmetric particle, SB. Accepted in Phys. Rev. D, arXiv:1002.4395 [hep-ph].

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

Outline

- Introduction
- Choice of mSUGRA parameters
- Basic strategy and results
 - Neutralino reconstruction
 - Chargino reconstruction
 - Left-chiral tau sneutrino reconstruction

Conclusion

Outline	Introduction	mSUGRA parameters	Basic strategy and results 000000000 00000000 000	Conclusion

Introduction

- Standard Model of particle physics is incomplete...
 - ► The Higgs mass is unstable under the radiative correction
 - It does not explain the observed non-vanishing neutrino masses and mixing
 - It also does not explain the observed DM density and baryon asymmetry of the Universe.
- There are ample reasons to look for physics beyond the Standard Model.

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

- ► Physics beyond the Standard Model⇒ new particles.
- ► Supersymmetry: Bosons ↔ Fermions → not an exception.
- Measuring mass and spin of these new particles are of paramount importance.

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

General features of SUSY at the LHC

- ► SUSY production is dominated by gluinos and squarks.
- the gluinos and squarks cascade down, generally in several steps, giving rise to the canonical SUSY signal,

multi-jets and/or leptons and missing transverse energy ($\not E_T$) due to two invisible LSPs

(in a *R*-parity, defined as $R = (-)^{3B+L+2S}$, conserving scenario.)

Mass reconstruction is quite a difficult task at the LHC.

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

General features of SUSY at the LHC

- ► SUSY production is dominated by gluinos and squarks.
- the gluinos and squarks cascade down, generally in several steps, giving rise to the canonical SUSY signal,

multi-jets and/or leptons and missing transverse energy ($\not E_T$) due to two invisible LSPs

(in a *R*-parity, defined as $R = (-)^{3B+L+2S}$, conserving scenario.)

► Mass reconstruction is quite a difficult task at the LHC.

But this possibility is not unique.

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

Alternative SUSY signal at the LHC

► One can have a charged particle as the NLSP and the decay of it into the LSP is suppressed ⇒ NLSP becomes stable on the length scale of the detector.

 \Rightarrow The essence of SUSY signal lies not in $\not\!\!\!E_T$, but in charged track due to massive particle, seen in the muon chamber.

► Additional kinematic information ⇒ opens up the possibility of mass reconstruction

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

Right-handed sneutrino LSP scenario

- The scenario we have studied as an example is a right-handed sneutrino LSP and the NLSP is the superpartner of tau.
- In MSSM one can achieve this by the addition of a right-handed neutrino superfield for each family in the MSSM spectrum, assuming neutrino to be of Dirac type.
- The superpotential in this case is given by

 $W_{MSSM} = y_l \hat{L} \hat{H}_d \hat{E}^c + y_d \hat{Q} \hat{H}_d \hat{D}^c + y_u \hat{Q} \hat{H}_u \hat{U}^c + \mu \hat{H}_d \hat{H}_u + y_\nu \hat{H}_u \hat{L} \hat{\nu}_R^c$

 These sneutrinos will have all their interactions proportional to y_v

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

It is possible to accommodate such a scenario in a high-scale framework of SUSY breaking:

$$\begin{array}{c} \underline{\mathsf{mSUGRA}}\\ m_0, \ M_{1/2}, \ A_0, \ sign(\mu), \ \tan\beta \\ \downarrow \end{array}$$

All the low energy parameters

The RGE of the right-chiral sneutrino mass parameter at the one-loop level is given by-

$$rac{dM_{ ilde{
u}_R}^2}{dt}\simeq rac{2}{16\pi^2}y_
u^2\,\, A_
u^2$$

► The small Dirac masses of the neutrinos $m_{\nu} = y_{\nu} \langle H_u^0 \rangle = y_{\nu} v \sin \beta \Rightarrow y_{\nu} \sim 10^{-13}$ such a small $y_{\nu} \Rightarrow M_{\tilde{\nu}_R}$ to remain frozen at m_0

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

▶ The soft SUSY breaking terms contributing to neutrino mass

$$-\mathcal{L}_{soft} \sim M_{\tilde{L}}^2 \tilde{L}^{\dagger} \tilde{L} + M_{\tilde{\nu}_R}^2 |\tilde{\nu}_R|^2 + (y_{\nu} A_{\nu} H_u. \tilde{L} \tilde{\nu}_R^c + h.c.)$$

The sneutrino mass-squared matrix is of the form

$$m_{\tilde{\nu}}^2 = \begin{pmatrix} M_{\tilde{L}}^2 + \frac{1}{2}m_Z^2\cos 2\beta & y_\nu v(A_\nu \sin \beta - \mu \cos \beta) \\ y_\nu v(A_\nu \sin \beta - \mu \cos \beta) & M_{\tilde{\nu}_R}^2 \end{pmatrix}$$

Outline	Introduction	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

► The lighter sneutrino mass eigenstate

$$\tilde{\nu}_1 = -\tilde{\nu}_L \sin\theta + \tilde{\nu}_R \cos\theta$$

where the mixing angle θ is given as

$$an 2 heta = rac{2y_
u v \sineta | \coteta \mu - A_
u|}{m^2_{ ilde
u_L} - m^2_{ ilde
u_R}}$$

which for each family is dominated by the right-chiral state.

Thus one naturally has RH-sneutrino LSP for a wide range of values of the gaugino mass parameter.

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

mSUGRA parameters

- ► The low energy mass spectrum is determined from the mSUGRA parameter set (m₀, M_{1/2}, A₀, sign(μ) and tan β) specified at some high scale value using the Spectrum Generator: ISASUGRA v7.78
- ► We have worked in the region of m₀-M_{1/2} plane where a τ̃ LSP occur in a usual mSUGRA scenario without the right handed sneutrino.
- ► The value of A₀ is fixed at 100 GeV without any loss of generality and sign(µ) has been taken to be +ve.

Outline	mSUGRA parameters	Basic strategy and results 000000000 0000000 000	Conclusion

Input	BP-1	BP-2	BP-3	BP-4	BP-5	BP-6
	$m_0 = 100$	$m_0 = 100$	$m_0 = 100$	$m_0 = 100$	$m_0 = 100$	$m_0 = 100$
mSUGRA	$m_{1/2} = 600$	$m_{1/2} = 500$	$m_{1/2} = 400$	$m_{1/2} = 350$	$m_{1/2} = 325$	$m_{1/2} = 325$
	$\tan \beta = 30$	aneta=30	aneta=30	aneta=30	aneta=30	aneta=25
m _{ṽiR}	100	100	100	100	100	100
$m_{\tilde{e_I}}, \tilde{m_{\tilde{\mu}_I}}$	418	355	292	262	247	247
$m_{\tilde{e}_R}$, $m_{\tilde{\mu}_R}$	250	214	183	169	162	162
$m_{\tilde{\nu}_{eL}}, m_{\tilde{\nu}_{\mu L}}$	408	343	279	247	232	232
$m_{\tilde{\nu}_{\tau L}}$	395	333	270	239	224	226
$m_{\tilde{\tau}_1}$	189	158	127	112	106	124
$m_{\chi_{1}^{0}}$	248	204	161	140	129	129
$m_{\chi^0_2}^{\chi^1_1}$	469	386	303	261	241	240
$m_{\chi_1^{\pm}}$	470	387	303	262	241	241
m _ĝ	1362	1151	937	829	774	774
m _{ĩ1}	969	816	772	582	634	543
m_{h^0}	115	114	112	111	111	111

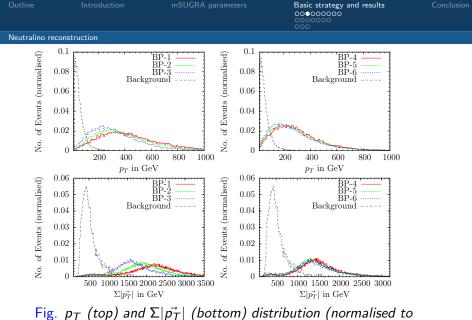
Table: Proposed benchmark points (BP) for study of stau-NLSP scenario in the SUGRA with right-sneutrino LSP. All the values except $\tan \beta$ are given in GeV.

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

Collider simulation

- ► We have used the event generator Pythia v6.4.16 for our simulation.
- ► *pp* collision has been simulated with a cm energy $E_{cm} = 14 \ TeV$.
- CTEQ5L pdf used in the simulation.
- QCD renormalisation and factorisation scales set at the $\mu_{\mathbf{F}} = \mu_{\mathbf{R}} = \mathbf{m}_{\mathbf{average}}^{\mathbf{final}}$.
- Hadronisation has been done, using the fragmentation functions inbuilt in Pythia.
- The effects of ISR and FSR and finite detector resolution have been taken into account.

Neutralino reconstruction


- Neutralino are produced in cascade decay
 - $egin{array}{ll} ilde{q} o q \chi^0_i o q ilde{ au}^* au \ ilde{g} o ilde{q} ilde{q} o ilde{q} q \chi^0_i o ilde{q} q ilde{ au}^* au \end{array}$
 - $\Rightarrow 2\tau_j + 2\tilde{\tau} (\text{charged-track}) + \not E_T + X$
- ► We have not consider any isolated leptons ⇒Minimize the contribution to *F_T* of neutrinos other than from taus.

∃ >

Outline		mSUGRA parameters	Basic strategy and results 00000000 0000000 000000 000	Conclusion
Neutralino rec	onstruction			

Event selection criteria

Events have been selected with the following basic criteria $p_{\tau}^{lep,stau} > 10 \text{ GeV}$ $p_{\tau}^{hardest-jet} > 75 \text{ GeV}$ $p_{\tau}^{other-jets} > 50 \text{ GeV}$ $E_T > 40 \text{ GeV}$ $|\eta| < 2.5$ for leptons, jets & stau $\Delta R_{II} > 0.2, \ \Delta R_{Ii} > 0.4$ $\Delta R_{\tilde{\tau}l} > 0.2, \ \Delta R_{\tilde{\tau}i} > 0.4$ $\Delta R_{ii} > 0.7$ where, $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

unity) for the signal and the background for all benchmark points.

Outline		mSUGRA parameters	Basic strategy and results 00000000 0000000 000000	Conclusion
Neutralino reco	onstruction			

To reduce the SM background

- $p_T > 100 \text{ GeV}$ for each charged track
- $\Sigma |p_T| > 1 TeV$

Outline		mSUGRA parameters	Basic strategy and results 000000000 0000000 000	Conclusion
Neutralino rec	construction			

τ -reconstruction

- ► We have selected hadronic jets with E_T > 50 GeV, assuming the identification efficiency of a true tau-jet to be 50%, and a non-tau jet rejection factor of 20.
- If x_i is the fraction of the parent τ-energy carried by each product jet, then one can write

$$P_{h_i} = x_i P_{\tau_i} \quad (i = 1, 2)$$

(in the collinear approx. $E_{ au} >> m_{ au}$)

$$ec{\mathcal{F}_{T}} = ec{p}_{T}^{
u_{1}} + ec{p}_{T}^{
u_{2}} = (rac{1}{x_{1}} - 1) \ ec{p}_{h1} + (rac{1}{x_{2}} - 1) \ ec{p}_{h2}$$

D. L. Rainwater, D. Zeppenfeld and K. Hagiwara, Phys. Rev. D 59, 014037 (1999)

Outline		mSUGRA parameters	Basic strategy and results 000000000 0000000 0000	Conclusion
Neutralino rec	onstruction			

• Reconstruction of the neutralinos in the channel $\chi_1^0 (\chi_2^0) \rightarrow \tilde{\tau} \tau$ requires...

The information about $\tilde{\tau}$ 4-momenta \leftarrow knowledge of $m_{\tilde{\tau}}$

First we identify a correct ττ̃-pair by using a seed value for m_{τ̃} (=100 GeV) and demand

 $|M^{pair1}_{ au au}-M^{pair2}_{ au au}|$ is min. and <50~GeV

Demand for the correct pairs

$$\begin{array}{c} M_{\tau_1\tilde{\tau_1}} = M_{\tau_2\tilde{\tau_2}} \\ \Downarrow \end{array}$$

$$\sqrt{m_{\tilde{\tau}}^2 + |\vec{p}_{\tilde{\tau}_1}|^2} . E_{\tau_1} - \sqrt{m_{\tilde{\tau}}^2 + |\vec{p}_{\tilde{\tau}_2}|^2} . E_{\tau_2} = \vec{p}_{\tilde{\tau}_1} . \vec{p}_{\tau_1} - \vec{p}_{\tilde{\tau}_2} . \vec{p}_{\tau_2}$$

• This method is effective when both pairs of $\tau \tilde{\tau}$ come from $\chi_1^0 \chi_1^0$ or $\chi_2^0 \chi_2^0$.

Neutralino reconstruction

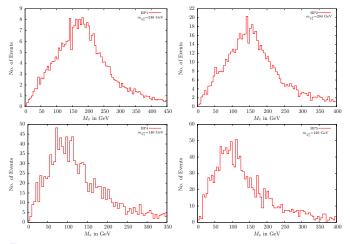


Fig. The $\tilde{\tau}$ mass peak obtained from eventwise reconstruction of $m_{\tilde{\tau}}$.

< ∃ →

< (□)

Neutralino reconstruction

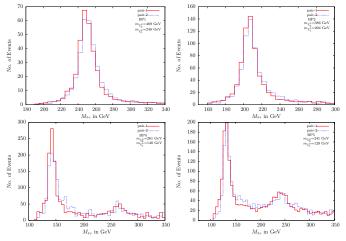


Fig. $M_{\tilde{\tau}\tau}$ distribution for BP1, BP2, BP4 and BP5.

∢ ≣⇒

Outline		mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion
Neutralino rec	construction			

CUTS		SIGNAL			BACKGROUND
	BP1	BP2	BP4	BP5	
Basic Cuts	1765	4143	20889	28864	4180
$+P_T$ Cut	1588	3631	15526	20282	214
$+\Sigma P_T $ Cut	1442	3076	9538	11266	63
$ + M_{ ilde{ au} au}^{pair1} - M_{ ilde{ au} au}^{pair2} $ Cut	408	887	2004	2244	6

Table: Number of signal and background events for $2\tau_j + 2\tilde{\tau} + E_T + X$ final state with an integrated luminosity of 300 fb⁻¹.

∃ >

Chargino reconstruction

- χ_1^{\pm} is produced in association with χ_1^0/χ_2^0 and hard jets.
- The χ_1^{\pm} subsequently decays into a $\tilde{\tau}^{(*)} \nu_{\tau}^{(-)}$ pair, while the χ_1^0 (or χ_2^0) decays into a $\tilde{\tau} \tau$ pair.
- ► The final state consists of $\tau_j + 2\tilde{\tau}(opposite sign charged tracks) + \not E_T + X$
- Since the decay of χ[±]₁ involves an invisible particle (ν_τ), a transverse mass distribution, rather than invariant mass distribution, will give us information of m_{χ[±]}.

Outline		mSUGRA parameters	Basic strategy and results ○○○○○○○○ ○●○○○○○ ○○○	Conclusion
Chargino reco	onstruction			

- The \vec{E}_T is comprises of $\vec{E}_T = \vec{P}_{\nu_1}^T + \vec{P}_{\nu_2}^T$
- ► The transverse momenta of the neutrino (P^T_{ν2}), out of a tau decay, is first reconstructed in the collinear approximation

$$P_{\tau_j} = x P_{\tau}$$

- ► Following the decay χ_1^0 (or, χ_2^0) $\rightarrow \tilde{\tau}^{\pm} \tau^{\mp}$ one can write $m_{\chi_i^0}^2 = (P_{\tilde{\tau}} + P_{\tau})^2 = (P_{\tilde{\tau}} + P_{\tau_j}/x)^2$ (*i* = 1,2)
- One can solve this to obtain

$$\vec{P}_{\nu_2}^{T} = \vec{P}_{\tau}^{T} - \vec{P}_{\tau_j}^{T} = \frac{1-x}{x} \cdot \vec{P}_{\tau_j}^{T}$$

► The transverse momenta of the neutrino, out of \(\chi_1^\pm-decay\) can be extracted from the knowledge of \(\vec{\vec{E}}_T\) of that particular event

$$\vec{P}_{\nu_1}^T = \vec{E}_T - \vec{P}_{\nu_2}^T$$

From the transverse mass distribution of the $\tilde{\tau}$ - ν_{τ} pair, defined by,

$$M^T_{ ilde{ au}
u_ au} = \sqrt{(E^T_{ ilde{ au}} + E^T_{
u_ au})^2 - (ec{P}^T_{ ilde{ au}} + ec{P}^T_{
u_ au})^2}$$

one can obtain the value of $m_{\chi^{\pm}_1}$

SUSY backgrounds

- SUSY processes in this scenario itself are serious than SM backgrounds
- ► The dominant contributions come from

$$\chi_i^0 \chi_j^0 + X \to (\tilde{\tau}\tau)(\tilde{\tau}\tau) + X$$

one of the τ not being identified

$$\widetilde{
u}_{ au_L}\chi_i^0 + X
ightarrow (ilde{ au}W)(ilde{ au} au) + X \ \downarrow \ ext{ with the }W ext{ not being identified }$$

Cut X: look at the invariant mass distribution of the τ (having same charge as that of the τ) with each jet in the final state and veto that event if

$$m_{\chi^0_i} - 20 < M_{ ilde{ au}j} < m_{\chi^0_i} + 20$$

Cut Y: veto event with W being identified in its hadronic decay if

$$M_W - 20 < M_{jj} < M_W + 20$$
 and $\Delta R_{ ilde{ au} j_r} < 0.8$

- ₹ 🖬 🕨

Outline	mSUGRA parameters	Basic strategy and results ○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○	Conclusio

Chargino reconstruction

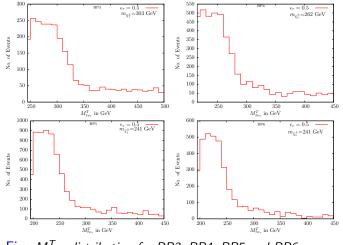


Fig. $M_{\tilde{\tau}\nu_{\pi}}^{T}$ distribution for BP3, BP4, BP5 and BP6.

< ≣⇒

< 17 ▶

Outline		mSUGRA parameters	Basic strategy and results ○○○○○○○○ ○○○○○○ ○○○	Conclusion
Chargino reco	onstruction			

BP4	Signal	SM	SUSY backgrounds	
	$(\chi_{1/2}^0 - \chi_1^{\pm})$	backgrounds	$\chi_i^0 - \chi_j^0$	$\chi^0_{1/2} - \tilde{\nu}_{\tau L}$
Basic cuts	18194	65588	44580	10613
With $p_T + \Sigma p_T $ Cut	10697	202	31256	5713
Cut X+cut Y	4875	202	9872	1480
$M_{\tilde{\tau}\nu_{\tau}}^{T} > \frac{3}{4}m_{\chi_{2}^{0}}$	2345	1	1754	231
$ M_{edge} - M_{\tilde{\tau}\nu_{\tau}}^{T} \le 20$	1076	1	381	58

Table: Number of signal and background event at an integrated luminosity of 300fb^{-1} for BP4.

Outline		mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion
Chargino reco	onstruction			

Left-chiral tau-sneutrino reconstruction

► The $\tilde{\nu}_{\tau_L}$ is produced predominantly via the decay of lightest chargino or second lightest neutralino .

$$\begin{array}{l} \chi_1^{\pm} \to \tilde{\nu}_{\tau_L}^{(*)} \tau^{\pm} \\ \chi_2^0 \to \tilde{\nu}_{\tau_L} \bar{\nu}_{\tau} \end{array}$$

► It has a sizeable decay branching fraction into a W⁷-pair (ranging from 34% to 80%).

Outline		mSUGRA parameters	Basic strategy and results ○○○○○○○○ ○○○○○○ ●○○	Conclusion
Chargino reconst	ruction			

- ► $\tilde{\nu}_{\tau_L}$ is produced mainly in association with $\chi^0_{1,2}$ in cascade decay of squarks and gluinos- $\chi^0_2 - \chi^0_{1,2} \rightarrow (\tilde{\nu}_{\tau_L}\nu_{\tau})(\tilde{\tau}\tau) \rightarrow (W\tilde{\tau}\nu_{\tau})(\tilde{\tau}\tau)$ $\chi^{\pm}_1 - \chi^0_{1,2} \rightarrow (\tilde{\nu}_{\tau_L}\tau)(\tilde{\tau}\tau) \rightarrow (W\tilde{\tau}\tau)(\tilde{\tau}\tau)$
- ► W has been reconstructed in its hadronic decay mode.

- We have adopted two different method to identify correct $\tilde{\tau}W$ -pair
 - ► Using opposite sign charged trackthe W has been combined with the stau having same charge as that of the T
 - Using chargino-neutralino mass information-W has been combined with the τ̃ for which either of the following criteria is satisfied:

 $|M_{ au au_j} - m_{\chi_i^0}| > 20 \, GeV \, \, {
m or} \, \, |M_{ au au_jW} - m_{\chi_i^\pm}| < 20 \, GeV$

Chargino reconstruction

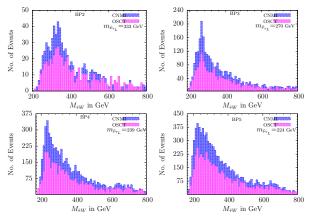


Fig. $M_{\tilde{\tau}W}$ distribution for BP2, BP3, BP4 and BP5.

Outline	mSUGRA parameters	Basic strategy and results ooooooooo oooooooo ooo	Conclusion

Conclusion

- The mSUGRA scenario, with conserved *R*-parity, can eminently lead to a situation in which the right-chiral sneutrino is the LSP and stau is long-lived.
- The right-chiral sneutrino becomes a viable dark-matter candidate, due to its very small neutrino Yukawa coupling.
- ► The stau being long-lived, the signal of SUSY consists of charged tracks in the muon chamber.

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

- This feature can be used to reconstruct the mass of the SUSY particle in such a scenario.
- The method of reconstruction we have suggested is not limited to scenario with right-handed sneutrino LSP alone. It can be applied to all those scenarois in which stau is long-lived. (*e.g.* GMSB,..)
- The existence of quasi-stable massive charged particles is an interesting possibility to look for at the LHC...

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

- This feature can be used to reconstruct the mass of the SUSY particle in such a scenario.
- The method of reconstruction we have suggested is not limited to scenario with right-handed sneutrino LSP alone. It can be applied to all those scenarois in which stau is long-lived. (*e.g.* GMSB,..)
- The existence of quasi-stable massive charged particles is an interesting possibility to look for at the LHC...

It not only offers a distinct SUSY signal, but also opens a new vista in the reconstruction of the superparticle masses.

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

Thank you!

Sparticle mass reconstruction in supersymmetry with long-lived staus

Sanjoy Biswas

⊸ ≣ ▶

Outline	mSUGRA parameters	Basic strategy and results 00000000 0000000 000	Conclusion

・ロト・「四ト・(日下・(日下・(日下))