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Confining Strings in RS

• I will be discussing Randall-Sundrum 
constructions with at least the SM 
electroweak gauge fields in the bulk

• This is dual to gauging global symmetries of 
some confining, technicolor-like theory

• Such a theory should have confining strings

• How heavy are they? Should they be part of 
the low-energy effective theory?



• Light string states ~ TeV

• Higher spin, Regge-like. 

• Studied examples: 

Ggauge ⊃ SU(2)L × U(1)Y

zUV zIR

GglobalE

mKK

MPl

Basic setup and result.

spin 2 excitations of SM gauge boson:  Perelstein & Spray, arXiv:0907.3496
spin 3/2 excitations the top quark:   Hassanain, March-Russell, and Rosa, arXiv:0904.4108

4D CFTRS

large N, strongly coupledweakly coupled



The Short Version

• Two known arguments -- avoiding a Landau 
pole and completing the confining phase 
transition -- imply a bound of loosely Nc < 10.

• In AdS5 × S5, the AdS curvature radius scales 
as R4 = 4πgsNls4, so the bound on N bounds 
ms/mKK ~ R/ls.<~101/4 (Strassler; Hassanain et al; 
Perelstein & Spray)

• Our goal: explain these arguments in detail, 
extend them to various examples, and look 
for what type of string construction is most 
promising.



Avoiding Landau Poles

strongly-interacting sector is a pure CFT, then we would have (exactly in the CFT,

and at leading order in the SM gauge coupling):

�
d4x e−iq·x �Jµ(0)Jν(x)�CFT = −bCFT

16π2

�
q2gµν − qµqν

�
log q2, (2.1)

8π2

g2(Q2)
=

8π2

g2(Λ2
X)

+ (bSM + bCFT ) log
ΛX

Q
(2.2)

If the strongly-interacting sector is not conformal, then in general the current-current

correlator involves a function Π(q2
) and the running of the gauge coupling induced by

the strong sector is not precisely logarithmic. For our purposes, this subtlety is not

important; we can imagine that above a threshold set by the scale of the mass gap in

a confining strong sector, the running is logarithmic to good approximation.

Now the key argument we would like to make is that bCFT should not be too large,

or the Standard Model gauge interactions will very rapidly become strongly interacting

above the scale of the lightest states in the strong sector. We wish to avoid hitting a

Landau pole at scales that are just above the weak scale, and possibly even far above

the weak scale. Such a Landau pole would be problematic for multiple reasons. For one,

it would imply that the SM gauge interactions are not really a weak perturbation of

the strong sector, so that there is a complicated theory of multiple strongly-interacting

gauge groups with dynamics that we cannot solve. For another, it would suggest that

the SM gauge bosons should probably be thought of as composites, as in Seiberg duality.

This is a perfectly reasonable possibility to consider [13, 14, 15], but it would lead us

to theories that are conceptually very different from technicolor. Now, the precise

conclusion that we draw from this depends on which scale we decide a Landau pole is

acceptable at. If we suppose that the threshold at which the strongly interacting sector

begins is at 1 TeV, and we wish to explain a large hierarchy, up to say 10
15

GeV, then

to avoid a Landau pole for SU(2)L we have a bound of approximately:

bCFT ≤
8π2

g2(MZ)

1

log 1012
+

10

3
≈ 10. (2.3)

The 10/3 is from b2 = −10/3 in the Standard Model, after subtracting the Higgs

contribution of +1/6, since its role is replaced by the technicolor sector. If some of the

Standard Model states are composites, or if there is still an elementary Higgs field, the

computation changes appropriately, but the bound remains O(10).

In Figure 1 we show the bound on bCFT as a function of the scale below which

we forbid a Landau pole. The bound weakens in the “little Randall-Sundrum” sce-

nario that gives up on explaining the large hierarchy and aims only to address a little

hierarchy, with flavor bounds in mind [16]. The bound is saying that because the
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The two-point function of the global symmetry
current computes its contribution to the running
of SU(2)L in the SM:

In most examples, bCFT ~ N (from fields in
the bifundamental of color and flavor). 

Set by bCFT = 8π2 R/g52 in 5D theory.
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Figure 1: Bound on bCFT as a function of the scale Λ below which we forbid a Landau pole.

measured coupling is not very small, we can conclude that there are not very many
SU(2)L-charged particles driving its renormalization group flow toward small values.
The measured QCD coupling is larger, but for technicolor-like theories we need not as-
sume that the strong interaction gauges a global symmetry of the technicolor sector, so
the most generic constraint is the one from SU(2)L. (On the other hand, most Randall-
Sundrum models in the literature do assume that the full Standard Model gauge group
is a subgroup of the global symmetry group of the technicolor sector, because it gives
a nice way of dealing with flavor. In these models, there is a constraint on bCFT for the
SU(3)c currents as well.)

Naively, if the technicolor sector is some large-N gauge theory, we expect that
bCFT arises from matter that is charged under the SU(N) symmetry and under a global
symmetry. If that matter is in the fundamental of SU(N), then bCFT ∼ N , and in other
representations bCFT scales even faster with N . Thus, naively, and up to order-one
factors, the bound we have discussed (in the case of a large hierarchy) implies that
N <∼ 10. However, there are cases where bCFT is O(1) rather than O(N) or larger [17].
We will revisit this point below, but first we turn to an independent phenomenological
bound which applies to the total number of degrees of freedom.

2.2 Bounds from First-Order Phase Transition

A second bound on the number of new degrees of freedom near the TeV scale arises
from cosmology. It is somewhat less robust, because it depends on the assumption that

– 5 –

GUT-scale hierarchy:

strongly-interacting sector is a pure CFT, then we would have (exactly in the CFT,
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Ways out?

• If the SM gauge bosons are composite -- 
e.g. emerging from Seiberg duality at the 
bottom of some cascade -- such bounds do 
not apply. (Interpret Landau pole as hint of 
duality.) No longer technicolor-like.

• If bCFT is order-one, as in some M5 brane 
models (Gaiotto-Maldacena), this bound 
does not apply.



Cosmology

• If RS is a good description, expect the 
confinement/deconfinement transition to 
be of Hawking-Page type.

• T > Tc: thermal plasma, dual to AdS-
Schwarzschild.

• T < Tc: hadronization, dual to AdS on 
thermal circle

• Phase transition is first-order.



Cosmology

• The phase transition is slow (Creminelli et al.; 
Randall & Servant; Kaplan, Schuster, & Toro)

• Critical temperature: Tc ~ 21/4/(πzIR). (Herzog) 
Scale of KK modes, not string modes.

• Entropy density O(N2) at high temperatures 
and O(1) at low temperatures.

• Similarly: change in vacuum energy O(N2)

The change in vacuum energy scales as O(N2)z−4
IR . In particular, for the hard-wall

model, one can calculate the change in vacuum energy at the transition using E =
− ∂

∂β log Z = ∂
∂β I5D (where Z is the partition function and I5D the 5D action evaluated

on a classical solution compactified on a thermal circle of radius β) [25]:

∆Evac =
16M3

5 R
3
AdS

z
4
IR

=
8

π2
c

1

z
4
IR

. (2.5)

Here c is the central charge of the CFT dual to our AdS background. We have a bubble
nucleation rate Γ ∼ z

−4
IRe

−O(N2) and a Hubble scale set by H
2
M

2
Pl = ∆V ∼ N

2
z
−4
IR .

Unfortunately, we can’t analytically calculate the bounce action for the instanton that
creates bubbles of the confined phase within the deconfined plasma, so we can at best
give a bound up to an order-one number. The bound set by requiring that bubbles
collide is Γ >∼H

4, i.e.

a0z
−4
IR exp−a1c

> c
2
z
−8
IRM

−4
Pl , (2.6)

with a0, a1 unknown order-one numbers. That is, as a bound on the central charge:

c <∼
1

a1
(4 log(MPlzIR) + log a0 − 2 log c) . (2.7)

For convenience, we will simply quote this as a bound at a0 = a1 = 1 and MPlzIR =
1016:

c <∼ 140, (2.8)

with the understanding that this is subject to uncertainties and unknown order-one
dependence on details of the background. For typical string backgrounds, bCFT ∼ N

and c ∼ N
2, so the two bounds 2.3 and 2.8 are comparably strong.

Our discussion has focused on the case of hard-wall models, and we have not asked
how the geometry is stabilized. The electroweak phase transition in Randall-Sundrum
theories stabilized by the Goldberger-Wise mechanism was considered in detail in Refs.
[21] and [22], and turns out to have some subtleties. Such theories have a radion
parametrically lighter than other modes, and its effective potential can be analyzed,
leading to some surprises. In particular, the scaling of various quantities with N is not
always as expected from simple field theory considerations. We expect that the hard
wall estimate above is a very good guide to theories where a mass scale is introduced
explicitly through relevant operators. For theories with logarithmic running leading to
confinement, e.g. Klebanov-Strassler [14], we also expect the estimates above to be a
better guide than GW-like models. Luckily, an explicit calculation has been carried out
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Cosmology
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problem,” explained clearly in this context 
by Kaplan, Schuster, and Toro.
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• If Γ < H4, bubbles never meet, and the 
transition never completes.
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The Bound

• We can’t calculate the bounce action that 
takes us from thermal AdS to AdS-
Schwarzschild. (Approximations exist for 
Goldberger-Wise stabilization.)

• In general, N2 replaced with central charge c

• (Unknown order-one numbers a0, a1)
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Summary of Bounds

• These are two known bounds, comparably 
strong: bCFT ~ N < 10 and c ~ N2 < 140.

• We will see that the string scale is related 
to these numbers raised to small fractional 
powers, so is tightly bounded.

• Both of these numbers turn out to be very 
geometric

• Bound on c is more generic (bCFT~1 in M5 
examples), but could avoid if never at 
temperature > TeV



4d vs 5d Masses

• We’re interested in ratios of masses of 4d 
states (heavy string modes and light Kaluza-
Klein modes)

• Our proxy for this is the ratio of length 
scales RAdS/ls in the bulk theory.

• KK masses set by zIR-1, location of the IR 
wall. String masses set by warped-down 
string scale at IR wall.



4d vs 5d Masses

• Another way to see this: for a bulk mass 
m52 in units of RAdS (for a scalar with 
Dirichlet b.c., for convenience), 4d masses 
are zeroes of Jν(m4dzIR) with

• The first such zero goes as:

• Thus m4d zIR ~ m5d RAdS at large m5d
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A. Relating 5D and 4D Masses

We have claimed that the ratio of masses of four-dimensional string and KK mode

states is related to the ratio of the bulk AdS curvature radius and string length:

mstr

mKK
=

RAdS

ls
. (A.1)

In this appendix we review the basic facts about holography that lead to this relation.

In the bulk, masses of states, measured in units of the AdS curvature radius, are related

to the dimensions of operators in the boundary theory. For instance, in AdS5, a scalar

dual to an operator of dimension ∆ has mass-squared m2R2
AdS = ∆(∆−4). Bulk string

states correspond to operators that have very large dimension in the boundary.

To compute masses of 4d resonances, we work with the Randall-Sundrum back-

ground, although the result will be general. We take the metric to be AdS5 truncated

at an IR wall:

ds2
=

�
RAdS

z

2� �
ηµνdxµdxν

+ dz2
�
, 0 ≤ z ≤ zIR. (A.2)

(We may take a UV boundary condition zUV ≤ z, but for describing just a technicolor

sector not coupled to elementary fields or gravity, we can send zUV → 0.) For a scalar

field of bulk mass m5, we solve for 4D modes with the ansatz φ(x, z) = eiq·xϕ(z):

∂z

��
RAdS

z

�3

∂zϕ(z)

�
+ q2

�
RAdS

z

�3

ϕ(z)−m2
5

�
RAdS

z

�5

ϕ(z) = 0. (A.3)

The normalizable solutions (at z → 0) are ϕ(z) = c0z2Jν(qz) with ν =
�

4 + m2
5R

2
AdS =

|∆− 2|. The masses of modes will be determined by a boundary condition at z = zIR;

for convenience, let us take a Dirichlet boundary condition ϕ(zIR) = 0.

For the states we refer to as “KK modes,” ∆ ∼ O(1) and the bulk mass m5 ∼
O(R−1

AdS). (If we were working with a gauge boson rather than a scalar, for instance, we

– 24 –

could have a conserved current with ∆ = 3 and m5 = 0, whereas a scalar of dimension

3 has m2
5 = −3R−2

AdS.) When ∆ ∼ O(1), the masses of the light KK modes are of order

z−1
IR ; for instance, if we take ν = 1, then the first zero is at m4d = 3.83z−1

IR .

For string states, however, we have very massive bulk fields, m5RAdS ∼ RAdS
ls
� 1.

In this case, ν � 1 and the smallest root of the Bessel function is [73]:

m4d ≈
�
ν + 1.856ν1/3

+O(1)
�
z−1

IR . (A.4)

Thus we see that for large values of m5RAdS, or equivalently large operator dimensions

∆, the mass of the lightest 4d state created by the operator is of the order ∆ × z−1
IR .

In particular, the ratio of 4d masses of the lightest modes created by two operators

is of the same order as the ratio of bulk masses of the fields corresponding to those

operators. This establishes equation A.1.

It isn’t obvious that solving the two-derivative action for a very heavy field should

be a good approximation to masses of excited string states. However, one can find the

same result by imagining the behavior of a long, semiclassical excited string state in

the bulk. Such a string will fall to the “bottom” of the AdS geometry and hit the wall

at z = zIR, where it will correspond to a 4d state with mass given by the warped-down

string scale at the wall. This scaling also reproduces equation A.1, and the consistency

of the two viewpoints gives us confidence that this scaling is completely generic.

B. Resummation

We briefly review the resummation argument of Ref. [59], the applicability of which to

non-susy, QCD-like theories was recenty discussed in Ref [61]. This argument computes

an approximate strong-coupling potential Vstatic(r) in the short-distance, conformal

regime. We choose Feynman gauge, with a gluon propagator Dµν(x) = ηµν
αs
x2 . We

begin with a Wilson loop giving the static potential between two quarks separated by

a distance L; specifically, we consider a trapezoidal Wilson loop with (Euclidean time)

edges of length T1 and T2, both much greater than L. Call this Wilson loop W (T1, T2; L).

The potential we are interested in is given by Vstatic(L) = − limT→∞
1
T log W (T, T ; L).

Resumming one-gluon exchanges between the two temporal legs gives a simple Dyson

equation for the integral:

W (T1, T2; L) = 1 +

� T1

0

dt1

� T2

0

dt2W (t1, t2; L)
λ

4π2 (L2 + (t1 − t2)2)
, (B.1)

with boundary conditions W (0, T ; L) = W (T, 0; L) = 1. This integral equation can be

converted into a differential equation ∂T1∂T2W (T1, T2; L) =
λ

4π2(L2+(T1−T2)2)W (T1, T2; L).
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RAdS vs. ls in N=4 SYM

• Before looking at more examples, let’s 
remind ourselves of AdS5 × S5, where    
RAdS4 = 4πgsNls4.

• What’s happening here can be thought of as 
moduli stabilization: need to fix the radius 
of the S5 compactification.

• Two terms in potential: curvature ~ 1/R2 
and flux ~ gs2N2/Vol(S5)2, in string units.

• Comparable size at minimum, sets RAdS.



c Bound and Geometry

3.2 Einstein Manifold

We begin with the simplest class of examples with AdS5×M5 where M5 is an Einstein
manifold, which includes the original case M5 = S5. AdS5 is the near horizon limit of
a stack of N D3 branes. There are N units of flux on the internal manifold M5. The
Standard Model matter and gauge fields can be added through including D7 branes
wrapping around a 3-cycle in M5, for example an equatorial S3 ⊂ S5 [28].

Reducing 10d gravity action on M5, we obtain 5d Planck constant as

M3
5 =

1

(2π)7g2
s l

8
s

VolM5 . (3.5)

Consider first the simplest case where M5 = S5 with radius R. In this case, we have
the well-known relation

R4
AdS = R4 = 4πgsNl4s . (3.6)

We can also obtain the same relation by considering the number of degrees of freedom
and using AdS/CFT. We expect Nd.o.f ∝ N2 on the CFT side. Using Eq. 3.2, we have

N2 ∝ R3
AdSM

3
5 ∝

R8
AdS

g2
s l

8
s

, (3.7)

which again implies Eq. 3.6. This relation highlights the condition of having a tractable
effective field theory: string states are parametrically heavier than the supergravity
states, by a factor (gsN)1/4 � 1.

For a more general Einstein manifold M5, stabilized by N units of flux (arising
from D3 branes at the tip of a cone over M5) we have [31]

R4
AdS = 4πNgsl

4
s

π3

vM5

, (3.8)

where vM5 is the volume of M5 in the unit of RAdS, and vS5 = π3. Therefore, the mass
ratio of string modes and KK modes in this background is

mstr

mKK
=

RAdS

ls
=

�
4πgsN

π3

vM5

�1/4

. (3.9)

As discussed earlier, this ratio can be increased either by increasing N or π3/vM5 , or
both. Typical examples of M5 are: S5 with vS5 = π3; S5/Z2 with vS5/Z2 = π3/2; or
the conifold T 11 with vT 11 = 16π3/27, all of which contribute at most an order 1 factor
to this ratio. S-duality of IIB string theory implies that gs = 1 is the largest sensible
value of the coupling, so we cannot increase mstr/mKK indefinitely by increasing gs.
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For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
�

140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to
make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity
of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this
example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we
obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize
to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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Assuming we start with 10d string theory, reduce 
to 5d AdS to obtain a Planck scale:

Read off the central charge from the〈TT〉 

correlator as c = 2π2 M53 RAdS3:

Here vM5 is the volume of M5 in units of RAdS.



c Bound, Numerically

• We see that c is expressed in terms of 
(RAdS/ls), the number we wish to bound, 
along with gs < 1 (by S-duality) and vM5.

• So our goal is to make M5, the internal 
manifold, small compared to the AdS space.

• Normalize using AdS5 × S5:

For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
�

140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to
make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity
of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this
example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we
obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize
to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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bCFT Bound and Geometry

For the Landau pole bound on bCFT, we need 
gauge fields in the bulk. There are different routes
to this, but let’s focus on D7 branes (Karch-Katz).

These must wrap a 3-manifold M3 ⊂ M5. (May have a 
tachyon above the Breitenlohner-Freedman bound.)

For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
�

140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to
make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity
of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this
example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we
obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize
to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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⇒

For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
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140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to
make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity
of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this
example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we
obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize
to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.

– 10 –



bCFT Bound, Numerically

For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
�

140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to
make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity
of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this
example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we
obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize
to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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The bulk gauge coupling determines the 
coefficient in the〈J J〉correlator and hence bCFT:

Similarly to what we found for c, we have expressed 
bCFT in terms (RAdS/ls), the number we wish to 
bound, along with gs < 1 and vM3.

This is consistent with expectations that bCFT ∼ N , since the matter charged under

the global symmetry is a bifundamental of the global symmetry group and the SU(N)

gauge theory dual to our AdS space. In particular, for the Karch-Katz example of D7

branes wrapping an S3 ⊂ S5, we find bCFT = N , as expected for flavor hypermultiplets.

Using Eq. 3.15, we find:

mstr

mKK

<∼
�

4πgs
2π2

vM3

�
8π2

g2(m2
Z)

1

log(ΛUV /ΛTC)
+

10

3

��1/4

<∼ 3.3

�
gs

2π2

vM3

�1/4

, (3.17)

where we have used Eq. 2.3 for numerical concreteness in the last step. Notice that

this bound depends only on the volume of the cycle wrapped by the D7-brane, and not

on vM5 ; indeed, we did not use eq. 3.8 at all. Maybe putting in another plot here
would be useful, just fixed at vM3 = 2π2 for instance?

One possible way of getting a large ratio of mstr/mKK is having vM3 to be para-

metrically smaller than the volume of S3 with radius RAdS.

3.3 The Klebanov-Strassler Cascading Geometry

We have been discussing AdS spaces, imagining that we simply truncate them as in

RS to obtain a “hard wall” model of confinement. Spaces that solve the hierarchy

problem, however, will tend to have geometries that are cut off in a more gentle way,

since we expect that they involve marginal or nearly-marginal operators. The canonical

example of a string construction of such a theory is the Klebanov-Strassler geometry

[14, 34], in which the number of degrees of freedom runs logarithmically with energy

scale until the tip of the throat. The topology of the internal dimensions of KS is

S2×S3, with the S2 shrinking to zero size at the end of the throat. One might wonder

if, because the geometry near the end of the throat resembles a compactification on S3,

the scaling of various quantities will be very different from the AdS5×X5 examples we

have discussed.

The K-S geometry is dual to an N = 1 SU(N + M)×SU(N) gauge theory with

bifundamentals A1,2, antibifundamentals B1,2, and a superpotential λ detr,u(ArBu) pre-

serving an SU(2)×SU(2)×U(1) global symmetry. This theory exhibits a sequence of

Seiberg dualities N → N −M which reduce the number of degrees of freedom. Corre-

spondingly on the gravity side there is a running AdS radius:

R4
(r) =

81

8
(gsM)

2α�2
log(r/rs). (3.18)

There are M units of 3-form flux on the S3, which is constant throughout the geometry,

while the amount of 5-form flux and of B-field flux on the S2 scale as log(r/rs). Relative

to the theory on AdS5 × S5, the main change in scaling relations is that N has been
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Generic Einstein Manifolds

• The previous formulas express the bCFT and 
c bounds in terms of geometry

• For N D3 branes on a cone over an 
Einstein manifold, there is a further relation 
that clarifies how these relate to number of 
colors:

Consider first the simplest case where M5 = S5 with radius R. In this case, we have
the well-known relation

R4
AdS = R4 = 4πgsNl4s . (3.5)

We can also obtain the same relation by considering the number of degrees of freedom
and using AdS/CFT. We expect Nd.o.f ∝ N2 on the CFT side. Using Eq. 3.2, we have

N2 ∝ R3
AdSM

3
5 ∝

R8
AdS

g2
s l

8
s

, (3.6)

which again implies Eq. 3.5. This relation highlights the condition of having a tractable
effective field theory: string states are parametrically heavier than the supergravity
states, by a factor (gsN)1/4 � 1.

For a more general Einstein manifold M5, stabilized by N units of flux (arising
from D3 branes at the tip of a cone over M5) we have [31]

R4
AdS = 4πNgsl

4
s

π3

vM5

, (3.7)

where vM5 is the volume of M5 in the unit of RAdS, and vS5 = π3. Therefore, the mass
ratio of string modes and KK modes in this background is

mstr

mKK
=

RAdS

ls
=

�
4πgsN

π3

vM5

�1/4

. (3.8)

As discussed earlier, this ratio can be increased either by increasing N or π3/vM5 , or
both. Typical examples of M5 are: S5 with vS5 = π3; S5/Z2 with vS5/Z2 = π3/2; or
the conifold T 11 with vT 11 = 16π3/27, all of which contribute at most an order 1 factor
to this ratio. S-duality of IIB string theory implies that gs = 1 is the largest sensible
value of the coupling, so we cannot increase mstr/mKK indefinitely by increasing gs.

For the purpose of setting the cosmological bound, it is more convenient to use a
different, equivalent formulation of equation 3.8, making use of eq. 3.2:

c =

�
R4

AdS

8πl4sgs

�2 �vM5

π3

�
. (3.9)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
�

140× 64π2 π3

vM5

�1/8

≈ 4.2

�
π3

vM5

�1/8

. (3.10)
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Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

�
d8σ tr

�
−det(Gαβ + 2πα�Fαβ) (3.11)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

�
trF 2, g2

7 = 2gs(2π)
5l4s . (3.12)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

�
RAdS

ls

�4

, (3.13)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

�
RAdS

ls

�4
1

4πgs
. (3.14)

This is a general result depending only on geometry. Now, using eq. 3.7 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.15)

This is consistent with expectations that bCFT ∼ N , since the matter charged under

the global symmetry is a bifundamental of the global symmetry group and the SU(N)

gauge theory dual to our AdS space. In particular, for the Karch-Katz example of D7

branes wrapping an S3 ⊂ S5, we find bCFT = N , as expected for flavor hypermultiplets.

Using Eq. 3.14, we find:

mstr

mKK

<∼
�

4πgs
2π2

vM3

�
8π2

g2(m2
Z)

1

log(Λ2
UV /Λ2

TC)
+

10

3

��1/4

<∼ 3.3

�
gs

2π2

vM3

�1/4

, (3.16)

where we have used Eq. 2.3 for numerical concreteness in the last step. Notice that

this bound depends only on the volume of the cycle wrapped by the D7-brane, and not

on vM5 ; indeed, we did not use eq. 3.7 at all.

One possible way of getting a large ratio of mstr/mKK is having vM3 to be para-

metrically smaller than the volume of S3 with radius RAdS.

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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⇒ cf. hypermultiplet



Orbifolds

• One way to reduce the volume of the 
internal geometry is to orbifold it.

• S5 can be thought of as a circle fibered over 
CP2; mod out by Zk subgroup

• Doesn’t change AdS5 part of geometry: 
same R/ls, but bCFT, c lower by factor of k.

• Heavier strings at no cost!



Orbifolds

• However, run into a limit: size of the fiber 
shrinks from R to R/k, becomes ls eventually

• Bound: k < N1/4.

• Our bound on N was strict enough that 
this gives us only a small improvement.

• HOP instability: space decays if k > N1/4.



Yp,q

• More complicated examples have 
qualitatively similar features: for instance, an 
infinite class of spaces Yp,q. (Gauntlett et al.)

• The small volume limit is p >> q; in that 
case volume ~1/p.

• Very similar to orbifold: circle direction has 
length ~ R/p, require p < N1/4



Cascading Geometries

• We have been discussing “hard-wall” 
backgrounds: good description for 
confinement induced by relevant ops 
(Polchinski, Strassler)

• Solve hierarchy problem ⇒ gentler RG flow, 

marginal (or nearly so) operators

• Example: Klebanov-Strassler throat



Klebanov-Strassler

• Finite temperature transition is similar, and 
depends on total number of degrees of 
freedom near the tip of the throat 
(Hassanain et al.)

• Beta function now runs as log2: increasing 
number of d.o.f. in UV

3.3 The Klebanov-Strassler Cascading Geometry

We have been discussing AdS spaces, imagining that we simply truncate them as in
RS to obtain a “hard wall” model of confinement (which may be a particularly good
approximation for theories in which confinement is driven by a relevant operator [32]).
Spaces that solve the hierarchy problem, however, will tend to have geometries that
are cut off in a more gentle way, since we expect that they involve marginal or nearly-
marginal operators. The canonical example of a string construction of such a theory
is the Klebanov-Strassler geometry [7, 33], in which the number of degrees of freedom
runs logarithmically with energy scale until the tip of the throat. The topology of
the internal dimensions of KS is S2 × S3, with the S2 shrinking to zero size at the
end of the throat. One might wonder if, because the geometry near the end of the
throat resembles a compactification on S3, the scaling of various quantities will be very
different from the AdS5 ×X5 examples we have discussed.

The K-S geometry is dual to an N = 1 SU(N + M)×SU(N) gauge theory with
bifundamentals A1,2, antibifundamentals B1,2, and a superpotential λ detr,u(ArBu) pre-
serving an SU(2)×SU(2)×U(1) global symmetry. This theory exhibits a sequence of
Seiberg dualities N → N −M which reduce the number of degrees of freedom. Corre-
spondingly on the gravity side there is a running AdS radius:

R4(r) =
81

8
(gsM)2α�2 log(r/rs). (3.17)

Here rs is the coordinate at the tip of the throat. There are M units of 3-form flux on
the S3, which is constant throughout the geometry, while the amount of 5-form flux
and of B-field flux on the S2 scale as log(r/rs). Relative to the theory on AdS5 × S5,
the main change in scaling relations is that N has been replaced with a quantity
∼ gsM2 log(r/rs). Here M is related to the number of degrees of freedom in the deep IR,
where the theory becomes simply an SU(M) gauge group that confines and generates
a mass gap. We can think of gsM2 log(r/rs) as a slowly-running N(r) analogous to the
value of N for AdS5×S5. It determines the (slowly running) central charge, as well as
the mass of string states relative to the AdS curvature radius, in the same manner as N .
The cosmological argument regarding phase transitions bounds the value of N(r) near
the tip of the throat. A more detailed calculation, as we noted earlier, was performed
in Ref. [28] for the Klebanov-Tseytlin throat.

The Landau pole argument, on the other hand, reflects an integrated number of
degrees of freedom over some region in the throat. Flavor symmetries can be obtained
by adding D7 branes in the Klebanov-Strassler throat, and solutions have been found
for backreacting smeared flavor branes [34]. For our purposes, it is enough to consider
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Small internal dimensions by tuning

• Recently Polchinski and Silverstein 
constructed an F-theory background with 
small internal geometry

• Their trick: cancel a 1/R2 curvature term 
with a term from D7-branes, leaving an ε/R2

• Scalings: 

in the dual theory. Technicolor demands that we have some global symmetries weakly
gauged by the Standard Model electroweak gauge group, so D7 branes also seem like
natural ingredients if one is seeking a phenomenological model. Thus, the Polchinski-
Silverstein constructions look like a promising starting point for the pursuit of Randall-
Sundrum-like models in string theory. We proceed to make a simple estimate of the
ratio mstr/mKK in this setup.

The D7 branes allow one to tune a curvature term in the potential that normally
would be of order 1/R2, for a radius R of some internal directions, to be of size only
�/R2, with � � 1. In the particular AdS5 construction of Ref. [40], there are three
separate length scales:

Rf ∼ �RAdS, R ∼ �1/2RAdS, R4
AdS ∼

N

�3
l4s , (3.21)

where Rf and R are, respectively, the sizes of a special fibered direction and the re-
maining 4 directions of the internal manifold. The last relation follows from Eq. 3.7.
Much as in the simpler orbifold case, there is a limit to how small we can shrink the
internal dimensions. Requiring that the smallest length scale in the construction is
above the string length, we find that � >∼ 1/N .

For the cosmological bound, we use vM5/vS5 ∼ �3. If we set � ∼ 1/N , then we have
c ∼ N2�−3 ∼ N5 <∼ cmax = 140 (from Eq. 2.8) and RAdS/ls ∼ N . Thus we have:

mstr

mKK
∼ N ∼ c1/5

max = 2.7. (3.22)

This is to be contrasted with the scaling ∼ c1/8
max = 1.8 in the AdS5 × S5 case. We see

that only a very mild tuning is allowed by the constraints. While the scaling of c is
somewhat milder, it does not lead to a significant enhancement of the mass hierarchy.

Next we consider the Landau pole bound. We have vM3/(2π
2) ∼ �n where n = 3/2

if the 3-dimensional submanifold D7 brane wraps around has VolM3 ∝ R3, and n = 2 if
M3 includes the dimension with size Rf . (Does the F-theory construction require
us to choose a particular one of these?) Then we have:

bCFT ∼ �n N

�3
(3.23)

Taking � as small as possible, i.e. � ∼ N−1, we then have bCFT ∼ N4−n and RAdS ∼ Nls.
Thus our bound is:

mstr

mKK
≤

�
8π2

g2(m2
Z)

1

log(Λ2
UV /Λ2

TC)
+

10

3

� 1
4−n

, (3.24)

where the exponent 1/(4− n) is 1/2 if M3 wraps the circle fiber and 2/5 if not, to be
contrasted with 1/4 in the simplest example of AdS5× S5. Again, the enhancement of
the mass hierarchy is not significant.
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Polchinski/Silverstein

• The interval volume is of size ε3RAdS5.

• Smallest allowed ε~1/N (string-scale fiber)

• Thus c ~ N5 with R~N (instead of c ~ N2)

• So mstr/mKK < cmax1/5 (rather than cmax1/8)

• Similarly weaker bCFT bound:                   
mstr/mKK < bmax1/2 or 2/5 rather than bmax1/4

• Helps! But not dramatically.



D4/D8 Constructions

• D4 branes compactified on a circle with 
SUSY-breaking boundary conditions give an 
interesting confining theory (Witten ’98)

• Can add D8 branes intersecting the D4’s in 
3+1 dimensional subspace to get flavors 
(Sakai/Sugimoto ’04)

• Can use this as a variation on RS; loosely 
“RS×UED” (but not universal)



D4/D8 Constructions

3.6 Scales in D4-brane Theories

We see from Eq. 3.3 that we can change the fraction power in the ratio mstr/mKK

by changing the number of internal dimensions. One such example is the theories

on D4 branes. Such theories, compactified on a circle with SUSY-breaking boundary

conditions, give IR dynamics that is thought to be in the same universality class as

pure Yang-Mills [24]. D8 flavor branes can be added in the bulk to give rise to quarks,

giving a QCD-like theory [41, 42]. In these theories, the relation is R3
AdS = πgsNl3s .

The difference from Eq. 3.5 results from the fact that we are only compactifying down

to 6D (before we compactify on the final circle, which lives in the boundary theory and

so is of qualitatively different character).

The evaluation of β-function here is somewhat more involved since the dilaton is

not constant along the warped direction in these theories. The full details have been

worked out in Ref. [41, 42]. We will just quote relevant results here. The DBI action

of D8 brane in this backrgound is

SD8 = −τ �8

�
d4x

� zUV

−zUV

dz

�
RAdS

4Uz
FµνF

µν
+ ...

�
+O(F 3

), (3.25)

with

Uz ≡ UKK

�
1 +

z2

U2
KK

�1/3

(3.26)

τ �8 =
1

54π3
MKKN

1

l2s
. (3.27)

UKK parameterizes the size of the AdS throat. RS1 = M−1
KK is the size of the circle

which the D4 branes wrap around. We have UKK ∼ M−1
KK ∼ RAdS with a choice

M2
KK l2s =

9
2(g

2
Y MN)−1 [42]. The weakly coupled SM gauge bosons correspond to modes

with Aµ(x, z → zUV)→ 1. Performing the z integral, we obtain an estimate for the 4D

effective gauge coupling

1

g2
4

∼ 1

9π2
τ �8R

3
AdS

�
zUV

UKK

�1/3

. (3.28)

Therefore, using N = (πgs)
−1(RAdS/ls)3, we estimate

mstr

mKK
∼

�
54π4 gs

g2
4

�
UKK

zUV

�1/3
�1/5

. (3.29)

Although the “techniquarks” of this theory live on the 3+1 dimensional intersection of

D4 and D8 branes, they couple to 4+1 dimensional gluons, and cause the running of the

– 15 –

3+1D matter, but 4+1D gluons. Power-law, 
rather than logarithmic, running: stronger 
Landau-pole bound.

Thermal phase transition is essentially the 
same as in AdS5, so similar bound on N2.



Theories on M5 Branes

• M5 branes give different physics than D-
branes. Have R3 = N lPl3.

• Gaiotto/Maldacena: M5 flavor branes 
wrapped on AdS5 × S1 give bCFT = O(1). 
Evade Landau pole bound!

• However, c ~ N3 and similar deconfinement 
transition ⇒ still strong bounds.



The Weak Gravity Conjecture

• Interesting argument from weak gravity: add 
UV brane, go on branch with one D3 brane 
a distance RAdS in the bulk, apply bound   
mW < g MPl  (Arkani-Hamed, Motl, Nicolis, Vafa ’06)

• Find that this means a bound on size of 
internal space, Vold > gs RAdS lsd-1

• Examples with fluxes generically have a 
stronger Vold > gs Nflux RAdS lsd-1 without 

tuning.



Weak-Gravity Saturation

• Suppose we knew a construction that 
saturates the weak-gravity bound            
Vold > gs RAdS lsd-1 (we don’t)

• It would have csat ~ (RAdS/ls)4. (Contrast 
(RAdS/ls)8 in AdS5 × S5) Similarly for bCFT

• Would be intrinsically interesting, plus the 
best route to decoupling strings. Does it 
exist?



Noncritical Strings?

• Noncritical string theory: central charge 
defect sources string-scale curvature

• RAdS ~ ls, so saturate weak gravity?

• Actually, gs ~ 1/N (not large ‘t Hooft 
coupling), so still satisfy the stronger bound.



Resummation & Concavity: Stringless 
Argument

• Resumming one-gluon exchanges and 
extrapolating to large λ gives -√λ /r 
Coulomb potential (Erickson, Semenoff, Zarembo)

• Bachas: static potential is concave 

• Long distances: V(r)~σr (confinement)

• Assume Coulomb until r ~ zIR

• Learn: mstr zIR ~ √σ zIR < λ1/4



Precision Electroweak

• One advantage of an RS description of a 
strongly-coupled sector is that quantities 
are calculable, e.g. the S, T, U parameters.

• Light strings could give O(1) corrections, 
but probably don’t change conclusions 
about viability.

• E.g., custodial symmetry still protects T.



S-Parameter

• One example of a challenge for RS model-
building is the S-parameter. Strings will 
change it by an unknown order-one 
amount.

• Approaches: either use composite Higgs,   
(v/MKK) small (still viable)

• Or: Higgsless limit, tune fermion profiles 
(“delocalization”) to cancel S: still viable, 
just different tuning.



Stringy States

• What sort of states do we expect?

• Higher-spin W and Z bosons.

• Fermions model-dependent; possibly 
spin-3/2 top, bottom, etc.

• KK modes on internal directions.

• Higher-spin “KK gravitons” (closed strings)

• A whole zoo; challenging spectroscopy.



Spectrum

Gauge boson Graviton

W±, Z, γ, g, ...

WKK, ZKK, ...

W±
str, Zstr, ...

t, b, s, ...

qKK

qstr

Fermion

gµν, ...

gµν, KK...

gµν, str...

(4)

(3)

(2)

(5)

(1)

(1)

(1)

(7/2)

(5/2)

(3/2)

(9/2)

(2)

(2)

(2)

(1/2)

(1/2)

(1/2)M
as

s

zero and KK modes string states (1), (2), ... : spin

(8)

(6)

(4)

(10)



Event Shapes?

Recently Strassler conjectured that large ‘t Hooft 
coupling theories will lead to spherical events: rather 
than jets, see particles moving in all directions.

This was confirmed by Hofman and Maldacena for 
conformal theories (also: Hatta, Iancu, Mueller)

Cute, lowbrow version in Randall-Sundrum: 
approximate conservation of KK number.



Sphericity in RS
(C. Csáki, M.R., J. Terning, 0811.3001)

Suppose a high-energy process creates a 
heavy mode. It decays to two lighter modes,
which in turn decay, and so on.

Approximately conserved 
momentum in the extra 
dimension: #10 prefers to 
go to #8 + #1 rather than 
#2 + #1. Small phase 
space, no preferred 
directions.



QCD is Jetty; So are Strings?

Similar shapes from snapping 
flux tubes at large N.

(C. Csáki, M.R., J. Terning, 
0811.3001)

At high energies, QCD is 
weakly coupled; produce a few 
particles, radiate mostly 
collinear or soft emissions. 
Result: “jets” (Sterman, 
Weinberg)



Event Shapes

• RS with a very high string scale would give 
spherical events.

• The bounds we discuss mean the theory is at 
best at moderately large ‘t Hooft coupling.

• Don’t obviously have QCD-like jets, because    
λ ≈ 10 or 100, not small.

• What would continuum events look like?

• Not clear there’s any reliable calculational 
scheme (need strings on RR backgrounds...)



Conclusions

• Surveying a variety of string constructions, 
we find that phenomenological bounds on 
number of d.o.f. imply light strings.

• Maybe not in reach of LHC, given precision 
constraints. But still interesting.

• Approaches like the Polchinski/Silverstein 
construction might be of interest.

• Are there spaces saturating weak gravity?


