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Motivation
• WEP is empirical and must be tested.

• Stringent limits from laboratory experiments exist of WEP 
violation in ordinary matter.

• However, laboratory tests of WEP violation do not directly 
apply to the dark sector.  There is a lot more dark matter!

• Dark forces have been studied in non-universal scalar tensor 
theories to explain the origin of dark energy and the 
coincidence problem. (Alimi, Fuzfa ; Damour, Polyakov)

• Astrophysics and cosmology 
constrain dark forces.

• Need to connect an observed dark 
force with microscopic particle physics.



Main Points
• A dark force, via quantum effects, implies WEP violation for 

ordinary matter.

• For scalar singlet DM, relic density considerations rules out a 
dark force in large regions of parameter space.

• A dark force implies constraints on the SI DM-direct-
detection cross-section via Higgs exchange.

• Depending on the DM model, a dark force can also imply 
constraints on collider signals.

• The region of parameter space consistent with an observable 
dark force is quite restricted.



Terrestrial WEP Tests for 
Ordinary Matter



The Weak Equivalence Principle

1

F = mi a (1)

Fg = mg
!!Φg (2)

Fg = mi

(
mg

mi

)
!!Φg (3)

Inertial Mass Gravitational Mass

• WEP violation:

1

F = mi a (1)

Fg = mg
!!Φg (2)

Fg = mi

(
mg

mi

)
!!Φg (3)

mi "= mg (4)
Eöt-Wash Gravity Workshop for the American Association of Physics Teacher Meeting in Seattle 2007

8

1st Tests of the Equivalence Principle
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where the potential is
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We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by
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We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)

WEP violation Charge to mass ratios

• Fifth force mediated by an ultralight scalar can lead to an apparent 
violation of the WEP.
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become apparent when we study specific models. The Newtonian gravitational potential

between a body with mass Mi and a source with mass Ms is

VG = −GMiMs

r
, (3)

where G is Newton’s constant. It is therefore convenient to write the total potential as

V = −GMiMs

r

(
1 + αise

−mφr
)

, (4)

where

αis =
1

4πG

qiqs

µiµs
ξ̂iξ̂s, (5)

is a dimensionless parameter characterizing the strength of the new force relative to gravity,

expressed in terms of the charge-to-mass ratio q/µ = Q/M , where µ is the mass in atomic

mass units. The parameters ξ̂i,s are

ξ̂i,s =

{
1 for fermionic objects,

1
2µi,s

for scalar objects.
(6)

The parameter αis is not universal and in general depend on the composition of the macro-

scopic bodies acting as sources for φ.

Eötvös experiments look for violations of the equivalence principle by measuring the

difference in acceleration of two test bodies of different compositions in the presence of a

common source. Experimental constraints on new long-range composition-dependent forces

are typically expressed in terms of the Eötvös parameter,

η = 2
|a1 − a2|
|a1 + a2|

"
∣∣∣
∆a

a

∣∣∣ , (7)

where ai is the total acceleration of object i = 1, 2, ∆a ≡ a1−a2, and a is the universal grav-

itational acceleration in the absence of any new long range forces. The last approximation

made above is valid when the fifth force is weaker than gravity. From (4), the acceleration

of object i due to the source s is

ai =
GMs

r2

[
1 + αis(1 + mφr)e

−mφr
]

. (8)

We are interested in forces that are considerably weaker than gravity, and distances less

than the Compton wavelength of the scalar, r $ m−1
φ . The Eötvös parameter is then

η1,2
s =

1

4πG

∣∣∣∣∣
q1ξ̂1

µ1
− q2ξ̂2

µ2

∣∣∣∣∣

∣∣∣∣∣
qsξ̂s

µs

∣∣∣∣∣ . (9)

Currently, the strongest limits on violations of the weak equivalence come from torsion

balance Eötvös experiments [60] which give the constraints

ηBe,Ti
E

< (0.3 ± 1.8)× 10−13, ηBe,Ti
DM

< (4 ± 7)× 10−5. (10)
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• Eotvos Parameter:
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FIG. 1: Summary of experiments testing the WEP. Figure taken from “The Confrontation between
General Relativity and Experiment” by Clifford M. Will. http://www.livingreviews.org/lrr-2006-3 {eotvos-status}eotvos-status

Fig.
eotvos-statuseotvos-status
1 shows the improvement in the bound on the Eötvös parameter η, made by various

experiments, over the last century. Future experiments, currently being studied, are expected

to further improve the the bound on the Eötvös parameter by several orders of magnitude as

shown in Table.
eotvos-futureeotvos-future
I The MiniSTEP experiment

Lockerbie:1998ar
[55], currently under study, uses test objects of

different composition orbiting earth in free fall and new technology to reduce thermal noise.

If approved, this experiment is expected to achieve the highest sensitivity of η ∼ 10−18. The

Microscope experiment, which has been approved, uses the same principle but expected to

reach a sensitivity of η ∼ 10−15. In the method of Lunar Laser Ranging (LLR) used by the

APOLLO collaboration
Williams:2003wu
[60], the differential acceleration of the Earth and Moon is measured

in the presence of a source like the Sun or galatic dark matter. The APOLLO collaboration,

which is currently underway, is expected to achieve a sensitivity of η ∼ 10−14 improving

the current bound on η by an order of magnitude. Methods using atom interferometry
Dimopoulos:2006nk
[61]

could reach a sensitivity of η ∼ 10−17.

These experiments are also sensitive to WEP violation in the dark sector, if the DM has

interactions with the SM. Through quantum effects involving virtual DM, WEP violation

in the dark sector will be communicated to ordinary matter and these effects can be tested

in Eötvös experiments. WEP violation in the dark sector is already constrained from an

analysis of the tidal disruption in satellite galaxies
Kesden:2006vz
[50]. This study constrains the coupling
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(Adelberger, Choi, Gundlach,Schlamminger,Wagner)
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Experiment Expected Future Sensitivity in η

MiniSTEP[56] 10−18

Microscope[55] 10−15

Apollo (LLR)[61] 10−14

TABLE I: Expected sensitivities for the Eötvös parameter in future experiments testing the WEP.
The MiniSTEP experiment is currently under study by NASA and the ESA. Microscope has been
approved and the Apollo(LLR) experiment is underway.

The Eötvös parameters ηBe,Ti
E

and ηBe,Ti
DM

measure differential acceleration of laboratory test

samples of Beryllium and Titanium with the Earth and galactic dark matter as the source

bodies respectively.

Future experiments, currently being studied, are expected to further improve the the

bound on the Eötvös parameter by several orders of magnitude as shown in Table. I The

MiniSTEP experiment [56], currently under study, would use test objects of different com-

position orbiting earth in free fall and new technology to reduce thermal noise. If approved,

this experiment is expected to achieve the highest sensitivity of η ∼ 10−18. The Microscope

experiment, which has been approved, uses the same principle but is expected to reach a sen-

sitivity of η ∼ 10−15. In the method of Lunar Laser Ranging (LLR) used by the APOLLO

collaboration[61], the differential acceleration of the Earth and Moon is measured in the

presence of a source like the Sun or galatic dark matter. The APOLLO collaboration, which

is currently underway, is expected to achieve a sensitivity of η ∼ 10−14 improving the current

bound on η by an order of magnitude. Methods using atom interferometry [62] could reach

a sensitivity of η ∼ 10−17.

These experiments are also sensitive to WEP violation in the dark sector, if the DM has

interactions with the SM. Through quantum effects involving virtual DM, WEP violation

in the dark sector will be communicated to ordinary matter and these effects can be tested

in Eötvös experiments. WEP violation in the dark sector is already constrained from an

analysis of the tidal disruption in satellite galaxies [51]. This study constrains the coupling

of φ to DM particles by putting bounds on the parameter β

β =
MP√
4π

|gχ|
Mχ

ξχ, (11)

where gχ denotes the DM charge under the fifth force, Mχ denotes the DM mass, MP =

1/
√

G is the Planck mass, and ξχ is as defined in Eq. (2). The coupling gχ appears in the

• Current and future experiments are expected to further 
improve the sensitivity to WEP violation.
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Lagrangian via interaction terms for fermionic2 and scalar DM of the form

δL =

{
gχχ̄χφ, fermionic DM,

gχχ†χφ, scalar DM,
(12)

Thus, we see that for fermionic DM, gχ is dimensionless and for scalar DM it has dimen-

sion one. From the analysis of tidal streams in the Saggiatrius galaxy, Kamionkowski and

Kesden[51] obtained the approximate upper bound of

β <∼ 0.2. (13)

Newly discovered systematic errors [53] could lead to a revision of this bound and more

recently, the work of [63] showed the possibility of β ∼ 1 consistent with observations

of galactic dynamics. A more recent analysis [54] of the CMB and large scale structure

formation gives a tighter bound of β < 0.05. In this paper we use β = 0.2 as a reference

value for most discussions, and our results be straightforwardly translated to other values

of β.

III. LIGHT SCALAR COUPLING TO MACROSCOPIC OBJECTS

The charge to mass ratio under a fifth force for an elementary particle is straightforward

to obtain in terms of the Lagrangian parameters. For example, the charge to mass ratio for

elementary fermionic or scalar DM χ is given by
( q

µ

)

χ
=

gχ

Mχ
. (14)

This charge to mass ratio is obtained by computing the tree level φ exchange diagram

between two DM particles and taking the non-relativistic limit to compare with Eq. (4).

For composite materials the calculation of the charge to mass ratio is more complicated,

as one has to take into account hadronic, nuclear, and atomic matrix elements of various

operators containing SM fields that couple to φ as well as the effects of binding energy. In

particular, one needs the charge to mass ratio for the various types of atoms that make up

the laboratory test materials. We compute these ratios using an effective field theory valid

near the nucleon mass scale that involves the light quarks q = {u, d, s}, gluons, the charged

leptons % = {e, µ}, the photon, and the light scalar φ. All other heavier degrees of freedom

have been integrated out. The interaction terms in this effective Lagrangian take the form:

Lφ =
∑

q

gq

mp
mq q̄qφ +

∑

#

g#

mp
m# %̄%φ + cg φ Ga

µνG
µν
a + cγ φFµνF

µν . (15)

2 For simplicity we assume that the fermionic DM is in a vector-like gauge representation so that χ̄χφ

is gauge invariant. In the more general case the coupling of φ to fermionic DM may arise from higher
dimension operators.
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sitivity of η ∼ 10−15. In the method of Lunar Laser Ranging (LLR) used by the APOLLO

collaboration[61], the differential acceleration of the Earth and Moon is measured in the
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interactions with the SM. Through quantum effects involving virtual DM, WEP violation

in the dark sector will be communicated to ordinary matter and these effects can be tested

in Eötvös experiments. WEP violation in the dark sector is already constrained from an

analysis of the tidal disruption in satellite galaxies [51]. This study constrains the coupling

of φ to DM particles by putting bounds on the parameter β

β =
MP√
4π

|gχ|
Mχ

ξχ, (11)

where gχ denotes the DM charge under the fifth force, Mχ denotes the DM mass, MP =

1/
√

G is the Planck mass, and ξχ is as defined in Eq. (2). The coupling gχ appears in the
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In arriving at these conclusions, we emphasize we have drawn upon representative cases

rather than carrying out a comprehensive study. We expect that our conclusions will gen-

eralize to other DM scenarios, but do not preclude the possibility of exceptions in some

cases. We also note that our analysis and conclusions differ from those of Ref. [36], who

first observed that bounds on WEP and the presence of an astrophysically relevant dark

force could imply constraints on DM-nucleus cross sections. The bounds obtained in that

work lie well below the reach of future direct detection experiments. In what follows, we

argue that an effective operator analysis consistent with the fine-tuning needed to maintain

a vanishingly small scalar mass implies considerably weaker bounds than given in Ref. [36].

The outline of the paper is as follows. In section II we review the phenomenology of

experimental WEP tests and establish notation. In section III we review the derivation of

the ultralight scalar coupling to macroscopic objects in terms of its couplings to the Standard

Model (SM) particles. In section IV we discuss in a model independent way the mechanisms

by which the ultralight scalar can couple to the SM. In sections V and VI we examine the

experimental consequences of a dark force for various minimal DM models. In section VII

we discuss the regions in parameter space where an observable dark force is possible and

how they relate to our analysis. We conclude in section VIII.

II. FIFTH-FORCE PHENOMENOLOGY

We begin by considering the force between two bodies mediated by a scalar field φ with

mass mφ. In the non-relativistic limit, the Yukawa potential between a test body i and a

source s separated by a distance r is given (in units where h̄ = c = 1) by

Vφ = −ξiξs
QiQs

4πr
e−mφr , (1)

where Qi,s denote the charges of the test and source objects under the force mediated by φ.

The parameters ξi,s are1

ξi,s =

{
1 for fermionic objects,

1
2mi,s

for scalar objects.
(2)

Note that the charges Qi,s are of mass dimension one and zero for scalar and fermionic objects

respectively, so that the equation is dimensionally consistent. These mass dimensions will

1 The t-channel φ exchange amplitude is accompanied by an extra factor of 2mi,s for fermions relative to
scalars. This is due to the fermionic spinor normalization ūi,sui,s = 2mi,s in the non-relativistic limit.
These factors are absorbed by switching to states with normalization 〈p|q〉 = (2π)3δ(3)(p−q) in order to
compare with the non-relativistic Born amplitude. For scalars we are then left with an additional factor
of 1

2mi,s
in the potential relative to fermions.

,

• One can add a coupling of an ultralight scalar to dark matter 
as a source of WEP violation: 

Ultralight Scalar Coupling to Dark Matter

• The following parameter can be constrained from galactic 
dynamics and structure formation:



WEP Tests in the Dark Sector

• Tidal tails test of satellite galaxies.

• The cosmic microwave background.

• Matter Power Spectrum.

• Cluster Dynamics.

(Kamionkowski, Kesden; Keselman, Nusser,Peebles)

(Gradwohl, Frieman ;Bean, Flanagan,Laszio, Trodden)

(Gradwohl, Frieman)

(Gradwohl, Frieman ; Farrar, Springel)



Tidal Disruption

(Wikipedia)



Tidal Tails Test of the WEP

• A dark force would lead to an 
enchanced trailing stream.

• A satellite galaxy orbiting the Milky 
Way experiences tidal disruption.

• The disruption forms leading and 
trailing tidal streams of stars
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FIG. 1: Tidal disruption of a satellite galaxy with mass and orbit similar to that of the Sgr dwarf. Galactic disk particles are
black, while the satellite’s dark matter and stars are shown in cyan and red (light and dark grey) respectively. The top left
panel shows the beginning of the simulation at t = 0.0 Gyr, and the remaining panels show snapshots at 0.3 Gyr intervals
going from left to right along each row as labeled. The X’s mark the location of the satellite’s bound core in each frame.
The satellite’s orbit is counterclockwise about the Galactic center, so the leading (trailing) stream can be identified by tracing
counterclockwise (clockwise) from the location of the core.

models). With the initial conditions established, we can proceed to examine the results of the simulations.
First let us take a look at tidal disruption in our default β = 0.0 simulation, Run 1a of Table I. Snapshots of this

simulation taken at 0.3 Gyr intervals are presented in Fig. 1. The satellite’s orbit, like that of the actual Sgr dwarf,
is almost perpendicular to the Galactic disk which is seen edge on in the x − y plane of these figures. The satellite
begins at apocenter on a counterclockwise orbit with position z = 0 and velocity in the +z direction. The initial
conditions were chosen so the satellite just fills its Roche lobe at apocenter, implying that significant tidal disruption
isn’t seen until t = 0.6 Gyr, the first snapshot after pericenter passage. The satellite core is close to apocenter at

(Kamionkowski, Kesden)
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FIG. 2: Tidal streams after 2.4 Gyr for four different values of β corresponding to Runs 1a through 1d of Table I. The dark-
matter force increases in strength as labeled from β = 0.0 to β = 0.3 as one goes counterclockwise from bottom left to top left.
The bottom left panel of this figure is identical to the bottom right panel of Fig. 1.

values of θ in Figs. 3 and 4. This implies that no intersections exist in the three-dimensional phase formed by the
observationally accessible angular position θ, Galactocentric distance dGC, and radial velocity vr. We have found that
by tracing maximum-density contours through this three-dimensional phase space, we can differentiate leading and
trailing stars with high accuracy. The ability of real experiments to differentiate stars in this manner will depend on
instrumental resolution and other systematics, and will need to be investigated further before such techniques can be
applied in practice. We are hopeful that leading and trailing stars can be distinguished to some degree by current
experiments, and with great reliability by future astrometry missions that will have proper motions as well. Fig. 5 was
prepared using this method and should be interpreted as an optimistic but reasonable estimate of future experimental
possibilities.

The four peaks seen in Fig. 5 correspond to the four apocenter passages, because as previously mentioned particles
tend to accumulate in these positions where velocities are minimized. The decrease in the two leading peaks at −250◦

8

Lagrangian via interaction terms for fermionic2 and scalar DM of the form

δL =

{
gχχ̄χφ, fermionic DM,

gχχ†χφ, scalar DM,
(12)

Thus, we see that for fermionic DM, gχ is dimensionless and for scalar DM it has dimen-

sion one. From the analysis of tidal streams in the Saggiatrius galaxy, Kamionkowski and

Kesden[51] obtained the approximate upper bound of

β <∼ 0.2. (13)

Newly discovered systematic errors [53] could lead to a revision of this bound and more

recently, the work of [63] showed the possibility of β ∼ 1 consistent with observations

of galactic dynamics. A more recent analysis [54] of the CMB and large scale structure

formation gives a tighter bound of β < 0.05. In this paper we use β = 0.2 as a reference

value for most discussions, and our results be straightforwardly translated to other values

of β.

III. LIGHT SCALAR COUPLING TO MACROSCOPIC OBJECTS

The charge to mass ratio under a fifth force for an elementary particle is straightforward

to obtain in terms of the Lagrangian parameters. For example, the charge to mass ratio for

elementary fermionic or scalar DM χ is given by
( q

µ

)

χ
=

gχ

Mχ
. (14)

This charge to mass ratio is obtained by computing the tree level φ exchange diagram

between two DM particles and taking the non-relativistic limit to compare with Eq. (4).

For composite materials the calculation of the charge to mass ratio is more complicated,

as one has to take into account hadronic, nuclear, and atomic matrix elements of various

operators containing SM fields that couple to φ as well as the effects of binding energy. In

particular, one needs the charge to mass ratio for the various types of atoms that make up

the laboratory test materials. We compute these ratios using an effective field theory valid

near the nucleon mass scale that involves the light quarks q = {u, d, s}, gluons, the charged

leptons % = {e, µ}, the photon, and the light scalar φ. All other heavier degrees of freedom

have been integrated out. The interaction terms in this effective Lagrangian take the form:

Lφ =
∑

q

gq

mp
mq q̄qφ +

∑

#

g#

mp
m# %̄%φ + cg φ Ga

µνG
µν
a + cγ φFµνF

µν . (15)

2 For simplicity we assume that the fermionic DM is in a vector-like gauge representation so that χ̄χφ

is gauge invariant. In the more general case the coupling of φ to fermionic DM may arise from higher
dimension operators.
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Tidal Tails with a Dark Force

• Enhanced trailing tidal stream 
is seen in simulations for a 
non-zero dark force.

• Leading and trailing streams of 
the Sagittarius dwarf galaxy have 
been studied by SDSS and 
2MASS collaborations.

• Current limit on a dark force 
from the tidal tails test is

(Kamionkowski, Kesden)



Evolution of density perturbations

9

FIG. 4: CMB temperature power spectrum comparing a fiducial minimally coupled ΛCDM model (grey) with four models
with the Yukawa interaction with αYuk = 10, rs=2Mpc (red), αYuk = 5, rs = 2 Mpc (green) αYuk = 10, rs=5Mpc (magenta),
αYuk = 5, rs=5Mpc (blue). Data from WMAP 5 year (blue points) and ACBAR (black points) experiments are also shown.
The inset plot shows a blow up of the small scale anisotropies measured by ACBAR.

section II B. We modify the publicly available CAMB
code [88] to include this modified force between dark mat-
ter particles. This alters the growth of matter perturba-
tions. For example, the dark matter density fluctuations
evolve according to

δ̈c + Hδ̇c − 4πGa2

[

Gc(k)

G
ρcδc + ρbδb + 2ργδγ

]

= 0. (4.1)

Here Gc(k) is the effective gravitational constant govern-
ing the interaction between dark matter particles, given
from Eq. (2.5) by

Gc(k) = G

[

1 +
αYuk

1 + (krs)−2

]

. (4.2)

We use the CosmoMC code [82] to obtain cosmological
constraints on the ratio Gc/G from the 5 year WMAP
CMB temperature and polarization data [6, 83], small
scale CMB temperature data from ACBAR [4, 5] and
the SDSS LRG matter power spectrum [8]. We include
CMB lensing, and marginalize over the amplitude of the
secondary Sunayev-Zel’dovich anisotropies.

In Figure 4 we show the effect of the Yukawa cou-
pling on the CMB temperature anisotropies. With the
addition of small scale anisotropy measurements from
ACBAR, constraints on the interaction are able to be
made.

In Figure 5 we show the constraints on Gc/G at two
scales, 1 Mpc and 10 Mpc with Gc/G(1Mpc) ≤ 2.7 and
Gc/G(10Mpc) ≤ 1.05 at the 68% confidence limit. The
improvement in the fit to the data obtained by introduc-
ing the Yukawa interaction is not statistically significant
however, the best fit effective χ2 = −2 lnL = 1354.0 in
comparison to 1354.1 for a ΛCDM model.

Yukawa interactions on the levels allowed by large
scale constraints could well have interesting implications
for gravitational dynamics on cluster, galactic and sub-
galactic scales [32, 33, 34, 35]. Frieman and Gradwohl
[34] argue that the intracluster gas distribution could
constrain −0.5 ! αYuk ! 1.3 for rs of a few hundred kpc,
which would translate to −0.5 ! Gc/G(1 Mpc) ! 2.2,
comparable with our constraints from large scale data.
Kesden and Kamionkowski [32, 33] demonstrate that cou-
plings of strength Gc/G " 1.04 on ! 100 kpc scales could
well have observable implications for baryonic and dark
matter distributions in tidal disruptions of dwarf galax-
ies, although a comparison with data is yet to be per-
formed. We leave a detailed analysis of the joint con-
straints on Yukawa interactions from combined astro-
physical and cosmological scales to future work.

We note that the observational constraints on the
Yukawa coupling αYuk also yield constraints on the more
general class of models (2.1) discussed in Sec. III, pa-
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scale constraints could well have interesting implications
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[34] argue that the intracluster gas distribution could
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which would translate to −0.5 ! Gc/G(1 Mpc) ! 2.2,
comparable with our constraints from large scale data.
Kesden and Kamionkowski [32, 33] demonstrate that cou-
plings of strength Gc/G " 1.04 on ! 100 kpc scales could
well have observable implications for baryonic and dark
matter distributions in tidal disruptions of dwarf galax-
ies, although a comparison with data is yet to be per-
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physical and cosmological scales to future work.
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• A dark force leads to a modified gravitational constant in the 
dark sector. Correspondingly, there is a modification of  the 
evolution equations of density perturbations 

• Modified gravitational coupling in the dark sector

• A dark force can be constrained from the evolution of matter 
density perturbations and their effect on the CMB and large scale 
structure power spectrum.

1
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βe(ñf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

"

m"%̄% (7)

10× MICROSCOPE (8)

αY UK = 8πβ2 (9)

sin θ % µ2
hS

µ2
h

& 1 (10)

δV (H, S) = C2

(
H†H

) (
H†H

)
S (11)

δ1 (12)

,



9

FIG. 4: CMB temperature power spectrum comparing a fiducial minimally coupled ΛCDM model (grey) with four models
with the Yukawa interaction with αYuk = 10, rs=2Mpc (red), αYuk = 5, rs = 2 Mpc (green) αYuk = 10, rs=5Mpc (magenta),
αYuk = 5, rs=5Mpc (blue). Data from WMAP 5 year (blue points) and ACBAR (black points) experiments are also shown.
The inset plot shows a blow up of the small scale anisotropies measured by ACBAR.

section II B. We modify the publicly available CAMB
code [88] to include this modified force between dark mat-
ter particles. This alters the growth of matter perturba-
tions. For example, the dark matter density fluctuations
evolve according to

δ̈c + Hδ̇c − 4πGa2

[

Gc(k)

G
ρcδc + ρbδb + 2ργδγ

]

= 0. (4.1)

Here Gc(k) is the effective gravitational constant govern-
ing the interaction between dark matter particles, given
from Eq. (2.5) by

Gc(k) = G

[

1 +
αYuk

1 + (krs)−2

]

. (4.2)

We use the CosmoMC code [82] to obtain cosmological
constraints on the ratio Gc/G from the 5 year WMAP
CMB temperature and polarization data [6, 83], small
scale CMB temperature data from ACBAR [4, 5] and
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made.
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Gc/G(10Mpc) ≤ 1.05 at the 68% confidence limit. The
improvement in the fit to the data obtained by introduc-
ing the Yukawa interaction is not statistically significant
however, the best fit effective χ2 = −2 lnL = 1354.0 in
comparison to 1354.1 for a ΛCDM model.

Yukawa interactions on the levels allowed by large
scale constraints could well have interesting implications
for gravitational dynamics on cluster, galactic and sub-
galactic scales [32, 33, 34, 35]. Frieman and Gradwohl
[34] argue that the intracluster gas distribution could
constrain −0.5 ! αYuk ! 1.3 for rs of a few hundred kpc,
which would translate to −0.5 ! Gc/G(1 Mpc) ! 2.2,
comparable with our constraints from large scale data.
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plings of strength Gc/G " 1.04 on ! 100 kpc scales could
well have observable implications for baryonic and dark
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ies, although a comparison with data is yet to be per-
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Cosmic Microwave Background

• Effects of a dark force on the CMB power spectrum. From 
WMAP and ACBAR data one can constrain dark forces 
from the CMB.

(Bean, Flanagan,Laszio, Trodden)



Dark Force and Eotvos Experiments



• WEP violation in the dark sector will be communicated to 
ordinary matter via quantum effects as long as the dark 
matter is not sterile.

• This implies a connection between laboratory tests of the 
WEP for ordinary matter and the observation of a dark 
force in astrophysics or cosmology.

Dark Force Implies WEP Violation 
for Ordinary Matter
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FIG. 2: Two-loop diagrams in WIMP DM models that generate the operators OH
f in Eq. (48).

Thus, after electroweak symmetry breaking the ultralight scalar couples to SM fermions.

at two-loop order, as illustrated in Fig. 2. The graph involving only virtual U(1)Y gauge

bosons [left panel of Fig. 2] directly generate the operators OH
f in Eq. (48), while the one-

particle irreducible diagram involving both W and B bosons in the φ+f → H+f “Compton

amplitude” [right panel of Fig. (2)] generates operators of the form Q̄i(
←−
/D −

−→
/D )Q, etc. As

noted earlier, operators of this type can be expressed in terms of OH
f using the equations of

motion, indicated symbolically by the presence of the H field on the external leg in the right

panel of Fig. 2. In either case, the Wilson coefficients CH
f are proportional to the Yukawa

matrices due to the Higgs insertions. After the neutral component of the Higgs field obtains

a vev, the loop-induced operators OH
f give rise to the interactions f̄fφ of Eq. (16). Any

mixing between the ultralight scalar and the Higgs will also contribute, corresponding to

the second term as usual in Eq. (54).

For SU(2)L triplet DM with hypercharge Y = 0, only the SU(2)L gauge boson exchange

diagrams of the right panel of Fig. (2) contribute. The resulting coupling of φ to the SM

fermions are as in Eq. (16), with

gf = C3

(αem

π

)2 mp

Mχ
gχξ̂χ − sin θ

mp

v
, (59)

where we have employed naive dimensional analysis (NDA) to estimate the first term on the

RHS of Eq. (59). Although the precise O(1) coefficient C3 can be obtained from a complete

computation, for our purposes of arriving at order-of-magnitude relationships between β

and η, the NDA expression suffices. 3 We note that the sum of all loop graphs of the type

in Fig. (2) is finite because we began with only renormalizable couplings and the operators

OH
f have dimension n = 5. We also observe that the coupling to different species of fermions

is universal since we have factored out the explicit dependence on the Yukawa coupling in

the definition of the gf in Eq. (16).

3 The subscript in C3 refers to the dimension of the triplet representation of SU(2)L.



Ultralight Scalar Couplings
• In general, the ultralight scalar can couple to the SM in two 

ways:

Mixing with the Higgs
19
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computation, for our purposes of arriving at order-of-magnitude relationships between β

and η, the NDA expression suffices. 3 We note that the sum of all loop graphs of the type

in Fig. (2) is finite because we began with only renormalizable couplings and the operators

OH
f have dimension n = 5. We also observe that the coupling to different species of fermions

is universal since we have factored out the explicit dependence on the Yukawa coupling in

the definition of the gf in Eq. (16).

3 The subscript in C3 refers to the dimension of the triplet representation of SU(2)L.
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where H0 is the lower component of the Higgs field H in unitary gauge before electroweak

symmetry breaking, the index i = {1, 2, 3} runs over the three flavor generations, and we

have defined c̃i
a = cayi

a.

After electroweak symmetry breaking, the operator OH in Eq. (48) will also contribute

to sin θ. To linear order in h one has

OH → CHv3Sh , (52)

thereby generating a contribution to the off-diagonal element of the mass-squared matrix

∆µ2
hS = 2 CHv3 . (53)

We will explore the consequences of this term when discussing scalar DM models below. For

the moment we assume that this contribution has been included in sin θ.

Collecting the contributions to the couplings gq,!,Q from the higher-dimension operators

OH
u,d,e and mixing effects after electroweak symmetry breaking, the coupling of the ultralight

scalar φ to SM fields at the electroweak scale is given by

gf (v) =
mp

mf

[
cos θ

v√
2
c̃i
f (v)− sin θ

mf

v
(v)

]

% mp

mf

v√
2
c̃f (v)− sin θ

mp

v
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where the last approximation is obtained from cos θ % 1 since θ is constrained to be very

small. We have included an extra factor of mp/mf on the RHS above to be consistent

with the convention in Eq. (15). We have ignored the running between the scales Λ ∼ TeV

and the electroweak scale for simplicity, but these effects can be incorporated by computing

the appropriate anomalous dimension matrix and solving the corresponding renormalization

group equations. We can now use Eq. (54) in Eqs. (23) and (25) to compute the Eötvös

parameters. In particular, we note that the contribution proportional to sin θ is universal,

so its contribution to the ηS can be evaluated using Eqs. (29) and (36).

In general, the origin and parametric dependence of sin θ and c̃f are independent. In most

of the parameter space where there are no strong cancellations between the two terms in

Eq.(54), WEP violation constraints can separately bound each of the two terms in Eq. (54).

In the next three sections we use this feature with the representative minimal DM models,

in the presence of a dark force mediated by φ, and determine the implications for terrestrial

experiments of direct DM-detection, Eötvös experiments, and the colliders.
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and the electroweak scale for simplicity, but these effects can be incorporated by computing
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group equations. We can now use Eq. (54) in Eqs. (23) and (25) to compute the Eötvös

parameters. In particular, we note that the contribution proportional to sin θ is universal,

so its contribution to the ηS can be evaluated using Eqs. (29) and (36).

In general, the origin and parametric dependence of sin θ and c̃f are independent. In most

of the parameter space where there are no strong cancellations between the two terms in

Eq.(54), WEP violation constraints can separately bound each of the two terms in Eq. (54).

In the next three sections we use this feature with the representative minimal DM models,

in the presence of a dark force mediated by φ, and determine the implications for terrestrial

experiments of direct DM-detection, Eötvös experiments, and the colliders.

16

write

ÕH
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ÕH
d = cdy

i
dS d̄i

L H0 di
R + h.c ≡ c̃i

d S d̄i
L H0 di

R + h.c,

ÕH
e = cey

i
eS ēi
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so its contribution to the ηS can be evaluated using Eqs. (29) and (36).

In general, the origin and parametric dependence of sin θ and c̃f are independent. In most

of the parameter space where there are no strong cancellations between the two terms in

Eq.(54), WEP violation constraints can separately bound each of the two terms in Eq. (54).

In the next three sections we use this feature with the representative minimal DM models,

in the presence of a dark force mediated by φ, and determine the implications for terrestrial

experiments of direct DM-detection, Eötvös experiments, and the colliders.

Higher dimension operators
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FIG. 1: Interaction of S with SM fermions by mixing with the Higgs via the operator SH†H. Here,
“X” denotes the vacuum expectation value of the Higgs doublet.

The scalar φ couples to the SM fermions through its Higgs component, giving rise to the

couplings gf , where f denotes any of the light quarks q = u, d, s, charged leptons " = e, µ, τ ,

or heavy quarks Q = c, b, t. One has

gf = − sin θ
mp

mf

mf

v
= − sin θ

mp

v
, (46)

where the extra factor of mp/mf after the first equality is included to be consistent with the

convention in Eq. (15). This process is depicted in Fig. 1. We see that in this mechanism the

coupling of φ to ordinary matter is proportional to sin θ, with the constant of proportionality

given entirely in terms of known quantities. The mixing angle θ will also receive corrections

at the loop level and in the rest of the analysis we assume that θ is the renormalized mixing

angle.

For later use, we note that in the limit that µh " mh # µS corresponding to a small

mixing angle θ, we can write

m2
φ " µ2

S −
µ4

hS

4m2
h

. (47)

The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.

1

F = mi a (1)

Fg = −mg
!"Φg (2)

ai =
Fg

mi
= −

(
mg

mi

)
!"Φg (3)

mi #= mg (4)

Lf =
gf

mp
mf f̄fφ (5)

θµ
µ =

β3(nf )

2g3
Ga

µνG
µν
a +

βe(nf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

Q

mQQ̄Q +
∑

"

m"%̄% + mτ τ̄ τ (6)

θµ
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β3(ñf )

2g3
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µν
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βe(ñf )

2g3
FµνF

µν +
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q

mq q̄q +
∑

"

m"%̄% (7)

10× MICROSCOPE (8)

αY UK = 8πβ2 (9)

sin θ % µ2
hS

µ2
h

& 1 (10)

δV (H, S) = C2

(
H†H

) (
H†H

)
S (11)

δ1 (12)

δL =
mf

mp
gf f̄f (13)
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become apparent when we study specific models. The Newtonian gravitational potential

between a body with mass Mi and a source with mass Ms is

VG = −GMiMs

r
, (3)

where G is Newton’s constant. It is therefore convenient to write the total potential as

V = −GMiMs

r

(
1 + αise

−mφr
)

, (4)

where

αis =
1

4πG

qiqs

µiµs
ξ̂iξ̂s, (5)

is a dimensionless parameter characterizing the strength of the new force relative to gravity,

expressed in terms of the charge-to-mass ratio q/µ = Q/M , where µ is the mass in atomic

mass units. The parameters ξ̂i,s are

ξ̂i,s =

{
1 for fermionic objects,

1
2µi,s

for scalar objects.
(6)

The parameter αis is not universal and in general depend on the composition of the macro-

scopic bodies acting as sources for φ.

Eötvös experiments look for violations of the equivalence principle by measuring the

difference in acceleration of two test bodies of different compositions in the presence of a

common source. Experimental constraints on new long-range composition-dependent forces

are typically expressed in terms of the Eötvös parameter,

η = 2
|a1 − a2|
|a1 + a2|

"
∣∣∣
∆a

a

∣∣∣ , (7)

where ai is the total acceleration of object i = 1, 2, ∆a ≡ a1−a2, and a is the universal grav-

itational acceleration in the absence of any new long range forces. The last approximation

made above is valid when the fifth force is weaker than gravity. From (4), the acceleration

of object i due to the source s is

ai =
GMs

r2

[
1 + αis(1 + mφr)e

−mφr
]

. (8)

We are interested in forces that are considerably weaker than gravity, and distances less

than the Compton wavelength of the scalar, r $ m−1
φ . The Eötvös parameter is then

η1,2
s =

1

4πG

∣∣∣∣∣
q1ξ̂1

µ1
− q2ξ̂2

µ2

∣∣∣∣∣

∣∣∣∣∣
qsξ̂s

µs

∣∣∣∣∣ . (9)

Currently, the strongest limits on violations of the weak equivalence come from torsion

balance Eötvös experiments [60] which give the constraints

ηBe,Ti
E

< (0.3 ± 1.8)× 10−13, ηBe,Ti
DM

< (4 ± 7)× 10−5. (10)
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• From the coupling to SM fermions one can deduce the Eotvos 
parameter:

• The Eotvos parameter is determined by the charge to mass ratios of the 
test and source objects:
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where H0 is the lower component of the Higgs field H in unitary gauge before electroweak

symmetry breaking, the index i = {1, 2, 3} runs over the three flavor generations, and we

have defined c̃i
a = cayi

a.

After electroweak symmetry breaking, the operator OH in Eq. (48) will also contribute

to sin θ. To linear order in h one has

OH → CHv3Sh , (52)

thereby generating a contribution to the off-diagonal element of the mass-squared matrix

∆µ2
hS = 2 CHv3 . (53)

We will explore the consequences of this term when discussing scalar DM models below. For

the moment we assume that this contribution has been included in sin θ.

Collecting the contributions to the couplings gq,!,Q from the higher-dimension operators

OH
u,d,e and mixing effects after electroweak symmetry breaking, the coupling of the ultralight

scalar φ to SM fields at the electroweak scale is given by

gf (v) =
mp

mf

[
cos θ

v√
2
c̃i
f (v)− sin θ

mf

v
(v)

]

% mp

mf

v√
2
c̃f (v)− sin θ

mp

v
(v), (54)

where the last approximation is obtained from cos θ % 1 since θ is constrained to be very

small. We have included an extra factor of mp/mf on the RHS above to be consistent

with the convention in Eq. (15). We have ignored the running between the scales Λ ∼ TeV

and the electroweak scale for simplicity, but these effects can be incorporated by computing

the appropriate anomalous dimension matrix and solving the corresponding renormalization

group equations. We can now use Eq. (54) in Eqs. (23) and (25) to compute the Eötvös

parameters. In particular, we note that the contribution proportional to sin θ is universal,

so its contribution to the ηS can be evaluated using Eqs. (29) and (36).

In general, the origin and parametric dependence of sin θ and c̃f are independent. In most

of the parameter space where there are no strong cancellations between the two terms in

Eq.(54), WEP violation constraints can separately bound each of the two terms in Eq. (54).

In the next three sections we use this feature with the representative minimal DM models,

in the presence of a dark force mediated by φ, and determine the implications for terrestrial

experiments of direct DM-detection, Eötvös experiments, and the colliders.
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of the parameter space where there are no strong cancellations between the two terms in
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16

write

ÕH
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L H0 ui

R + h.c,

ÕH
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small. We have included an extra factor of mp/mf on the RHS above to be consistent

with the convention in Eq. (15). We have ignored the running between the scales Λ ∼ TeV

and the electroweak scale for simplicity, but these effects can be incorporated by computing

the appropriate anomalous dimension matrix and solving the corresponding renormalization

group equations. We can now use Eq. (54) in Eqs. (23) and (25) to compute the Eötvös

parameters. In particular, we note that the contribution proportional to sin θ is universal,

so its contribution to the ηS can be evaluated using Eqs. (29) and (36).

In general, the origin and parametric dependence of sin θ and c̃f are independent. In most

of the parameter space where there are no strong cancellations between the two terms in

Eq.(54), WEP violation constraints can separately bound each of the two terms in Eq. (54).

In the next three sections we use this feature with the representative minimal DM models,

in the presence of a dark force mediated by φ, and determine the implications for terrestrial

experiments of direct DM-detection, Eötvös experiments, and the colliders.

6

become apparent when we study specific models. The Newtonian gravitational potential

between a body with mass Mi and a source with mass Ms is

VG = −GMiMs

r
, (3)

where G is Newton’s constant. It is therefore convenient to write the total potential as

V = −GMiMs

r

(
1 + αise

−mφr
)

, (4)

where

αis =
1

4πG

qiqs

µiµs
ξ̂iξ̂s, (5)

is a dimensionless parameter characterizing the strength of the new force relative to gravity,

expressed in terms of the charge-to-mass ratio q/µ = Q/M , where µ is the mass in atomic

mass units. The parameters ξ̂i,s are

ξ̂i,s =

{
1 for fermionic objects,

1
2µi,s

for scalar objects.
(6)

The parameter αis is not universal and in general depend on the composition of the macro-

scopic bodies acting as sources for φ.
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made above is valid when the fifth force is weaker than gravity. From (4), the acceleration

of object i due to the source s is

ai =
GMs

r2

[
1 + αis(1 + mφr)e

−mφr
]

. (8)

We are interested in forces that are considerably weaker than gravity, and distances less

than the Compton wavelength of the scalar, r $ m−1
φ . The Eötvös parameter is then

η1,2
s =

1

4πG

∣∣∣∣∣
q1ξ̂1

µ1
− q2ξ̂2

µ2

∣∣∣∣∣

∣∣∣∣∣
qsξ̂s

µs

∣∣∣∣∣ . (9)

Currently, the strongest limits on violations of the weak equivalence come from torsion

balance Eötvös experiments [60] which give the constraints

ηBe,Ti
E

< (0.3 ± 1.8)× 10−13, ηBe,Ti
DM

< (4 ± 7)× 10−5. (10)
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From Eqs. (18) and (23), the parameters ζk appearing above are given by

ζk =
1

mp

[
gk −

2

27

∑

Q

gQ

]
(27)

at leading order. Here gk denotes the couplings of φ to the light quarks and charged lep-

tons and gQ denotes its coupling to the heavy (b, c, t) quarks. A special case that will be

of particular interest in subsequent discussion occurs when the couplings to fermions are

universal, apart from the fermion Yukawa couplings explicitly factored out via the factors

of mf in Eqs. (15,16). Setting

gk = gQ ≡ ḡ (28)

and mp = mn = mN leads to

ηuniv
S

# ḡ

(
M2

P

4πm2
N

) (
7

9

) ∣∣∣∣ξ̂S

( q

µ

)

S

∣∣∣∣

∣∣∣∣∣
(Z1

A1
− Z2

A2

){
me +

∑

q

mq (xq,p − xq,n)
}

∣∣∣∣∣ . (29)

Typical source objects ‘S’ used in Eötvös experiments include the Earth, the Sun, and

galactic DM, and one needs to obtain their charge to mass ratio ξ̂S

(
q
µ

)

S
that appears in

Eq.(29). If galactic DM is made of of elementary particles, then as already discussed, the

charge to mass ratio under the dark force is given by

ξ̂S

( q

µ

)

S

∣∣∣
S=DM

=

(
gχ

Mχ

)
ξ̂χ . (30)

For objects like the Earth that are made up of many different types of atoms, the effective

charge-to-mass ratio is obtained by a superposition of the couplings of φ to all the different

atoms present in the object. In contrast to the situation for differences in charge-to-mass

ratios for test bodies, it suffices to approximate this ratio for the bulk source object by

ignoring atomic binding energy effects and summing over the couplings of φ to all the

neutrons, protons, and electrons present. Doing so in the case of the Earth leads to

ξ̂E

( q

µ

)

E
# gpNp + gnNn + ge(me/mN)Ne

mN(Np + Nn) + meNe
, (31)

where gp and gn denote the couplings of φ to protons and neutrons, respectively:

gN = 〈N |Lφff̄ |N〉 , (32)

for N = p or n. In the limit of a universal coupling as in Eq. (28), we have

gN = ghḡ

(
v

mN

)
, (33)

where v = 246 GeV is the vacuum expectation value of the neutral component of the Higgs

doublet and gh/
√

2 is the coupling of the physical Higgs boson to the nucleon

gh = 〈N |
(

∑

q

mq

v
q̄q +

∑

Q

mQ

v
Q̄Q

)
|N〉. (34)
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where we have used a non-relativistic normalization for the atomic states 〈A(p)|A(q)〉 =

(2π)3δ3(#p− #q ), ξA is the normalization factor defined in Eq. (2), and Lφ is defined in (15).

From Eq.(20), as explained in Appendix A, the general expression for the charge to mass

ratio qAξ̂A/µA is

ξ̂A

(
q

µ

)

A

=
gAξA

MA
=

2cgg3

β3
+

1

MA

[
Z(ζeme +

∑

q

ζqmq xq,p) + (A− Z)
∑

q

ζqmq xq,n + ωA

]
,

(21)

where the quantity ωA is given by

ωA ≡ κ〈A|F µνFµν |A〉 −
∑

k

ζkmk
dEA

dmk
, (22)

EA is the atomic binding energy as defined in Eq.(A5), the quantities ζk and κ are given by

ζk =
gk

mp
− 2g3

β3
cg, κ = cγ −

g3βe

eβ3
cg, (23)

as in Eq.(A10), and xq,p and xq,n denote the nucleon matrix elements

xq,p = 〈p|q̄q|p〉, xq,n = 〈n|q̄q|n〉, (24)

which are known experimentally [65, 66] and given in Eq.(A13) of appendix A. In Eq.(23),

β3 and βe denote the QCD and QED beta functions respectively.

Using Eq.(21) in Eq.(9) for test objects made up of atoms with atomic weights A1 and

A2, the general expression for the Eötvös parameter ηS with source S is

ηS =
M2

P

4π

∣∣∣∣ξ̂S

( q

µ

)

S

∣∣∣∣
∣∣∣
( Z1

MA1

− Z2

MA2

)(
ζeme +

∑

q

ζqmq xq,p

)

+
(A1 − Z1

MA1

− A2 − Z2

MA2

) ∑

q

ζqmq xq,n +
( ωA1

MA1

− ωA2

MA2

) ∣∣∣,

(25)

where
(

q
µ

)
S

denotes the charge to mass ratio for the source object and Ak, Zk (k = 1, 2)

refer to the atomic weights and atomic numbers of the two laboratory samples. For order of

magnitude estimates, we follow Ref. [35] and ignore binding energy effects, encoded in the

quantitities ωA1,2 . Setting MA % AmN for the atomic masses, we then obtain the simpler

expression

ηS % M2
P

4πmN

∣∣∣∣ξ̂S

( q

µ

)

S

∣∣∣∣

∣∣∣∣∣
(Z1

A1
− Z2

A2

){
ζeme +

∑

q

ζqmq (xq,p − xq,n)
}

∣∣∣∣∣ . (26)

Known nuclear 
matrix elements
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Using similar methods to those employed to determine gA and ignoring small difference

between the neutron and proton coupling, one has[67–69]

gh ! 1.71× 10−3 . (35)

The resulting expression for the Earth’s charge-to-mass ratio in this case is

ξ̂E

( q

µ

)

E

∣∣∣∣∣
univ

! ḡ

(
v

m2
N

)
gh(Np + Nn) + (me/v)Ne

(Np + Nn) + (me/mN)Ne
! 0.0017 ḡ

(
v

m2
N

)
. (36)

The number of protons, neutrons, and electrons are Np ! 1.9 × 1051, Nn ! 2.0 × 1051, and

Ne ! 1.9× 1051 respectively. We will make use of Eq. (36) in what follows.

IV. LIGHT SCALAR COUPLING TO THE STANDARD MODEL

We now give a model-independent discussion of the coupling of ordinary matter to the

ultralight singlet scalar that mediates the long range force. In doing so, we will lay the

groundwork for calculating the parameters gf (f = q, Q, "), cg, and cγ of Eq. (15) and

Eq.(16) or equivalently the parameters ζk and κ in Eqs. (23) and (27). In general there

are two mechanisms for a singlet scalar to couple to the SM fermions and gauge bosons.

The first mechanism involves mixing between the ultralight scalar and the Higgs, which

allows the ultralight scalar to couple to the SM fermions and gauge bosons. The second

mechanism entails a coupling of the ultralight scalar to the SM through higher-dimension

(non-renormalizable) operators. We discuss these two mechanisms in this section and estab-

lish notation. We also address the need for fine-tuning of the ultralight scalar mass when

its interactions with the SM are non-negligible, looking ahead to a similar issue when we

consider its coupling to DM.

A. Coupling to the Higgs Sector

We assume that the mediator of the dark force carries no SM charges and that it can be

described by a gauge singlet S. There exist no renormalizable couplings of such a singlet

scalar to the SM fermions or gauge bosons, but it can couple to the SM Higgs doublet

with operators of mass dimension n ≤ 4. After electroweak symmetry breaking, the n = 3

interaction H†HS will generate mixing between S and the neutral component of the Higgs

doublet, h. We will identify the ultralight force-carrying scalar φ with the lighter mass

eigenstate, and the heavier eigenstate with the physical Higgs boson. The Lagrangian for

the singlet S including its renormalizable and super-renormalizable interactions is given by

L =
1

2
∂µS∂µS − V (H, S) , (37)

• These expressions will receive corrections from binding energy effects 
which we neglect for order of magnitude estimates.

• The charge to mass ratio for Earth as a source object is:

• One can estimate the Eotvos parameter as

1

F = mi a (1)

Fg = −mg
!"Φg (2)

ai =
Fg

mi
= −

(
mg

mi

)
!"Φg (3)

mi #= mg (4)

Lf =
gf

mp
mf f̄fφ (5)

θµ
µ =

β3(nf )

2g3
Ga

µνG
µν
a +

βe(nf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

Q

mQQ̄Q +
∑

"

m"%̄% + mτ τ̄ τ (6)

θµ
µ =

β3(ñf )

2g3
Ga

µνG
µν
a +

βe(ñf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

"

m"%̄% (7)

10× MICROSCOPE (8)

αY UK = 8πβ2 (9)

sin θ % µ2
hS

µ2
h

& 1 (10)

δV (H, S) = C2

(
H†H

) (
H†H

)
S (11)

δ1 (12)

δL =
mf

mp
gf f̄f (13)

gf ≡ ḡ (14),
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the astrophysical constraints, we assumed only an upper bound β < 0.2 and showed that

in representative WIMP scenarios, it leads to stronger constraints on the strength of the

φ-WIMP coupling than do the present Eötvös bounds on ηE,DM . An improvement [37] of

about eight orders of magnitude in Eötvös experiments would be required to compete with

the bounds from astrophysical constraints.

Here, we explore the prospective implications of a non-vanishing β. The presence of a

modified, long-range dark force could help alleviate tensions in the ΛCDM paradigm (we

refer the reader to Refs. [36, 51] for an extensive discussion). In what follows, we show that

a non-vanishing β implies a lower bound on ηE,DM in simple WIMP scenarios, so that future

Eötvös experiments with improved sensitivity could be used to test this possibility. For

purposes of illustration, we consider both scalar and fermionic WIMP DM. For fermionic

WIMPs we restrict our attention to vector-like gauge representations, which simplifies the

structure of the coupling of the ultralight singlet scalar φ to DM.

The Lagrangian for minimal WIMP DM takes the form

L =

{
χ̄(iD/ + M0)χ, fermionic DM,

c(Dµχ)†Dµχ− c M2
0 χ†χ− V (χ, H), scalar DM,

(58)

where c = 1/2 for a real scalar and c = 1 for a complex scalar. The covariant derivative

depends on the SU(2)L and U(1)Y representations of χ. Assuming that a single WIMP

species saturates the relic density, one finds that typical masses of such DM candidates are

in the TeV range [71]. In general, V (χ, H) can contribute to the scalar DM mass after

electroweak symmetry breaking. However, since the typical WIMP DM masses are in the

TeV range, such a contribution will be much smaller than the size of the mass parameter

M0 ∼ TeV in the second line of Eq.(58). In what follows we assume this parameter M0 to

be the total DM mass since we are only interested in order of magnitude estimates. For

gauge singlet scalar DM models with DM masses in the 100 GeV range, the contribution

to the mass from electroweak symmetry breaking can be important. We will consider the

case of singlet scalar DM in the next section. Furthermore, since electroweak symmetry

breaking can in general induce mixing between the scalar DM and the Higgs, we impose a

Zχ
2 symmetry (χ→ −χ) to ensure stability of the DM particle. The interactions in V (χ, H)

can also be constrained from WEP tests, and we will explore this in the next two sections

for scalar DM. For vector-like fermionic DM no renormalizable couplings exist between the

Higgs and DM. Such couplings can however be present for chiral DM.

We consider the impact of a WEP violating force in the dark sector via the interactions

of DM with the ultralight scalar φ as in Eq.(12). These couplings are gauge invariant for

fermionic DM only for vector-like gauge representations to which we restrict our attention.

For chiral fermionic DM, the coupling to φ can only arise from higher dimension operators by

gauge invariance. Assuming no other low-energy degrees of freedom besides those of the SM

plus the χ and φ, the dark sector interactions (12) induce a coupling of φ to the SM fermions

• Consider Minimal WIMP models of the type:
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FIG. 2: Two-loop diagrams in WIMP DM models that generate the operators OH
f in Eq. (48).

Thus, after electroweak symmetry breaking the ultralight scalar couples to SM fermions.

at two-loop order, as illustrated in Fig. 2. The graph involving only virtual U(1)Y gauge

bosons [left panel of Fig. 2] directly generate the operators OH
f in Eq. (48), while the one-

particle irreducible diagram involving both W and B bosons in the φ+f → H+f “Compton

amplitude” [right panel of Fig. (2)] generates operators of the form Q̄i(
←−
/D −

−→
/D )Q, etc. As

noted earlier, operators of this type can be expressed in terms of OH
f using the equations of

motion, indicated symbolically by the presence of the H field on the external leg in the right

panel of Fig. 2. In either case, the Wilson coefficients CH
f are proportional to the Yukawa

matrices due to the Higgs insertions. After the neutral component of the Higgs field obtains

a vev, the loop-induced operators OH
f give rise to the interactions f̄fφ of Eq. (16). Any

mixing between the ultralight scalar and the Higgs will also contribute, corresponding to

the second term as usual in Eq. (54).

For SU(2)L triplet DM with hypercharge Y = 0, only the SU(2)L gauge boson exchange

diagrams of the right panel of Fig. (2) contribute. The resulting coupling of φ to the SM

fermions are as in Eq. (16), with

gf = C3

(αem

π

)2 mp

Mχ
gχξ̂χ − sin θ

mp

v
, (59)

where we have employed naive dimensional analysis (NDA) to estimate the first term on the

RHS of Eq. (59). Although the precise O(1) coefficient C3 can be obtained from a complete

computation, for our purposes of arriving at order-of-magnitude relationships between β

and η, the NDA expression suffices. 3 We note that the sum of all loop graphs of the type

in Fig. (2) is finite because we began with only renormalizable couplings and the operators

OH
f have dimension n = 5. We also observe that the coupling to different species of fermions

is universal since we have factored out the explicit dependence on the Yukawa coupling in

the definition of the gf in Eq. (16).

3 The subscript in C3 refers to the dimension of the triplet representation of SU(2)L.
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Thus, after electroweak symmetry breaking the ultralight scalar couples to SM fermions.

at two-loop order, as illustrated in Fig. 2. The graph involving only virtual U(1)Y gauge

bosons [left panel of Fig. 2] directly generate the operators OH
f in Eq. (48), while the one-

particle irreducible diagram involving both W and B bosons in the φ+f → H+f “Compton

amplitude” [right panel of Fig. (2)] generates operators of the form Q̄i(
←−
/D −

−→
/D )Q, etc. As

noted earlier, operators of this type can be expressed in terms of OH
f using the equations of

motion, indicated symbolically by the presence of the H field on the external leg in the right

panel of Fig. 2. In either case, the Wilson coefficients CH
f are proportional to the Yukawa

matrices due to the Higgs insertions. After the neutral component of the Higgs field obtains

a vev, the loop-induced operators OH
f give rise to the interactions f̄fφ of Eq. (16). Any

mixing between the ultralight scalar and the Higgs will also contribute, corresponding to

the second term as usual in Eq. (54).

For SU(2)L triplet DM with hypercharge Y = 0, only the SU(2)L gauge boson exchange

diagrams of the right panel of Fig. (2) contribute. The resulting coupling of φ to the SM

fermions are as in Eq. (16), with

gf = C3

(αem

π

)2 mp

Mχ
gχξ̂χ − sin θ

mp

v
, (59)

where we have employed naive dimensional analysis (NDA) to estimate the first term on the

RHS of Eq. (59). Although the precise O(1) coefficient C3 can be obtained from a complete

computation, for our purposes of arriving at order-of-magnitude relationships between β

and η, the NDA expression suffices. 3 We note that the sum of all loop graphs of the type

in Fig. (2) is finite because we began with only renormalizable couplings and the operators

OH
f have dimension n = 5. We also observe that the coupling to different species of fermions

is universal since we have factored out the explicit dependence on the Yukawa coupling in

the definition of the gf in Eq. (16).

3 The subscript in C3 refers to the dimension of the triplet representation of SU(2)L.

• Two loop diagrams can induce dimension five 
operators like:
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B. Non-renormalizable interactions

If both the S and H couple to additional fields with masses above the electroweak scale,

then these interactions will in general induce higher dimensional operators that involve both

the S and H in a low-energy effective theory that does not contain the heavy degrees of

freedom explicitly. Minimal dark matter models, for example, can require TeV-scale DM

particles in order to achieve the observed relic density[71], and these fields may generate the

higher dimensional S-H operators. At dimension five, one has seven independent operators

coupling S to the SM fermions and gauge bosons:

OH
u = S Q̄L εH† CH

u uR + h.c,

OH
d = S Q̄L H CH

d dR + h.c,

OH
e = S L̄L H CH

e eR + h.c,

OW = CW S Tr
[
WµνW

µν
]
,

OB = CBS BµνB
µν ,

OG = CGS Tr
[
GµνG

µν
]
,

OH = CHS(H†H)(H†H). (48)

The flavor indices on the fields QL, L, uR, eR and the matrices CH
u,d,e are suppressed for

simplicitly. Operators of the form S Q̄LiD/ QL, S ūRiD/ uR, S d̄RiD/ dR, and S ēRiD/ eR can be

related to the operators OH
u,d,e by using the equations of motion

iD/ QL = εH†YuuR + HYddR,

iD/ uR = εHY †
u QL,

iD/ dR = H†Y †
d QL,

iD/ eR = H†Y †
e LL , (49)

where Yf denotes the matrix of SM Yukawa couplings. We have omitted operators that

involve derivative or pseudoscalar couplings of S. Such couplings are spin dependent and

have a negligible effect in experiments which use unpolarized test objects.

In general, the Wilson coefficients CH
u,d,e are 3× 3 matrices in flavor space, and can lead

to flavor changing interactions of quarks and leptons with S. Since the couplings of S to

quarks and leptons are extremely small (as dictated by the WEP violation bounds) there is

no danger of introducing dangerous flavor-changing neutral currents. In the specific model

examples considered in subsequent sections of the paper, find that the CH
u,d,e are proportional

to the Yukawa matrices:

CH
u,d,e ≡ cu,d,eYu,d,e, (50)

where cu,d,e are the constants of proportionality. After expressing the fermion fields in the

mass basis, in unitary gauge where the operators OH
u,d,e become flavor diagonal. We can

• After EWSB the coupling to fermions is given by:
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For SU(2)L multiplet DM with hypercharge Y != 0, the induced couplings of the ultralight

scalar to DM is given by

gf = CN

(αem

π

)2 mp

Mχ
gχξ̂χ + CY Y 2

(αem

4π

)2 mp

Mχ
gχξ̂χ − sin θ

mp

v
, (60)

where CN,Y are O(1) coefficients that, as before, can be obtained from a complete two-loop

computation. We observe that the first terms on the RHS of Eqs. (59) and (60) are universal

for different fermion species and come from the exchange of the SU(2)L gauge bosons W a

in Fig. (2). The last terms containing sin θ are also universal, having been generated from

the mixing between the Higgs and light scalar φ. The middle term in Eq. (60), involving the

square of the SM hypercharge Y , are non-universal and are generated by the exchange of

U(1)Y gauge boson B. We point out that such minimal WIMP DM models with non-zero

hypercharge are typically ruled out [71] by direct detection experiments. Here we discuss

these minimal DM models with non-zero hypercharge, only as illustrative examples keeping

in mind that such DM could be part of a non-minimal extension which avoids the direct

detection bounds.

A similar analysis can be performed for other WIMP models of DM that may involve

additional degrees of freedom. In supersymmetry, for example, the DM matter particle χ

is a linear superposition of winos, binos, and higgsinos. In addition there are squark and

slepton particles which give interactions of the type λψ̃ψ̄χ + h.c.. In theories with such a

spectrum of particles one can induce a coupling of φ to ordinary matter via virtual DM at

one loop as shown in Fig. 34. If the ultralight scalar φ is the scalar component of a singlet

superfield Ŝ, a superpotential term of the form (µ + gχŜ)Ĥu · Ĥd will lead to a coupling to

fermions of the form

gf ∼
1

16π2

mψ̃µλ2

M2
SUSY

gχ. (61)

If χ is primarily a bino, then λ $ gY , the hypercharge coupling. If χ is primarily Higgsino,

the coupling of φ to the light quarks will be suppressed. The coupling of φ will be primarily

to the top quark which has order one Yukawa couplings. Thus, in such models it is possible

to induce a stronger WEP violating coupling to ordinary matter at one loop leading to

bigger effects in Eötvös experiments. For the sake of brevity, we do not consider such non-

minimal scenarios and we will only focus on minimal DM models without additional degrees

of freedom such as squarks and sleptons.

It is possible that the loop-induced OH
f operator contributions to gf and those generated

indirectly by H-S mixing (proportional to sin θ) are individually much larger than gf yet

4 Of course the presence of an ultralight scalar would introduce a new hierarchy problem which spoils the
main motivation for supersymmetric theories. Here we invoke supersymmetry simply as a familiar example
to illustrate the possibility of new types of interactions that can induce a coupling of the ultralight scalar
to ordinary matter.
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v
, (60)

where CN,Y are O(1) coefficients that, as before, can be obtained from a complete two-loop

computation. We observe that the first terms on the RHS of Eqs. (59) and (60) are universal

for different fermion species and come from the exchange of the SU(2)L gauge bosons W a

in Fig. (2). The last terms containing sin θ are also universal, having been generated from

the mixing between the Higgs and light scalar φ. The middle term in Eq. (60), involving the

square of the SM hypercharge Y , are non-universal and are generated by the exchange of

U(1)Y gauge boson B. We point out that such minimal WIMP DM models with non-zero

hypercharge are typically ruled out [71] by direct detection experiments. Here we discuss

these minimal DM models with non-zero hypercharge, only as illustrative examples keeping

in mind that such DM could be part of a non-minimal extension which avoids the direct

detection bounds.

A similar analysis can be performed for other WIMP models of DM that may involve

additional degrees of freedom. In supersymmetry, for example, the DM matter particle χ

is a linear superposition of winos, binos, and higgsinos. In addition there are squark and

slepton particles which give interactions of the type λψ̃ψ̄χ + h.c.. In theories with such a

spectrum of particles one can induce a coupling of φ to ordinary matter via virtual DM at

one loop as shown in Fig. 34. If the ultralight scalar φ is the scalar component of a singlet

superfield Ŝ, a superpotential term of the form (µ + gχŜ)Ĥu · Ĥd will lead to a coupling to

fermions of the form

gf ∼
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16π2

mψ̃µλ2

M2
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gχ. (61)

If χ is primarily a bino, then λ $ gY , the hypercharge coupling. If χ is primarily Higgsino,

the coupling of φ to the light quarks will be suppressed. The coupling of φ will be primarily

to the top quark which has order one Yukawa couplings. Thus, in such models it is possible

to induce a stronger WEP violating coupling to ordinary matter at one loop leading to

bigger effects in Eötvös experiments. For the sake of brevity, we do not consider such non-

minimal scenarios and we will only focus on minimal DM models without additional degrees

of freedom such as squarks and sleptons.

It is possible that the loop-induced OH
f operator contributions to gf and those generated

indirectly by H-S mixing (proportional to sin θ) are individually much larger than gf yet

4 Of course the presence of an ultralight scalar would introduce a new hierarchy problem which spoils the
main motivation for supersymmetric theories. Here we invoke supersymmetry simply as a familiar example
to illustrate the possibility of new types of interactions that can induce a coupling of the ultralight scalar
to ordinary matter.
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FIG. 4: An estimate of the allowed region in the (ηDM,E , β) parameter space for minimal WIMP
DM models. The curves in the figures give an estimate of for ηDM,E for a given value of β from
the two loop diagrams in Fig. 2. The shaded region is unlikely for typical WIMP models. Using
the observational constraint β < 0.2, the allowed region is further restricted to the left of the
vertical line. The estimates in the above figures for ηDM,E , for β < 0.2, are far below the current
experimental bounds ηDM

<∼ 10−5, ηE
<∼ 10−13. An improvement of about five orders of magnitude

would be required in Eötvös experiments to fully probe the allowed parameter space for β = 0.2
by measuring ηE . This is within reach of the MiniSTEP [56] proposal.

which are shown in Fig. 4 as the allowed regions for typical miminal WIMP DM models in

the (ηDM,E , β) parameter space. The curve in the left and right figures gives as estimate of

the minimum size for ηDM and ηE respectively as a function of β. One can also estimate the

ratio ηE/ηDM from Eqs. (63) and (64) to be approximately

ηE/ηDM " 10−6 . (66)

For β = 0.2, marked by the vertical lines in Fig. 4, the current upper bound from

galactic dynamics [51], we see that the lower bounds for typical WIMP DM models are

ηDM > 4 × 10−12 and ηE > 4 × 10−18. These lower bounds are far below the current

experimental upper bounds shown in Eq.(10). An improvement of about five to seven orders

of magnitude in Eötvös experiments would be required in order to probe these expectations

of WIMP DM models. The MiniSTEP [56] experiment, which is currently under study, is

expected to reach a sensitivity for ηE of about 10−18 and might be able to probe the lower

bounds of these WIMP models. However, if β < 0.05 as indicated by a recent analysis [54]

of the CMB and large scale structure formation, the lower bounds on ηDM,E are far beyond

current and future planned experiments. If an effect is detected in ηDM,E far above the

expectations in Fig.(4) it would suggest the possibility that the coupling of φ to the SM

fermions is mostly via h − φ mixing corresponding to the last term appearing in Eqs.(59)

and (60). One could extract a value for sin θ and derive implications for various DM scenarios

as discussed in the following section. Another possibility that might explain an effect above

the expectation in Fig. 4 would be a stronger induced coupling of φ to ordinary matter

1
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θµ
µ =
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µν +
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q
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∑

Q

mQQ̄Q +
∑

"

m"%̄% + mτ τ̄ τ (6)

θµ
µ =

β3(ñf )

2g3
Ga

µνG
µν
a +

βe(ñf )

2g3
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µν +
∑

q

mq q̄q +
∑

"

m"%̄% (7)

10× MICROSCOPE (8)

Mini-STEP

• Minimal WIMP models are out of reach of MICROSCOPE but 
could be probed by Mini-STEP.
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For SU(2)L multiplet DM with hypercharge Y != 0, the induced couplings of the ultralight

scalar to DM is given by

gf = CN

(αem

π

)2 mp

Mχ
gχξ̂χ + CY Y 2

(αem

4π

)2 mp

Mχ
gχξ̂χ − sin θ

mp

v
, (60)

where CN,Y are O(1) coefficients that, as before, can be obtained from a complete two-loop

computation. We observe that the first terms on the RHS of Eqs. (59) and (60) are universal

for different fermion species and come from the exchange of the SU(2)L gauge bosons W a

in Fig. (2). The last terms containing sin θ are also universal, having been generated from

the mixing between the Higgs and light scalar φ. The middle term in Eq. (60), involving the

square of the SM hypercharge Y , are non-universal and are generated by the exchange of

U(1)Y gauge boson B. We point out that such minimal WIMP DM models with non-zero

hypercharge are typically ruled out [71] by direct detection experiments. Here we discuss

these minimal DM models with non-zero hypercharge, only as illustrative examples keeping

in mind that such DM could be part of a non-minimal extension which avoids the direct

detection bounds.

A similar analysis can be performed for other WIMP models of DM that may involve

additional degrees of freedom. In supersymmetry, for example, the DM matter particle χ

is a linear superposition of winos, binos, and higgsinos. In addition there are squark and

slepton particles which give interactions of the type λψ̃ψ̄χ + h.c.. In theories with such a

spectrum of particles one can induce a coupling of φ to ordinary matter via virtual DM at

one loop as shown in Fig. 34. If the ultralight scalar φ is the scalar component of a singlet

superfield Ŝ, a superpotential term of the form (µ + gχŜ)Ĥu · Ĥd will lead to a coupling to

fermions of the form

gf ∼
1

16π2

mψ̃µλ2

M2
SUSY

gχ. (61)

If χ is primarily a bino, then λ $ gY , the hypercharge coupling. If χ is primarily Higgsino,

the coupling of φ to the light quarks will be suppressed. The coupling of φ will be primarily

to the top quark which has order one Yukawa couplings. Thus, in such models it is possible

to induce a stronger WEP violating coupling to ordinary matter at one loop leading to

bigger effects in Eötvös experiments. For the sake of brevity, we do not consider such non-

minimal scenarios and we will only focus on minimal DM models without additional degrees

of freedom such as squarks and sleptons.

It is possible that the loop-induced OH
f operator contributions to gf and those generated

indirectly by H-S mixing (proportional to sin θ) are individually much larger than gf yet

4 Of course the presence of an ultralight scalar would introduce a new hierarchy problem which spoils the
main motivation for supersymmetric theories. Here we invoke supersymmetry simply as a familiar example
to illustrate the possibility of new types of interactions that can induce a coupling of the ultralight scalar
to ordinary matter.
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FIG. 3: DM-induced coupling of φ to SM fermions at one loop in the presence of additional squark
and slepton like degrees of freedom.

cancel to produce a much smaller coupling. However, away from this special region of

parameter space, each contribution will be roughly no larger in magnitude than gf itself (as

already discussed following Eq.(54)). In this generic case, we are able to obtain expectations

for the size of Eötvös parameters in our illustrative minimal WIMP dark sector models, for

a given value of β, from the two-loop gauge contribution. We will consider the contribution

of H − S mixing to gf in the next section. We note that the contributions from the SU(2)L

gauge bosons are generically an order of magnitude larger than those from the hypercharge

gauge bosons due to the relative sizes of their couplings [leading to the additional factor

of 1/16 in the second term of Eq. (60)]. Consequently, for purposes of making order-of-

magnitude estimates, we may employ the expressions for ηS in the presence of universal

couplings given in Eqs. (29) and (36) with

ḡ →
(αem

π

)2 mp

Mχ
gχξ̂χ . (62)

Expressing gχξ̂χ in terms of β we then obtain

ηDM

β2
>∼

(
7

9

) (α

π

)2
∣∣∣∣∣
(Z1

A1
− Z2

A2

){ me

mN
+

∑

q

mq

mN
(xq,p − xq,n)

}
∣∣∣∣∣ (63)

ηE

β2
>∼

(
7

9

) (α

π

)4
(

v

mN

) ∣∣∣∣∣
(Z1

A1
− Z2

A2

){ me

mN
+

∑

q

mq

mN
(xq,p − xq,n)

}
∣∣∣∣∣ (64)

×
[

gh(Np + Nn) + (me/v)Ne

(Np + Nn) + (me/mN)Ne

]
.

Numerically the bounds in Eqs. (63) and (64) are (for Be and Ti laboratory samples with

|Z1/A1 − Z2/A2| % 1/72)

ηDM

β2
>∼ 10−10,

ηE

β2
>∼ 10−16, (65)

could give bigger effects

• If a much larger effect is seen in Eotvos experiments, it would 
indicate the possibility of a non-minimal DM model or a large 
mixing ultralight-scalar-Higgs mixing.

• One loop induced WEP violating 
coupling in a non-minmal DM 
model.
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +

δ1

2
H†HS +

δ2

2
H†HS2

−
(δ1µ2

h

λ

)
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)

Ultralight-Scalar-Higgs Mixing I

• All renormalizable interactions of the light scalar with the SM is 
given by

12

Using similar methods to those employed to determine gA and ignoring small difference

between the neutron and proton coupling, one has[67–69]

gh ! 1.71× 10−3 . (35)

The resulting expression for the Earth’s charge-to-mass ratio in this case is

ξ̂E

( q

µ

)

E

∣∣∣∣∣
univ

! ḡ

(
v

m2
N

)
gh(Np + Nn) + (me/v)Ne

(Np + Nn) + (me/mN)Ne
! 0.0017 ḡ

(
v

m2
N

)
. (36)

The number of protons, neutrons, and electrons are Np ! 1.9 × 1051, Nn ! 2.0 × 1051, and

Ne ! 1.9× 1051 respectively. We will make use of Eq. (36) in what follows.

IV. LIGHT SCALAR COUPLING TO THE STANDARD MODEL

We now give a model-independent discussion of the coupling of ordinary matter to the

ultralight singlet scalar that mediates the long range force. In doing so, we will lay the

groundwork for calculating the parameters gf (f = q, Q, "), cg, and cγ of Eq. (15) and

Eq.(16) or equivalently the parameters ζk and κ in Eqs. (23) and (27). In general there

are two mechanisms for a singlet scalar to couple to the SM fermions and gauge bosons.

The first mechanism involves mixing between the ultralight scalar and the Higgs, which

allows the ultralight scalar to couple to the SM fermions and gauge bosons. The second

mechanism entails a coupling of the ultralight scalar to the SM through higher-dimension

(non-renormalizable) operators. We discuss these two mechanisms in this section and estab-

lish notation. We also address the need for fine-tuning of the ultralight scalar mass when

its interactions with the SM are non-negligible, looking ahead to a similar issue when we

consider its coupling to DM.

A. Coupling to the Higgs Sector

We assume that the mediator of the dark force carries no SM charges and that it can be

described by a gauge singlet S. There exist no renormalizable couplings of such a singlet

scalar to the SM fermions or gauge bosons, but it can couple to the SM Higgs doublet

with operators of mass dimension n ≤ 4. After electroweak symmetry breaking, the n = 3

interaction H†HS will generate mixing between S and the neutral component of the Higgs

doublet, h. We will identify the ultralight force-carrying scalar φ with the lighter mass

eigenstate, and the heavier eigenstate with the physical Higgs boson. The Lagrangian for

the singlet S including its renormalizable and super-renormalizable interactions is given by

L =
1

2
∂µS∂µS − V (H, S) , (37)

• The potential is given by
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +

δ1

2
H†HS +

δ2

2
H†HS2

−
(δ1µ2

h

λ

)
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)
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FIG. 1: Interaction of S with SM fermions by mixing with the Higgs via the operator SH†H. Here,
“X” denotes the vacuum expectation value of the Higgs doublet.

The scalar φ couples to the SM fermions through its Higgs component, giving rise to the

couplings gf , where f denotes any of the light quarks q = u, d, s, charged leptons " = e, µ, τ ,

or heavy quarks Q = c, b, t. One has

gf = − sin θ
mp

mf

mf

v
= − sin θ

mp

v
, (46)

where the extra factor of mp/mf after the first equality is included to be consistent with the

convention in Eq. (15). This process is depicted in Fig. 1. We see that in this mechanism the

coupling of φ to ordinary matter is proportional to sin θ, with the constant of proportionality

given entirely in terms of known quantities. The mixing angle θ will also receive corrections

at the loop level and in the rest of the analysis we assume that θ is the renormalized mixing

angle.

For later use, we note that in the limit that µh " mh # µS corresponding to a small

mixing angle θ, we can write

m2
φ " µ2

S −
µ4

hS

4m2
h

. (47)

The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.

Ultralight-Scalar-Higgs Mixing II
• After EWSB, the quadratic terms in the potential are:

• After diagonalizing the mass matrix the ultralight scalar is

• The ultralight scalar mass is given by
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +

δ1

2
H†HS +

δ2

2
H†HS2

−
(δ1µ2

h

λ

)
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +
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(δ1µ2
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S +
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S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45),
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FIG. 1: Interaction of S with SM fermions by mixing with the Higgs via the operator SH†H. Here,
“X” denotes the vacuum expectation value of the Higgs doublet.

The scalar φ couples to the SM fermions through its Higgs component, giving rise to the

couplings gf , where f denotes any of the light quarks q = u, d, s, charged leptons " = e, µ, τ ,

or heavy quarks Q = c, b, t. One has

gf = − sin θ
mp

mf

mf

v
= − sin θ

mp

v
, (46)

where the extra factor of mp/mf after the first equality is included to be consistent with the

convention in Eq. (15). This process is depicted in Fig. 1. We see that in this mechanism the

coupling of φ to ordinary matter is proportional to sin θ, with the constant of proportionality

given entirely in terms of known quantities. The mixing angle θ will also receive corrections

at the loop level and in the rest of the analysis we assume that θ is the renormalized mixing

angle.

For later use, we note that in the limit that µh " mh # µS corresponding to a small

mixing angle θ, we can write

m2
φ " µ2

S −
µ4

hS

4m2
h

. (47)

The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.
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FIG. 1: Interaction of S with SM fermions by mixing with the Higgs via the operator SH†H. Here,
“X” denotes the vacuum expectation value of the Higgs doublet.

The scalar φ couples to the SM fermions through its Higgs component, giving rise to the

couplings gf , where f denotes any of the light quarks q = u, d, s, charged leptons " = e, µ, τ ,

or heavy quarks Q = c, b, t. One has

gf = − sin θ
mp

mf

mf

v
= − sin θ

mp

v
, (46)

where the extra factor of mp/mf after the first equality is included to be consistent with the

convention in Eq. (15). This process is depicted in Fig. 1. We see that in this mechanism the

coupling of φ to ordinary matter is proportional to sin θ, with the constant of proportionality

given entirely in terms of known quantities. The mixing angle θ will also receive corrections

at the loop level and in the rest of the analysis we assume that θ is the renormalized mixing

angle.

For later use, we note that in the limit that µh " mh # µS corresponding to a small

mixing angle θ, we can write

m2
φ " µ2

S −
µ4

hS

4m2
h

. (47)

The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.

Must be restricted in 
parameter space to 
maintain small mass

Has to be large enough
to give an observable 

dark force

Dark Force Parameter Space
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The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.

• The ultralight scalar is very light:

• Parameter space for observable dark force is restricted:

• In other regions of parameter space there will be no 
observable dark force.
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FIG. 5: Direct detection process for the scalar singlet and triplet χ via t-channel Higgs exchange
with a nucleon. The magnitude of the detection rate is determined by the strength of the coupling
a2. If χ couples to the ultralight scalar φ, the size of a2 and thus the detection rate is bound by
WEP violation constraints.

in non-minimal DM models; for example a one loop coupling of φ to ordinary matter (see

Fig. 3) in the presence of additional squark degrees of freedom.

VI. WEP TESTS, DIRECT DETECTION, AND HIGGS BOSON DECAYS

As observed in Ref. [36], the presence of a non-vanishing β of astrophysically interesting

magnitude, together with present limits on ηE,DM can imply upper bounds on the size of

DM-nucleus cross sections relevant for direct detection experiments. Here we analyze these

bounds in detail for the illustrative cases of scalar DM scenarios and argue that upper

bounds on the DM-nucleus cross sections are less stringent than obtained in Ref. [36]. We

further comment on the analysis of Ref. [36] at the end of section VII. We also consider the

implications of a dark force for the DM relic density and derive corresponding constraints.

Finally, using a light scalar triplet, as part of a multicomponent DM scenario, we show

how the presence of a non-vanishing β – together with experimental limits on ηE,DM – can

preclude observable shifts in the rate for the Higgs boson to decay to two photons as one

might otherwise expect.

To include the full set of possible renormalizable interactions between the DM, SM fields,

and ultralight scalar, we expand the scalar potential of Eq. (38), imposing the Zχ
2 (χ→ −χ)

symmetry need to prevent DM decays:

V (H,S, χ) = V (H, S) +
1

2
M2

0 χ2 +
λχ

4
χ4 + a2H

†Hχ2 + gχχ2S + λχsχ
2S2 . (67)

For the scalar singlet case, χ is a real field, while for the real triplet with components χ0

and χ±, one has [72]

χ2 =
(
χ0

)2
+ 2χ+χ− . (68)
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with a nucleon. The magnitude of the detection rate is determined by the strength of the coupling
a2. If χ couples to the ultralight scalar φ, the size of a2 and thus the detection rate is bound by
WEP violation constraints.

in non-minimal DM models; for example a one loop coupling of φ to ordinary matter (see

Fig. 3) in the presence of additional squark degrees of freedom.

VI. WEP TESTS, DIRECT DETECTION, AND HIGGS BOSON DECAYS

As observed in Ref. [36], the presence of a non-vanishing β of astrophysically interesting

magnitude, together with present limits on ηE,DM can imply upper bounds on the size of

DM-nucleus cross sections relevant for direct detection experiments. Here we analyze these

bounds in detail for the illustrative cases of scalar DM scenarios and argue that upper

bounds on the DM-nucleus cross sections are less stringent than obtained in Ref. [36]. We

further comment on the analysis of Ref. [36] at the end of section VII. We also consider the

implications of a dark force for the DM relic density and derive corresponding constraints.

Finally, using a light scalar triplet, as part of a multicomponent DM scenario, we show

how the presence of a non-vanishing β – together with experimental limits on ηE,DM – can

preclude observable shifts in the rate for the Higgs boson to decay to two photons as one

might otherwise expect.

To include the full set of possible renormalizable interactions between the DM, SM fields,

and ultralight scalar, we expand the scalar potential of Eq. (38), imposing the Zχ
2 (χ→ −χ)

symmetry need to prevent DM decays:

V (H,S, χ) = V (H, S) +
1

2
M2

0 χ2 +
λχ

4
χ4 + a2H

†Hχ2 + gχχ2S + λχsχ
2S2 . (67)

For the scalar singlet case, χ is a real field, while for the real triplet with components χ0

and χ±, one has [72]

χ2 =
(
χ0

)2
+ 2χ+χ− . (68)

• Parameter a2 determines the direct detection cross-
section and the relic density. 
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FIG. 6: Annihilation diagrams for the scalar singlet DM. For the scalar triplet DM one has in
addition the usual annihilation diagrams mediated by gauge interactions. If the gauge interactions
of the triplet dominate the dynamics of annihilation, a DM mass of around 2 TeV is needed to
saturate the relic density.

ultralight scalar. Furthermore, as already mentioned and discussed in more detail in section

VII, the finite renormalized parameter µ2
S must be further restricted in parameter space in

order to maintain mφ < 10−25 eV along with a dark force large enough to be observed. We

implicitly assume that we are in this region of parameter space, conducive to the observation

of a long range dark force. We will discuss the implications of other regions in parameter

space in section VII.

We begin by observing that in addition to the direct coupling δ1 of S to the Higgs via

the operator H†HS, a DM-induced φ-matter coupling arises from the one-loop contribution

to this operator through the second diagram of Fig. 7. After renormalization in the MS

scheme, the resulting finite coefficient of his operator is

δren
1 = δ1(µ) + κ

gχa2

4π2
ln

M2
0

µ2
, (72)

where

κ =

{
1, singlet χ,

3, triplet χ,
(73)

The factor of κ = 3 appears in the case of the triplet χ due to the three components

of the triplet traversing the loop in the second diagram of Fig. 7. Here δ1(µ) is the finite,

scale-dependent coupling counterterm whose numerical value is a priori unknown and whose

presence is required to ensure renormalization group (RG) invariance of the physical prop-

erties of the φ and h. Note that the mass parameter M2
0 (taken here to be positive) rather

than M2
χ appears in the argument of the logarithm since we are working in the theory before

electroweak symmetry-breaking.

We also observe that the χ2S interaction will generate a contribution to the mass param-

eter µ2
S as it yields the non-vanishing contribution to the S self energy:

Σ(p2)χ2S = −
g2

χ

16π2

[
1

ε
− γ + ln 4π + ln µ2 − F0(M

2
0 , M2

0 , p2)

]
. (74)

SI direct detection
cross-section

Annihilation 
diagrams
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +

δ1

2
H†HS +

δ2

2
H†HS2

−
(δ1µ2

h

λ

)
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)
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h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45),

1

F = mi a (1)

Fg = mg
!!Φg (2)

Fg = mi

(
mg

mi

)
!!Φg (3)

mi "= mg (4)

Lf =
gf

mp
mf f̄fφ (5)

θµ
µ =

β3(nf )

2g3
Ga

µνG
µν
a +

βe(nf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

Q

mQQ̄Q +
∑

"

m"%̄% + mτ τ̄ τ (6)

θµ
µ =

β3(ñf )

2g3
Ga

µνG
µν
a +

βe(ñf )

2g3
FµνF

µν +
∑

q

mq q̄q +
∑

"

m"%̄% (7)

10× MICROSCOPE (8)

sin θ $ µ2
hS

µ2
h

% 1 (9)

δV (H, S) = C2

(
H†H

) (
H†H

)
S (10)

Ultralight-Scalar Higgs Mixing I
• Recall quadratic terms in potential that induce mixing:

• Recall quadratic terms in potential that induce mixing:

• The size of this mixing angle is constrained by WEP tests.
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We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)

• A dark force will give contributions to this mixing angle which will 
also be constrained.
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“X” denotes the vacuum expectation value of the Higgs doublet.

The scalar φ couples to the SM fermions through its Higgs component, giving rise to the

couplings gf , where f denotes any of the light quarks q = u, d, s, charged leptons " = e, µ, τ ,

or heavy quarks Q = c, b, t. One has

gf = − sin θ
mp

mf

mf

v
= − sin θ

mp

v
, (46)

where the extra factor of mp/mf after the first equality is included to be consistent with the

convention in Eq. (15). This process is depicted in Fig. 1. We see that in this mechanism the

coupling of φ to ordinary matter is proportional to sin θ, with the constant of proportionality

given entirely in terms of known quantities. The mixing angle θ will also receive corrections

at the loop level and in the rest of the analysis we assume that θ is the renormalized mixing

angle.

For later use, we note that in the limit that µh " mh # µS corresponding to a small

mixing angle θ, we can write

m2
φ " µ2

S −
µ4

hS

4m2
h

. (47)

The existence of an ultralight scalar that can mediate a dark force over intergalactic distances

requires mφ < 10−25 eV. In addition to the usual fine tuning of the parameters µS and µhS

against radiative corrections sensitive to the cutoff (see section IV C), the finite renormalized

parameters µS and µhS are restricted in parameter space to satisfy the condition mφ < 10−25

eV in Eq.(47). As we will discuss in section VII in more detail, this gives rise to three types

of regions in parameter space. In the first region, µS and µhS are both individually small in

which case there will be no observable dark force. In the second region, µS and µhS are large

enough to give rise to an observable dark force but cancel against each other in Eq.(47) to

maintain an ultralight mass. In the third region, as will become clear in later sections, µS

and µhS are again individually small as in the first region, but each is determined by a sum of

much larger terms that cancel among each other. The second region is phenomenologically

the most interesting and is the focus of this paper.
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their implications will be discussed in section VII. To that end, consider the third diagram

of Fig. 7, which generates a contribution to the dimension five operator

C2 (H†H)(H†H)S, (75)

where in the coefficient C2 is finite and given by

C2 = κ
a2

2

8π2

gχ

M2
0

. (76)

Since this contribution is finite there is no counterterm involved in determing the value

of C2. After electroweak symmetry breaking this term will generate a contribution to the

off-diagonal elements in the h-S mass-squared matrix

µ2
hS = 2C2v

3 + δ1v, (77)

leading to an h-S mixing angle θ

tan θ =
x

1 +
√

1 + x2
, x =

µ2
hS

µ2
h

=
2C2v3 + δ1v

m2
h

, (78)

which was defined in Eqs. (42) and (45). Since this mixing implies a coupling of φ ≈ S

to matter, the loop-induced coefficient C2 will contribute to the Eötvös parameters ηDM,E .

Given the dependence of C2 on a2 and the absence of any fine-tuning in this parameter, we

obtain an upper bound on σχN for non-vanishing β as described below.

Before doing so, we observe the contribution to µ2
hS from full series of diagrams appearing

in Fig. 7 (plus the tadpole graph generated by the χ2S interaction) can be evaluated in a

straightforward way as outlined in the appendix B. After renormalization, the result is

µ2
hS = v

[
δ1(µ) + κ

gχa2

4π2

(
ln

M2
χ

µ2
− 1

)]
+ κ

gχa2
2

4π2

v3

M2
χ

. (79)

Apart from an overall constant in the first term and the replacement M0 → Mχ, this

expression is the same as we obtained using the contributions to the H†HS and (H†H)2S

operators from the second and third diagrams of Fig. 7. The expression in Eq. (79) has

the advantage that it depends on the tree-level χ mass after electroweak symmetry breaking

rather than on the parameter M0 as in the effective operator analysis. We will henceforth use

the finite, second term in Eq. (79) to derive an upper bound on Higgs exchange contributions

to σχN .

To that end, we write the mixing angle as

sin θ ≈ tan θ ≈ x ≈ κ
a2

2

4π2

gχv3

M2
χm2

h

+
δren
1 v

m2
h

= κ
a2

2

π3/2

v3

MP m2
h

β +
δren
1 v

m2
h

, (80)

where δren
1 denotes the quantity in square brackets in Eq. (79). The mixing angle sin θ

also characterizes the universal H-S mixing contribution to the Eötvös parameters ηE,DM .
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where the potential is
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4
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We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)
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(
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) (
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• Recall the potential before EWSB:

• The mixing mass term after EWSB is given by:

• If we add a dimension five operator:

• The mixing angle receives an additional contribution.

Ultralight-Scalar Higgs Mixing II
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FIG. 7: One loop diagrams which which contribute to the effective potential V (H,S) with one
external S field. After electroweak symmetry breaking the effective potential contributes to Higgs-
ultralight-scalar mixing. The first two diagrams are UV divergent and contribute to the renormal-
ization of the S-tadpole and the coupling δ1 respectively. The remaining diagrams mix into higher
dimensional operators and give a finite contribution to Higgs-ultralight-scalar mixing as explained
in appendix B.

As with the case of the logarithmically divergent Higgs contribution Σ(p2)H†HS of Eq. (55),

the DM-loop contribution to the self energy requires a corresponding µ-dependence in δµ2
S(µ)

to maintain RG invariance of the pole mass that governs the range of the dark force. Large

DM-loop contributions to µ2
S can be minimized at all scales by taking gχ to be sufficiently

small: gχ
<∼ 4πmpole

S . Doing so, however, would preclude a value of β of astrophysically

relevant strength. Alternatively, one may allow for a much larger, phenomenologically in-

teresting magntiude for gχ and maintain a small µ2
S by invoking fine-tuning between the

one-loop contribution of Eq. (74) and δm2(µ).

A similar set of alternatives applies to the renormalized coupling δren
1 . One could require

that the product gχa2 be sufficiently small in magnitude, with a correspondingly tiny δ1(µ),

so that the induced H-S mixing is consistent with the present bounds on ηE, DM. To obtain

a large β, one must then take a2 to be sufficiently small, implying an upper bound on the

Higgs exchange contribution to the DM-nucleus cross section via Eq. (71). This choice is

essentially the strategy followed in Ref. [36] to obtain upper bounds on σχN . However, as

seen in Eq.(41), δ1 contributes to µhS and thus to the mass mφ via Eq.(47). The condition of

mφ < 10−25 eV gives a much stronger naturalness constraint on a2 forcing it to be essentially

zero for a non-zero dark force. The constraints from ηE,DM are thus not relevant in such a

naturalness analysis. We will also discuss this in more detail in section VII.

In what follows, we will instead allow for fine tuning in both δ1 since we have already

allowed fine tuning for µS. We show that assuming µ2
S is restricted in parameter space to

satisfy mφ < 10−25eV for any value of µ2
hS in Eq.(47), we can obtain upper bounds on σχN

by analyzing finite, one-loop contributions to µ2
hS, from higher dimensional operators after

EWSB, and their implications for WEP tests. The other regions in parameter space and
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by analyzing finite, one-loop contributions to µ2
hS, from higher dimensional operators after

EWSB, and their implications for WEP tests. The other regions in parameter space and
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their implications will be discussed in section VII. To that end, consider the third diagram

of Fig. 7, which generates a contribution to the dimension five operator

C2 (H†H)(H†H)S, (75)

where in the coefficient C2 is finite and given by

C2 = κ
a2

2

8π2

gχ

M2
0

. (76)

Since this contribution is finite there is no counterterm involved in determing the value

of C2. After electroweak symmetry breaking this term will generate a contribution to the

off-diagonal elements in the h-S mass-squared matrix

µ2
hS = 2C2v

3 + δ1v, (77)

leading to an h-S mixing angle θ

tan θ =
x

1 +
√

1 + x2
, x =

µ2
hS

µ2
h

=
2C2v3 + δ1v

m2
h

, (78)

which was defined in Eqs. (42) and (45). Since this mixing implies a coupling of φ ≈ S

to matter, the loop-induced coefficient C2 will contribute to the Eötvös parameters ηDM,E .

Given the dependence of C2 on a2 and the absence of any fine-tuning in this parameter, we

obtain an upper bound on σχN for non-vanishing β as described below.

Before doing so, we observe the contribution to µ2
hS from full series of diagrams appearing

in Fig. 7 (plus the tadpole graph generated by the χ2S interaction) can be evaluated in a

straightforward way as outlined in the appendix B. After renormalization, the result is

µ2
hS = v

[
δ1(µ) + κ

gχa2

4π2

(
ln

M2
χ

µ2
− 1

)]
+ κ

gχa2
2

4π2

v3

M2
χ

. (79)

Apart from an overall constant in the first term and the replacement M0 → Mχ, this

expression is the same as we obtained using the contributions to the H†HS and (H†H)2S

operators from the second and third diagrams of Fig. 7. The expression in Eq. (79) has

the advantage that it depends on the tree-level χ mass after electroweak symmetry breaking

rather than on the parameter M0 as in the effective operator analysis. We will henceforth use

the finite, second term in Eq. (79) to derive an upper bound on Higgs exchange contributions

to σχN .

To that end, we write the mixing angle as

sin θ ≈ tan θ ≈ x ≈ κ
a2

2

4π2

gχv3

M2
χm2

h

+
δren
1 v

m2
h

= κ
a2

2

π3/2

v3

MP m2
h

β +
δren
1 v

m2
h

, (80)

where δren
1 denotes the quantity in square brackets in Eq. (79). The mixing angle sin θ

also characterizes the universal H-S mixing contribution to the Eötvös parameters ηE,DM .
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where the potential is

V (H, S) = −µ2
hH

†H +
λ

4
(H†H)2 +

δ1

2
H†HS +

δ2

2
H†HS2

−
(δ1µ2

h

λ

)
S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4. (38)

We have shifted the scalar S so that it has no tree level vacuum expectation value without

loss of generality. We follow the notation of Ref. [57, 70], which explored the presence of

such a singlet scalar in the context of collider phenomenology. The parameters δ1,2 may arise

from a more fundamental theory of which the S is a residual, low-energy degree of freedom.

As we discuss below, they may also receive contributions from DM loops if the DM particles

couple to the both H and S.

After electroweak symmetry breaking the H†HS interaction induces mixing between the

Higgs boson h and the scalar S. In unitary gauge the neutral component of the Higgs

doublet H is given by

H0 =
v + h√

2
, v =

√
2µ2

h

λ
, (39)

and the mass terms in the potential are

Vmass =
1

2
(µ2

h h2 + µ2
S S2 + µ2

hS hS), (40)

where

µ2
h =

λv2

2
, µ2

S = κ2 +
δ2v2

2
, µ2

hS = δ1v. (41)

The mass eigenstates h± in terms of S and h can be written in terms of a mixing angle θ as

h− = S cos θ − h sin θ, h+ = S sin θ + h cos θ, tan θ =
x

1 +
√

1 + x2
, (42)

with corresponding masses

m2
± =

µ2
h + µ2

S

2
± µ2

h − µ2
S

2

√
1 + x2, (43)

and we have defined

x ≡ µ2
hS

µ2
h − µ2

S

. (44)

We assume that m2
− $ m2

+, so that the physical Higgs boson and light scalar are h+ and

h− respectively. The light scalar h− can couple to quarks and charged leptons through its

mixing with the Higgs as shown in Eq. (42). We identify the light scalar that mediates the

long range force as

φ ≡ h−, mφ = m−. (45)
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FIG. 7: One loop diagrams which which contribute to the effective potential V (H,S) with one
external S field. After electroweak symmetry breaking the effective potential contributes to Higgs-
ultralight-scalar mixing. The first two diagrams are UV divergent and contribute to the renormal-
ization of the S-tadpole and the coupling δ1 respectively. The remaining diagrams mix into higher
dimensional operators and give a finite contribution to Higgs-ultralight-scalar mixing as explained
in appendix B.

As with the case of the logarithmically divergent Higgs contribution Σ(p2)H†HS of Eq. (55),

the DM-loop contribution to the self energy requires a corresponding µ-dependence in δµ2
S(µ)

to maintain RG invariance of the pole mass that governs the range of the dark force. Large

DM-loop contributions to µ2
S can be minimized at all scales by taking gχ to be sufficiently

small: gχ
<∼ 4πmpole

S . Doing so, however, would preclude a value of β of astrophysically

relevant strength. Alternatively, one may allow for a much larger, phenomenologically in-

teresting magntiude for gχ and maintain a small µ2
S by invoking fine-tuning between the

one-loop contribution of Eq. (74) and δm2(µ).

A similar set of alternatives applies to the renormalized coupling δren
1 . One could require

that the product gχa2 be sufficiently small in magnitude, with a correspondingly tiny δ1(µ),

so that the induced H-S mixing is consistent with the present bounds on ηE, DM. To obtain

a large β, one must then take a2 to be sufficiently small, implying an upper bound on the

Higgs exchange contribution to the DM-nucleus cross section via Eq. (71). This choice is

essentially the strategy followed in Ref. [36] to obtain upper bounds on σχN . However, as

seen in Eq.(41), δ1 contributes to µhS and thus to the mass mφ via Eq.(47). The condition of

mφ < 10−25 eV gives a much stronger naturalness constraint on a2 forcing it to be essentially

zero for a non-zero dark force. The constraints from ηE,DM are thus not relevant in such a

naturalness analysis. We will also discuss this in more detail in section VII.

In what follows, we will instead allow for fine tuning in both δ1 since we have already

allowed fine tuning for µS. We show that assuming µ2
S is restricted in parameter space to

satisfy mφ < 10−25eV for any value of µ2
hS in Eq.(47), we can obtain upper bounds on σχN

by analyzing finite, one-loop contributions to µ2
hS, from higher dimensional operators after

EWSB, and their implications for WEP tests. The other regions in parameter space and

43

Appendix B: Effective Potential for Higgs-Ultralight-Scalar Mixing

As discussed in section VI, ordinary matter can couple to the ultralight scalar φ, which

mediates a long range WEP violating force, via its mixing with the Higgs. Here we show

the computation of the effective potential which generates this mixing after electroweak

symmetry breaking. This effective potential is generated at one loop via the sum of diagrams

shown in Fig. 7 for the scalar singlet χ and real scalar triplet χ models discussed in section

VI. Working in unitary gauge where H = h/
√

2 and in d-dimensions, one can write the sum

of all diagrams in Fig. 7 as

− iV S
eff(S, h) = −iκgχS

∫

E

ddk

(2π)d

∞∑

n=0

(a2 h2)n

(k2 + M2
0 )n+1

= −iκgχS

∫

E

ddk

(2π)d

1

(k2 + M2
0 + a2h2)

= κ
igχS

16π2
(M2

0 + a2h
2)

[
1

ε
− γE + ln 4π + 1− ln

(
M2

0 + a2h2

µ2

)]
, (B1)

where the first line is obtained after performing a Wick rotation to Euclidean momentum

space. The superscript in V S
eff(S, h) denotes that it is only the part of the effective potential

linear in S. We see from the above result that the coefficient of the S and Sh2 operators are

UV divergent. These divergences are understood from the need to renormalize the tadpole

graph of S and the renormalizable coupling δ1 of Eq.(38), corresponding to the first two

diagrapms in Fig. 7. The remaining diagrams mix into non-renormalizable operators and

are finite. The counterterms needed to cancel the UV divergences are

iδVeff(S, h) = S

[
κ
gχM2

0

16π2

(
1

ε
− γE + ln 4π

)
+ b̂1(µ)

]
+ Sh2

[
κ

gχa2

16π2

(
1

ε
− γE + ln 4π

)
+

δ̂1(µ)

4

]
,

(B2)

where b̂1(µ) and δ̂1(µ) are scheme dependent finite quantities.

The quadratic terms in the potential is given by

Vquad =
1

2
(µ2

hh
2 + µ2

SS2 + µ2
hShS), (B3)

as first shown in Eq.(40). As seen from Eqs.(76) and (80) the mixing angle for Higgs-

ultralight-scalar mixing is given by

sin θ # µ2
hS

µ2
h

# µ2
hS

m2
h
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As discussed in section VI, ordinary matter can couple to the ultralight scalar φ, which

mediates a long range WEP violating force, via its mixing with the Higgs. Here we show

the computation of the effective potential which generates this mixing after electroweak

symmetry breaking. This effective potential is generated at one loop via the sum of diagrams

shown in Fig. 7 for the scalar singlet χ and real scalar triplet χ models discussed in section
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where the first line is obtained after performing a Wick rotation to Euclidean momentum
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eff(S, h) denotes that it is only the part of the effective potential
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their implications will be discussed in section VII. To that end, consider the third diagram

of Fig. 7, which generates a contribution to the dimension five operator

C2 (H†H)(H†H)S, (75)

where in the coefficient C2 is finite and given by

C2 = κ
a2

2

8π2

gχ

M2
0

. (76)

Since this contribution is finite there is no counterterm involved in determing the value

of C2. After electroweak symmetry breaking this term will generate a contribution to the

off-diagonal elements in the h-S mass-squared matrix

µ2
hS = 2C2v

3 + δ1v, (77)

leading to an h-S mixing angle θ

tan θ =
x

1 +
√

1 + x2
, x =

µ2
hS

µ2
h

=
2C2v3 + δ1v

m2
h

, (78)

which was defined in Eqs. (42) and (45). Since this mixing implies a coupling of φ ≈ S

to matter, the loop-induced coefficient C2 will contribute to the Eötvös parameters ηDM,E .

Given the dependence of C2 on a2 and the absence of any fine-tuning in this parameter, we

obtain an upper bound on σχN for non-vanishing β as described below.

Before doing so, we observe the contribution to µ2
hS from full series of diagrams appearing

in Fig. 7 (plus the tadpole graph generated by the χ2S interaction) can be evaluated in a

straightforward way as outlined in the appendix B. After renormalization, the result is

µ2
hS = v

[
δ1(µ) + κ

gχa2

4π2

(
ln

M2
χ

µ2
− 1

)]
+ κ

gχa2
2

4π2

v3

M2
χ

. (79)

Apart from an overall constant in the first term and the replacement M0 → Mχ, this

expression is the same as we obtained using the contributions to the H†HS and (H†H)2S

operators from the second and third diagrams of Fig. 7. The expression in Eq. (79) has

the advantage that it depends on the tree-level χ mass after electroweak symmetry breaking

rather than on the parameter M0 as in the effective operator analysis. We will henceforth use

the finite, second term in Eq. (79) to derive an upper bound on Higgs exchange contributions

to σχN .

To that end, we write the mixing angle as

sin θ ≈ tan θ ≈ x ≈ κ
a2

2

4π2

gχv3

M2
χm2

h

+
δren
1 v

m2
h

= κ
a2

2

π3/2

v3

MP m2
h

β +
δren
1 v

m2
h

, (80)

where δren
1 denotes the quantity in square brackets in Eq. (79). The mixing angle sin θ

also characterizes the universal H-S mixing contribution to the Eötvös parameters ηE,DM .
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• Eotvos experiments and observation in cosmology and 
astrophysics implies constraints on a2.
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FIG. 8: Upper bound on a2 in the singlet (red-solid) and real triplet (black-dotted) scalar DM
models as a function of ηDM /β2 (left panel) and ηE/β2 (right panel). We have used mh = 120
GeV and assume β = 0.2 to discuss the resulting bounds on a2 from Eötvös experiments. In
the top left and right plots, the vertical black lines on the right correspond to the upper bounds
ηDM < 10−5 and ηE < 10−13 respectively. These vertical black lines will move to the left with
further improvements in Eötvös experiments as indicated by the left-pointing arrow in each plot.
The bottom left and right plots show the region closer to the expected future bounds, from the
MiniSTEP experiment, of ηDM < 10−10 and ηE < 10−18 respectively as indicated by the vertical
black line in each plot. We explore the implications of these bounds on a2 from Eötvös experiments
for specific observables in sections VI C and VI D.

We now require that the contribution from each term on the RHS of Eq. (80) to ηE,DM be

no larger than the experimental limits on these parameters. As discussed previously, the

different parametric dependence of each term and avoiding slices of parameter space with

unnatural cancellations between the two allows us to treat each one separately. Considering

only the first term proportional to a2
2, using Eqs. (29), and (36) with

ḡ → − sin θ
mN

v
(81)
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MiniSTEP experiment, of ηDM < 10−10 and ηE < 10−18 respectively as indicated by the vertical
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for specific observables in sections VI C and VI D.

We now require that the contribution from each term on the RHS of Eq. (80) to ηE,DM be

no larger than the experimental limits on these parameters. As discussed previously, the

different parametric dependence of each term and avoiding slices of parameter space with

unnatural cancellations between the two allows us to treat each one separately. Considering

only the first term proportional to a2
2, using Eqs. (29), and (36) with

ḡ → − sin θ
mN

v
(81)

Constraint on a2 from WEP tests

• WEP constraints on a2 in the presence of a dark force.
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FIG. 8: Upper bound on a2 in the singlet (red-solid) and real triplet (black-dotted) scalar DM
models as a function of ηDM /β2 (left panel) and ηE/β2 (right panel). We have used mh = 120
GeV and assume β = 0.2 to discuss the resulting bounds on a2 from Eötvös experiments. In
the top left and right plots, the vertical black lines on the right correspond to the upper bounds
ηDM < 10−5 and ηE < 10−13 respectively. These vertical black lines will move to the left with
further improvements in Eötvös experiments as indicated by the left-pointing arrow in each plot.
The bottom left and right plots show the region closer to the expected future bounds, from the
MiniSTEP experiment, of ηDM < 10−10 and ηE < 10−18 respectively as indicated by the vertical
black line in each plot. We explore the implications of these bounds on a2 from Eötvös experiments
for specific observables in sections VI C and VI D.

We now require that the contribution from each term on the RHS of Eq. (80) to ηE,DM be

no larger than the experimental limits on these parameters. As discussed previously, the

different parametric dependence of each term and avoiding slices of parameter space with

unnatural cancellations between the two allows us to treat each one separately. Considering

only the first term proportional to a2
2, using Eqs. (29), and (36) with

ḡ → − sin θ
mN

v
(81)

but with an invariant mass
√

s = 2mD, and h̃ → Xi is any possible decay mode of h̃. For a given
model, ΣiΓ

(

h̃ → Xi

)

is obtained by calculating the h width and then setting mh equal to 2mD.

The darkon-Higgs coupling λ for a given value of mD can now be inferred from the range of
〈σannvrel〉 values allowed by the ΩDh2 constraint, as in Fig. 2, once mh is specified. We show
in Fig. 3 the allowed ranges of λ corresponding to 10 GeV ≤ mD ≤ 100 GeV for representative
values of the Higgs-boson mass. We note that it is possible for λ to become larger than 1 when
mD decreases, which would upset the applicability of perturbative calculation. Consequently, we
display only the λ < 1 regions in this figure.

FIG. 3: Darkon-Higgs coupling λ in the SM+D as a function of darkon mass mD for Higgs mass values

mh = 120, 200, 350 GeV.

B. Effective Higgs-nucleon coupling

The detection of dark matter on the Earth is through the recoil of nuclei when a darkon hits
a nucleon target. This interaction occurs via the exchange of a Higgs boson between the darkon
and the nucleon N in the t-channel process DN → DN . Its cross-section then depends on not
only λ, but also the Higgs-nucleon coupling. Since the energy transferred in this elastic scattering
is very small, of order 100 keV, one can employ a chiral-Lagrangian approach to obtain the effective
Higgs-nucleon coupling. The Higgs-nucleon coupling has been studied previously [13, 14], and
here we reorganize the results for convenience in evaluating possible cancelation among different
contributions.

The Higgs-nucleon coupling depends on the underlying Yukawa interactions of the Higgs boson
with the quark degrees of freedom. The couplings of a Higgs boson H to quarks can be generically
written as

LqqH = −
∑

q

kq

v
mq q̄qH , (5)

where the sum runs over the six quark flavors, q = u, d, s, c, b, t. In the SM kq = 1 for all q’s,

5

23

a2

! !

h

N N

FIG. 5: Direct detection process for the scalar singlet and triplet χ via t-channel Higgs exchange
with a nucleon. The magnitude of the detection rate is determined by the strength of the coupling
a2. If χ couples to the ultralight scalar φ, the size of a2 and thus the detection rate is bound by
WEP violation constraints.

in non-minimal DM models; for example a one loop coupling of φ to ordinary matter (see

Fig. 3) in the presence of additional squark degrees of freedom.

VI. WEP TESTS, DIRECT DETECTION, AND HIGGS BOSON DECAYS

As observed in Ref. [36], the presence of a non-vanishing β of astrophysically interesting

magnitude, together with present limits on ηE,DM can imply upper bounds on the size of

DM-nucleus cross sections relevant for direct detection experiments. Here we analyze these

bounds in detail for the illustrative cases of scalar DM scenarios and argue that upper

bounds on the DM-nucleus cross sections are less stringent than obtained in Ref. [36]. We

further comment on the analysis of Ref. [36] at the end of section VII. We also consider the

implications of a dark force for the DM relic density and derive corresponding constraints.

Finally, using a light scalar triplet, as part of a multicomponent DM scenario, we show

how the presence of a non-vanishing β – together with experimental limits on ηE,DM – can

preclude observable shifts in the rate for the Higgs boson to decay to two photons as one

might otherwise expect.

To include the full set of possible renormalizable interactions between the DM, SM fields,

and ultralight scalar, we expand the scalar potential of Eq. (38), imposing the Zχ
2 (χ→ −χ)

symmetry need to prevent DM decays:

V (H,S, χ) = V (H, S) +
1

2
M2

0 χ2 +
λχ

4
χ4 + a2H

†Hχ2 + gχχ2S + λχsχ
2S2 . (67)

For the scalar singlet case, χ is a real field, while for the real triplet with components χ0

and χ±, one has [72]

χ2 =
(
χ0

)2
+ 2χ+χ− . (68)

24

We take M2
0 and a2 to be positive in order prevent a non-vanishing vev for χ and the oc-

currence of phenomenologically unacceptable cosmological domain walls. The experimental

constraints on this DM model, for gχ = 0, were recently explored in [57, 58].

After electroweak symmetry breaking, the H†Hχ2 term generates a contribution to the

DM mass:

M2
χ = M2

0 + a2v
2. (69)

Henceforth, we will take v = 246 GeV, M2
χ, a2, and the mass of the SM-like Higgs boson

(mh) as independent parameters. All of them govern the χ-nucleus cross section, whose

leading order amplitude is generated by t-channel Higgs exchange as in Fig. 5 and is given

by

M ! 2a2ghv

m2
h

N̄N , (70)

where we have neglected the t-dependence of the amplitude for simplicity. Note that since

the real triplet has zero hypercharge, the elastic DM-nucleus scattering has no contribution

form Z-boson exchange at tree level. The corresponding cross section is

σχN !
a2

2 g2
hv

2m2
N

π(Mχ + mN)2m4
h

, (71)

where, for simplicity, we have dropped the dependence on momentum transfer to the nucleus.

[Recall that gh ! 1.71×10−3 is the coupling of the Higgs to the nucleon as defined in Eq.(34)].

Note that the cross section decreases for increasing Mχ or decreasing a2. Note also that the

coupling a2, together with the masses Mχ and mh, control the χ relic density through the

annihilation diagrams of Fig. 6. For Mχ ∼ mh/2 for singlet DM or a light triplet in the

multicomponent DM scenario, the Higgs exchange contribution becomes large, requiring a

suppression of a2 in order to maintain the observed CDM relic density. In what follows, we

will generally avoid this regime.

A. WEP Tests and Ultralight-Scalar-Higgs Mixing

A relation between the Higgs-exchange contribution to σχN and ηE,DM arises for non-

vanishing β because the parameters a2, Mχ, and mh that enter the cross section also control

the strength of the DM-loop induced mixing between the Higgs boson and the ultralight

scalar. After electroweak symmetry-breaking, these loop effects generate contributions to

the mass-squared parameters µ2
hs and µ2

S. The parameter µ2
S contributes only to the mass

m2
φ and µ2

hS contributes to sin θ and m2
φ. As with the contributions from Higgs loops to µ2

S

discussed earlier in Section IVC, the DM loop contributions to this mass-squared parameter

will also require the introduction of fine tuning to maintain a sufficiently small mass for the

Relic Density
Constraint

• Large regions in the parameter space of scalar singlet DM models 
with a dark force are ruled out by relic density requirements
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a2relic Mχ(GeV) Expectation forηE
β2 β = 0.2

0.15 20 4× 10−10 Excluded
0.10 40 7× 10−11 Excluded
0.02 100 1× 10−13 Allowed

TABLE II: The first two columns give sample points in the (a2relic, Mχ) space of scalar singlet DM
models with a Higgs mass of mh = 120 GeV. The third column gives an expectation for ηE/β2

from Eq.(83). The fourth column uses the current bound of ηE < 10−13 to determine whether a
dark force of β = 0.2 is ruled out. One can equivalently compare the different values of a2relic with
the WEP bound on a2, at β = 0.2, in top right graph of Fig. 8 at the far right verticle line.

of MiniSTEP [56] which are expected to reach a sensitivity of ηE < 10−18, could require

bound of a2
<∼ 0.0025 for β = 0.2 as seen in the bottom right graph of Fig. 8. In this case,

one can rule out β < 0.2 even for DM masses above 60 GeV which require smaller values

of a2 in order to get the right relic density. As seen in Fig. 3 of [58], larger values of the

Higgs mass typically imply much larger values of a2. For example, a Higgs mass of 200 GeV

implies a range of a2 of ∼ 0.42− 0.05 for the DM mass range of 0− 80 GeV thus ruling out

the possibility of β > 0.2 in order to prevent an over-density of DM. Thus, the bound on a2

from WEP constraints is a powerful probe of a dark force in the scalar singlet DM model.

For the scalar real triplet DM model, the DM relic density is determined by gauge inter-

actions in addition to the parameter a2. In this case, the WEP bound on a2 shown in Fig. 8

does not necessarily rule out a dark force since the correct relic density can still be obtained

from annihilation diagrams that proceed via gauge interactions that are independent of a2.

For example, the bound of a2 < 0.02 implied by ηE < 10−13 for β = 0.2, as shown in the

top right graph of Fig. 8, implies that the annihilation rate will be dominated by gauge

interactions.

C. WEP Tests and DM-Nucleus Cross-Sections

The current bounds on a2 for a non-zero β in the dark sector, will also lead to upper

bounds on the Higgs exchange contributions to the direct detection cross-section. From Eq.

(71), the parameter a2 can be written in terms of the tree level cross-section σχN , which

proceeds via a t-channel higgs exchange, as

a2
2 =

[
π(Mχ + mN)2m4

h

g2
hv

2m2
N

]
σχN

∣∣∣∣∣
Higgs exch

. (84)

(He,T.Li,X.Li,Tandean,Tsai)

(Barger,Langacker,McCaskey,Ramsey-Musolf,Shaughnessy; 
He,T.Li,X.Li,Tandean,Tsai)
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We take M2
0 and a2 to be positive in order prevent a non-vanishing vev for χ and the oc-

currence of phenomenologically unacceptable cosmological domain walls. The experimental

constraints on this DM model, for gχ = 0, were recently explored in [57, 58].

After electroweak symmetry breaking, the H†Hχ2 term generates a contribution to the

DM mass:

M2
χ = M2

0 + a2v
2. (69)

Henceforth, we will take v = 246 GeV, M2
χ, a2, and the mass of the SM-like Higgs boson

(mh) as independent parameters. All of them govern the χ-nucleus cross section, whose

leading order amplitude is generated by t-channel Higgs exchange as in Fig. 5 and is given

by

M ! 2a2ghv

m2
h

N̄N , (70)

where we have neglected the t-dependence of the amplitude for simplicity. Note that since

the real triplet has zero hypercharge, the elastic DM-nucleus scattering has no contribution

form Z-boson exchange at tree level. The corresponding cross section is

σχN !
a2

2 g2
hv

2m2
N

π(Mχ + mN)2m4
h

, (71)

where, for simplicity, we have dropped the dependence on momentum transfer to the nucleus.

[Recall that gh ! 1.71×10−3 is the coupling of the Higgs to the nucleon as defined in Eq.(34)].

Note that the cross section decreases for increasing Mχ or decreasing a2. Note also that the

coupling a2, together with the masses Mχ and mh, control the χ relic density through the

annihilation diagrams of Fig. 6. For Mχ ∼ mh/2 for singlet DM or a light triplet in the

multicomponent DM scenario, the Higgs exchange contribution becomes large, requiring a

suppression of a2 in order to maintain the observed CDM relic density. In what follows, we

will generally avoid this regime.

A. WEP Tests and Ultralight-Scalar-Higgs Mixing

A relation between the Higgs-exchange contribution to σχN and ηE,DM arises for non-

vanishing β because the parameters a2, Mχ, and mh that enter the cross section also control

the strength of the DM-loop induced mixing between the Higgs boson and the ultralight

scalar. After electroweak symmetry-breaking, these loop effects generate contributions to

the mass-squared parameters µ2
hs and µ2

S. The parameter µ2
S contributes only to the mass

m2
φ and µ2

hS contributes to sin θ and m2
φ. As with the contributions from Higgs loops to µ2

S

discussed earlier in Section IV C, the DM loop contributions to this mass-squared parameter

will also require the introduction of fine tuning to maintain a sufficiently small mass for the

• The WEP constraint on a2 in the presence of a dark force implies a 
constraint on the direct detection cross-section. 
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a2
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h
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FIG. 5: Direct detection process for the scalar singlet and triplet χ via t-channel Higgs exchange
with a nucleon. The magnitude of the detection rate is determined by the strength of the coupling
a2. If χ couples to the ultralight scalar φ, the size of a2 and thus the detection rate is bound by
WEP violation constraints.

in non-minimal DM models; for example a one loop coupling of φ to ordinary matter (see

Fig. 3) in the presence of additional squark degrees of freedom.

VI. WEP TESTS, DIRECT DETECTION, AND HIGGS BOSON DECAYS

As observed in Ref. [36], the presence of a non-vanishing β of astrophysically interesting

magnitude, together with present limits on ηE,DM can imply upper bounds on the size of

DM-nucleus cross sections relevant for direct detection experiments. Here we analyze these

bounds in detail for the illustrative cases of scalar DM scenarios and argue that upper

bounds on the DM-nucleus cross sections are less stringent than obtained in Ref. [36]. We

further comment on the analysis of Ref. [36] at the end of section VII. We also consider the

implications of a dark force for the DM relic density and derive corresponding constraints.

Finally, using a light scalar triplet, as part of a multicomponent DM scenario, we show

how the presence of a non-vanishing β – together with experimental limits on ηE,DM – can

preclude observable shifts in the rate for the Higgs boson to decay to two photons as one

might otherwise expect.

To include the full set of possible renormalizable interactions between the DM, SM fields,

and ultralight scalar, we expand the scalar potential of Eq. (38), imposing the Zχ
2 (χ→ −χ)

symmetry need to prevent DM decays:

V (H,S, χ) = V (H, S) +
1

2
M2

0 χ2 +
λχ

4
χ4 + a2H

†Hχ2 + gχχ2S + λχsχ
2S2 . (67)

For the scalar singlet case, χ is a real field, while for the real triplet with components χ0

and χ±, one has [72]

χ2 =
(
χ0

)2
+ 2χ+χ− . (68)
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FIG. 8: Upper bound on a2 in the singlet (red-solid) and real triplet (black-dotted) scalar DM
models as a function of ηDM /β2 (left panel) and ηE/β2 (right panel). We have used mh = 120
GeV and assume β = 0.2 to discuss the resulting bounds on a2 from Eötvös experiments. In
the top left and right plots, the vertical black lines on the right correspond to the upper bounds
ηDM < 10−5 and ηE < 10−13 respectively. These vertical black lines will move to the left with
further improvements in Eötvös experiments as indicated by the left-pointing arrow in each plot.
The bottom left and right plots show the region closer to the expected future bounds, from the
MiniSTEP experiment, of ηDM < 10−10 and ηE < 10−18 respectively as indicated by the vertical
black line in each plot. We explore the implications of these bounds on a2 from Eötvös experiments
for specific observables in sections VI C and VI D.

We now require that the contribution from each term on the RHS of Eq. (80) to ηE,DM be

no larger than the experimental limits on these parameters. As discussed previously, the

different parametric dependence of each term and avoiding slices of parameter space with

unnatural cancellations between the two allows us to treat each one separately. Considering

only the first term proportional to a2
2, using Eqs. (29), and (36) with

ḡ → − sin θ
mN

v
(81)

(Bovy, Farrar)
(Carroll,Mantry,Ramsey-Musolf)
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FIG. 10: Upper bounds on the Higgs exchange tree level direct detection cross-section of scalar
singlet(left panel) and real triplet(right panel) DM implied by a dark force as a function of ηE/β2.
To be specific, we assume β = 0.2 and discuss the implied bounds. In the top left and top right
plots, the vertical black lines on the right correspond to the current bound of ηE < 10−13. The
the bottom left and bottom right plots, the vertical black line corresponds to the expected future
sensitivity of ηE = 10−18. In all plots, the three curves from top to bottom, correspond to the
Higgs masses of 120, 130, and 140 GeV respectively. The size of these bounds with current and
future sensitivities of direct detection experiments is discussed in the text.

bounds from ηE shown in Fig. 10.

For the scalar singlet DM, the DM-nucleus cross-section bound from WEP tests does not

yield any more information than the bound on a2 which has already been discussed. This

is due to the fact that a2 determines the DM matter relic density entirely for fixed DM and

Higgs masses. If the WEP violation bound on a2 is too strong, the resulting DM relic density

will be too large over-closing the universe and thus ruling out the dark force. The bound

on the DM-nucleus cross-section resulting from the corresponding WEP violation bound on

a2, is thus not useful since it is already ruled out.

However, the bound on the scalar singlet DM-nucleus cross-section can be useful in con-
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FIG. 10: Upper bounds on the Higgs exchange tree level direct detection cross-section of scalar
singlet(left panel) and real triplet(right panel) DM implied by a dark force as a function of ηE/β2.
To be specific, we assume β = 0.2 and discuss the implied bounds. In the top left and top right
plots, the vertical black lines on the right correspond to the current bound of ηE < 10−13. The
the bottom left and bottom right plots, the vertical black line corresponds to the expected future
sensitivity of ηE = 10−18. In all plots, the three curves from top to bottom, correspond to the
Higgs masses of 120, 130, and 140 GeV respectively. The size of these bounds with current and
future sensitivities of direct detection experiments is discussed in the text.

bounds from ηE shown in Fig. 10.

For the scalar singlet DM, the DM-nucleus cross-section bound from WEP tests does not

yield any more information than the bound on a2 which has already been discussed. This

is due to the fact that a2 determines the DM matter relic density entirely for fixed DM and

Higgs masses. If the WEP violation bound on a2 is too strong, the resulting DM relic density

will be too large over-closing the universe and thus ruling out the dark force. The bound

on the DM-nucleus cross-section resulting from the corresponding WEP violation bound on

a2, is thus not useful since it is already ruled out.

However, the bound on the scalar singlet DM-nucleus cross-section can be useful in con-
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Mχ = 50 GeV Experiment Sensitivity Sensitivity

σχN (pb)
[

Mχ+mN

100 GeV

]2 [
σχN

1 pb

]

CDMS [73] 1.6× 10−7 4.1× 10−8

XENON10 [17] 4.5× 10−8 1.2× 10−8

CDMS (2007 [74]) 1× 10−8 3× 10−9

WARP (140 kg) [75] 3× 10−8 8× 10−9

SuperCDMS (Phase A) [76] 1× 10−9 3× 10−10

WARP (1 ton) [77] 2× 10−10 5× 10−10

TABLE III: Sensitivities for DM direct detection cross sections in different experiments. These
sensitivities are for 50 GeV DM corresponding to the most sensitive mass window. We see that the
XENON10, CDMS (2007), WARP (140 kg), SuperCDMS, and WARP (1 ton) experiments have
enough sensitivity to probe the bounds on the direct detection cross sections in Fig. 10 for singlet
DM coupled to a WEP violating force.

straining the size of β in a multicomponent DM scenario where the scalar singlet is only a

fraction of the DM. For larger values of β, as already discussed, the bounds on a2 from WEP

tests are too strong leading to an over-closed universe. For smaller values of β the bound

on a2 becomes weaker as seen from Eqs. (82) and (83). For small enough values of β, the

upper bound on a2 would be consistent with an under-relic-density of the singlet scalar. A

multicomponent DM scenario can also have a2 consistent with an under-relic-density for the

scalar singlet and in this case the WEP violation constraints on a2 can lead to interesting

bounds on the DM-nucleus cross-section.

For the scalar real triplet DM, the DM relic density is determined by a2 and gauge

interactions in general. However, the tree level DM-nucleus cross-section proceeds only

via a t-channel Higgs exchange and its size is determined by a2. We point out that the

bound in Fig. 10 constrains the tree level Higgs exchange diagram but not the one loop

diagrams, which proceed via gauge interactions and the Higgs coupling to the nucleus and

is independent of a2. Thus, if the observed DM-nucleus cross-section is of the size explained

by this one loop diagram a dark force cannot be ruled out.

In Table III we show the sensitivities of current and future DM detection experiments,

taken from Table I of [57]. We see from Fig. 10 that it will be difficult for current and future

direct detection experiments to probe the upper bound on the DM-nucleus-Higgs-exchange

cross-sections, for scalar triplet DM, for values of β that are astrophysically interesting

allowing one to rule out this possibility. One would need a significant deviation from the

expected cross-section from one loop gauge diagram, indicating a large value of a2, to rule

out a significant dark force. For smaller enough values of β, the DM-nucleus cross-section

bounds should be within reach of current or future experiments. The bounds we have

derived on the DM-nucleus cross-sections are much weaker than those in [36] since our

Bound on Direct Detection Cross-Section

• Direct detection bounds can be probed by current or future direct 
detection experiments.
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future sensitivities of direct detection experiments is discussed in the text.

bounds from ηE shown in Fig. 10.

For the scalar singlet DM, the DM-nucleus cross-section bound from WEP tests does not

yield any more information than the bound on a2 which has already been discussed. This

is due to the fact that a2 determines the DM matter relic density entirely for fixed DM and

Higgs masses. If the WEP violation bound on a2 is too strong, the resulting DM relic density

will be too large over-closing the universe and thus ruling out the dark force. The bound

on the DM-nucleus cross-section resulting from the corresponding WEP violation bound on

a2, is thus not useful since it is already ruled out.

However, the bound on the scalar singlet DM-nucleus cross-section can be useful in con-
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future sensitivities of direct detection experiments is discussed in the text.

bounds from ηE shown in Fig. 10.

For the scalar singlet DM, the DM-nucleus cross-section bound from WEP tests does not

yield any more information than the bound on a2 which has already been discussed. This

is due to the fact that a2 determines the DM matter relic density entirely for fixed DM and

Higgs masses. If the WEP violation bound on a2 is too strong, the resulting DM relic density

will be too large over-closing the universe and thus ruling out the dark force. The bound

on the DM-nucleus cross-section resulting from the corresponding WEP violation bound on

a2, is thus not useful since it is already ruled out.

However, the bound on the scalar singlet DM-nucleus cross-section can be useful in con-
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Figure 1: One loop DM/quark scattering for fermionic MDM with Y = 0. Two extra graphs
involving the four particle vertex exist in the case of scalar MDM.

An elastic cross section on nuclei is generated at loop level via the diagrams in fig. 1. An
explicit computation of the relevant one-loop diagrams is needed to understand qualitatively and
quantitatively the result. We find that non-relativistic MDM/quark interactions of fermionic
MDM with mass M ! MW ! mq are described by the effective Lagrangian

L
W
eff = (n2 − (1 ± 2Y )2)

πα2
2

16MW

∑

q

[

(
1

M2
W

+
1

m2
h

)[X̄X ]mq[q̄q] −
2

3M
[X̄γµγ5X ][q̄γµγ5q]

]

(16)

where the + (−) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent effects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent effects. Parameterizing the nucleonic matrix element as

〈N |
∑

q

mq q̄q|N〉 ≡ fmN (17)

where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by

σSI(DMN → DMN ) = (n2 − 1)2πα4
2M

4
Nf 2

64M2
W

(
1

M2
W

+
1

m2
h

)2. (18)

In the case of scalar MDM we find in the relevant non-relativistic limit: an M-independent
contribution to σSI equal to the fermionic result of eq. (18); an UV-divergent effect suppressed
by M that corresponds to a renormalization of |X |2|H|2 operators (that can produce a much
larger σSI if present at tree level); no spin-dependent effect.

Assuming mh = 115 GeV and f ≈ 1/37 (QCD uncertainties induce one order of magnitude
uncertainty on σSI) we plot in fig. 2 the MDM prediction for the standard nucleonic [1, 19, 22]

7To properly compute nuclear matrix elements one must keep quarks off-shell, finding several operators that
become equivalent on-shell [19]:

mq[X̄X ][q̄q], [X̄X ][q̄i∂/q],
4

3M
[X̄ i∂µγνX ][q̄i(∂µγν + ∂νγµ − ηµν

2
∂/ )q], . . .

Summing over all quarks the matrix elements are f ≈ (0.3 ÷ 0.6) [20] for the first operator, f ≈ 1.2 for the
third operator, while the matrix element of the second operator is unknown. In our computation, only the
first operator contributes to the SI effects suppressed by the higgs mass, while the other SI effects arise from
a combination of the various operators in proportion 0 : −1 : 2. Therefore cancellations are possible. We do
not fully agree with result of a previous computation [21], performed for the fermionic supersymmetric DM
candidates: wino (n = 3, Y = 0) and Higgsino (n = 2, |Y | = 1/2).

9

Bound on Tree Level DM-Nucleus Cross-Section for Real 
Scalar Triplet Dark Matter

• The WEP constraint on tree level DM-Nucleus cross-section 
implies that typically direct detection will be given dominated by 
one loop contributions which begin at about 10^(-9) pb.

(Cirelli,Fornengo,Strumia)
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FIG. 11: Contributions to the h→ γγ rate from virtual χ± loops.

analysis constrains higher dimension operators with finite coefficients while the work of [36]

had to rely on naturalness arguments to constrain renormalizable couplings. As we have

discussed earlier, since the ultralight scalar mass is itself fine tuned we have avoided using

naturalness arguments.

D. WEP Tests and Higgs Decays

We have shown in the last section that WEP constraints lead to upper bounds on the tree

level DM-nucleus cross-sections for the scalar singlet and real triplet χ models. However,

if the dark sector is made up of a rich spectrum of DM particles of different species, direct

detection of any species that makes up only a tiny fraction of the relic density becomes

difficult. One example of such a DM species is the neutral component of the real triplet

scalar χ with a mass far below a TeV. For masses below 500 GeV, the triplet DM will

make up less than 10% of the relic density [71]. The astrophysical effects of a dark force

experienced by such a species would be too small to be detected. In this section, we show

that when direct detection experiments or astrophysical observations fail to constrain dark

forces, collider signals might still harbor information on dark forces. Fig. 2 of [72] shows

the size of the shift in the h → γγ rate for typical values of the parameter a2. We have

reproduced this figure as shown on the left in Fig. 12. We plot the quantity

δ(%) ≡ 100× Γ(h→ γγ)− ΓSM(h→ γγ)

ΓSM(h→ γγ)
, (93)

For specificity we focus on the real scalar triplet χ discussed in the last section, but

with a mass less than 200 GeV, and examine the implications of a dark force on collider

signals. The analysis of [72] showed that one potential signature of the scalar triplet would

be a modification of the h → γγ decay rate due to the virtual charged components of

the χ triplet traversing the loop shown in Fig. 11. In the rest of this section we focus on

this channel. For a heavy Higgs, a similar analysis can be done for h → γZ,ZZ,W+W−.

30

a2relic Mχ(GeV) Expectation forηE
β2 β = 0.2

0.15 20 4× 10−10 Excluded
0.10 40 7× 10−11 Excluded
0.02 100 1× 10−13 Allowed

TABLE II: The first two columns give sample points in the (a2relic, Mχ) space of scalar singlet DM
models with a Higgs mass of mh = 120 GeV. The third column gives an expectation for ηE/β2

from Eq.(83). The fourth column uses the current bound of ηE < 10−13 to determine whether a
dark force of β = 0.2 is ruled out. One can equivalently compare the different values of a2relic with
the WEP bound on a2, at β = 0.2, in top right graph of Fig. 8 at the far right verticle line.

of MiniSTEP [56] which are expected to reach a sensitivity of ηE < 10−18, could require

bound of a2
<∼ 0.0025 for β = 0.2 as seen in the bottom right graph of Fig. 8. In this case,

one can rule out β < 0.2 even for DM masses above 60 GeV which require smaller values

of a2 in order to get the right relic density. As seen in Fig. 3 of [58], larger values of the

Higgs mass typically imply much larger values of a2. For example, a Higgs mass of 200 GeV

implies a range of a2 of ∼ 0.42− 0.05 for the DM mass range of 0− 80 GeV thus ruling out

the possibility of β > 0.2 in order to prevent an over-density of DM. Thus, the bound on a2

from WEP constraints is a powerful probe of a dark force in the scalar singlet DM model.

For the scalar real triplet DM model, the DM relic density is determined by gauge inter-

actions in addition to the parameter a2. In this case, the WEP bound on a2 shown in Fig. 8

does not necessarily rule out a dark force since the correct relic density can still be obtained

from annihilation diagrams that proceed via gauge interactions that are independent of a2.

For example, the bound of a2 < 0.02 implied by ηE < 10−13 for β = 0.2, as shown in the

top right graph of Fig. 8, implies that the annihilation rate will be dominated by gauge

interactions.

C. WEP Tests and DM-Nucleus Cross-Sections

The current bounds on a2 for a non-zero β in the dark sector, will also lead to upper

bounds on the Higgs exchange contributions to the direct detection cross-section. From Eq.

(71), the parameter a2 can be written in terms of the tree level cross-section σχN , which

proceeds via a t-channel higgs exchange, as

a2
2 =

[
π(Mχ + mN)2m4

h

g2
hv

2m2
N

]
σχN

∣∣∣∣∣
Higgs exch

. (84)
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models with a Higgs mass of mh = 120 GeV. The third column gives an expectation for ηE/β2

from Eq.(83). The fourth column uses the current bound of ηE < 10−13 to determine whether a
dark force of β = 0.2 is ruled out. One can equivalently compare the different values of a2relic with
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of MiniSTEP [56] which are expected to reach a sensitivity of ηE < 10−18, could require

bound of a2
<∼ 0.0025 for β = 0.2 as seen in the bottom right graph of Fig. 8. In this case,

one can rule out β < 0.2 even for DM masses above 60 GeV which require smaller values

of a2 in order to get the right relic density. As seen in Fig. 3 of [58], larger values of the

Higgs mass typically imply much larger values of a2. For example, a Higgs mass of 200 GeV

implies a range of a2 of ∼ 0.42− 0.05 for the DM mass range of 0− 80 GeV thus ruling out

the possibility of β > 0.2 in order to prevent an over-density of DM. Thus, the bound on a2

from WEP constraints is a powerful probe of a dark force in the scalar singlet DM model.

For the scalar real triplet DM model, the DM relic density is determined by gauge inter-

actions in addition to the parameter a2. In this case, the WEP bound on a2 shown in Fig. 8

does not necessarily rule out a dark force since the correct relic density can still be obtained

from annihilation diagrams that proceed via gauge interactions that are independent of a2.

For example, the bound of a2 < 0.02 implied by ηE < 10−13 for β = 0.2, as shown in the

top right graph of Fig. 8, implies that the annihilation rate will be dominated by gauge

interactions.

C. WEP Tests and DM-Nucleus Cross-Sections

The current bounds on a2 for a non-zero β in the dark sector, will also lead to upper

bounds on the Higgs exchange contributions to the direct detection cross-section. From Eq.

(71), the parameter a2 can be written in terms of the tree level cross-section σχN , which

proceeds via a t-channel higgs exchange, as

a2
2 =

[
π(Mχ + mN)2m4

h

g2
hv

2m2
N

]
σχN

∣∣∣∣∣
Higgs exch

. (84)

Dark Force, WEP Test, and Higgs Decay
• WEP constraints on a2 imply constraints on the size of the 

following one loop graphs which contribute to the Higgs decay to 
two photons
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analysis constrains higher dimension operators with finite coefficients while the work of [36]

had to rely on naturalness arguments to constrain renormalizable couplings. As we have

discussed earlier, since the ultralight scalar mass is itself fine tuned we have avoided using

naturalness arguments.

D. WEP Tests and Higgs Decays

We have shown in the last section that WEP constraints lead to upper bounds on the tree

level DM-nucleus cross-sections for the scalar singlet and real triplet χ models. However,

if the dark sector is made up of a rich spectrum of DM particles of different species, direct

detection of any species that makes up only a tiny fraction of the relic density becomes

difficult. One example of such a DM species is the neutral component of the real triplet

scalar χ with a mass far below a TeV. For masses below 500 GeV, the triplet DM will

make up less than 10% of the relic density [71]. The astrophysical effects of a dark force

experienced by such a species would be too small to be detected. In this section, we show

that when direct detection experiments or astrophysical observations fail to constrain dark

forces, collider signals might still harbor information on dark forces. Fig. 2 of [72] shows

the size of the shift in the h → γγ rate for typical values of the parameter a2. We have

reproduced this figure as shown on the left in Fig. 12. We plot the quantity

δ(%) ≡ 100× Γ(h→ γγ)− ΓSM(h→ γγ)

ΓSM(h→ γγ)
, (93)

For specificity we focus on the real scalar triplet χ discussed in the last section, but

with a mass less than 200 GeV, and examine the implications of a dark force on collider

signals. The analysis of [72] showed that one potential signature of the scalar triplet would

be a modification of the h → γγ decay rate due to the virtual charged components of

the χ triplet traversing the loop shown in Fig. 11. In the rest of this section we focus on

this channel. For a heavy Higgs, a similar analysis can be done for h → γZ,ZZ,W+W−.

• One can parameterize the size of these graphs via the shift
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FIG. 12: The left plot shows the deviation of the h→ γγ rate compared to the SM prediction for
typical values of the parameter a2 as a function of the triplet mass Mχ. The right plot shows the
magnitude of the allowed shift in the h → γγ rate in the presence of a dark force. The bound on
this allowed shift arises due to the bound on a2 from WEP violation constraints on ηE as seen in
the top right plot of Fig. 8. The typical values of a2 in the left plot above, which lead to sizable
deviations in the h→ γγ rate, are too big to be compatible with WEP violation constraints.

As already discussed, WEP constraints imply an upper bound on the parameter a2 which

determines the size of the contribution of Fig. 11 to h → γγ. The WEP bound on a2

translates into a bound on δ(%) which is shown in the right panel of Fig. 12 for different

values of Mχ. Comparing the left plot of Fig. 12 with the top right graph in Fig. 8, we see

that the current bounds on a2 from ηE for a non-zero β can give non-trivial bounds on δ(%)

that can be tested in colliders. The right plot in Fig. 12 gives the upper bound on |δ(%)| as

a function of ηE/β2. For β = 0.2, we have the bound ηE/β2 < 2.5 × 1012 coming from the

current bound of ηE < 10−13. We see that the bound on δ(%) for a dark force of β = 0.2 is

well below one percent. Thus, any observed shift in h → γγ, that cannot be explained by

physics observed at colliders and unrelated to χ, requires a significant contribution from the

χ loop implying a value for β much smaller than 0.2. If a non-zero value of a2 is extracted

from a study of h → γγ decays, one can estimate the size of ηDM,E/β2 from Eqs. (82)

and (83) respectively and use the current bounds on ηDM,E to constrain the size of β. For

example, using mh = 120 GeV and the current bound of ηE < 10−13, the non-zero values of

a2 =
√

π, 1.0, 0.5 would imply that β < 7× 10−5, 2× 10−4, 9× 10−4 respectively.
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FIG. 12: The left plot shows the deviation of the h→ γγ rate compared to the SM prediction for
typical values of the parameter a2 as a function of the triplet mass Mχ. The right plot shows the
magnitude of the allowed shift in the h → γγ rate in the presence of a dark force. The bound on
this allowed shift arises due to the bound on a2 from WEP violation constraints on ηE as seen in
the top right plot of Fig. 8. The typical values of a2 in the left plot above, which lead to sizable
deviations in the h→ γγ rate, are too big to be compatible with WEP violation constraints.

As already discussed, WEP constraints imply an upper bound on the parameter a2 which

determines the size of the contribution of Fig. 11 to h → γγ. The WEP bound on a2

translates into a bound on δ(%) which is shown in the right panel of Fig. 12 for different

values of Mχ. Comparing the left plot of Fig. 12 with the top right graph in Fig. 8, we see

that the current bounds on a2 from ηE for a non-zero β can give non-trivial bounds on δ(%)

that can be tested in colliders. The right plot in Fig. 12 gives the upper bound on |δ(%)| as

a function of ηE/β2. For β = 0.2, we have the bound ηE/β2 < 2.5 × 1012 coming from the

current bound of ηE < 10−13. We see that the bound on δ(%) for a dark force of β = 0.2 is

well below one percent. Thus, any observed shift in h → γγ, that cannot be explained by

physics observed at colliders and unrelated to χ, requires a significant contribution from the

χ loop implying a value for β much smaller than 0.2. If a non-zero value of a2 is extracted

from a study of h → γγ decays, one can estimate the size of ηDM,E/β2 from Eqs. (82)

and (83) respectively and use the current bounds on ηDM,E to constrain the size of β. For

example, using mh = 120 GeV and the current bound of ηE < 10−13, the non-zero values of

a2 =
√

π, 1.0, 0.5 would imply that β < 7× 10−5, 2× 10−4, 9× 10−4 respectively.

• The LHC or future colliders are likely to be sensitive to shifts in 
Higgs decay to two photons for triplet masses less than 200 GeV.

• Such light DM will be only a tiny fraction of the relic density in 
minimal models.  A dark force in this case would have unobservable 
effects in astrophysics or cosmology. Colliders can still probe these 
dark forces.

(Filevez Perez, Patel,Ramsey-Musolf,Wang)
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FIG. 7: One loop diagrams which which contribute to the effective potential V (H,S) with one
external S field. After electroweak symmetry breaking the effective potential contributes to Higgs-
ultralight-scalar mixing. The first two diagrams are UV divergent and contribute to the renormal-
ization of the S-tadpole and the coupling δ1 respectively. The remaining diagrams mix into higher
dimensional operators and give a finite contribution to Higgs-ultralight-scalar mixing as explained
in appendix B.

As with the case of the logarithmically divergent Higgs contribution Σ(p2)H†HS of Eq. (55),

the DM-loop contribution to the self energy requires a corresponding µ-dependence in δµ2
S(µ)

to maintain RG invariance of the pole mass that governs the range of the dark force. Large

DM-loop contributions to µ2
S can be minimized at all scales by taking gχ to be sufficiently

small: gχ
<∼ 4πmpole

S . Doing so, however, would preclude a value of β of astrophysically

relevant strength. Alternatively, one may allow for a much larger, phenomenologically in-

teresting magntiude for gχ and maintain a small µ2
S by invoking fine-tuning between the

one-loop contribution of Eq. (74) and δm2(µ).

A similar set of alternatives applies to the renormalized coupling δren
1 . One could require

that the product gχa2 be sufficiently small in magnitude, with a correspondingly tiny δ1(µ),

so that the induced H-S mixing is consistent with the present bounds on ηE, DM. To obtain

a large β, one must then take a2 to be sufficiently small, implying an upper bound on the

Higgs exchange contribution to the DM-nucleus cross section via Eq. (71). This choice is

essentially the strategy followed in Ref. [36] to obtain upper bounds on σχN . However, as

seen in Eq.(41), δ1 contributes to µhS and thus to the mass mφ via Eq.(47). The condition of

mφ < 10−25 eV gives a much stronger naturalness constraint on a2 forcing it to be essentially

zero for a non-zero dark force. The constraints from ηE,DM are thus not relevant in such a

naturalness analysis. We will also discuss this in more detail in section VII.

In what follows, we will instead allow for fine tuning in both δ1 since we have already

allowed fine tuning for µS. We show that assuming µ2
S is restricted in parameter space to

satisfy mφ < 10−25eV for any value of µ2
hS in Eq.(47), we can obtain upper bounds on σχN

by analyzing finite, one-loop contributions to µ2
hS, from higher dimensional operators after

EWSB, and their implications for WEP tests. The other regions in parameter space and

S
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VII. DARK FORCE PARAMETER SPACE

Before concluding, we generally discuss the regions in parameter space of SM + χ + φ

type models that are likely to give rise to an observable dark force. In particular, we discuss

how the requirement mφ < 10−25eV, neccessary to allow a dark force of intergalactic range,

restricts the allowed parameter space. Recall that after EWSB and diagonalizing the mass

matrix, the ultralight scalar mass is given by

m2
φ ! µ2
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We showed in section VI A that µ2
hS, which determines the mixing between the ultralight

scalar and the Higgs, receives finite contributions from higher dimension operators whose

size we constrained from WEP tests. In Eq.(80), the second term is the contribution to the

mixing angle from the operator H†HS after EWSB and the first term is the finite contri-

bution from the sum of higher dimension operators induced via DM loops(see Fig. 7). The

parameter µ2
S similarly receives finite contributions from higher dimension operators. For

example, attaching one extra external S field to the DM loops in Fig. 7 will generate a tower

of operators that contribute to µ2
S after EWSB. The lowest dimension non-renormalizable

operator that contributes to µ2
S will be

D2 H†HH†HS2, (95)

with finite coefficient D2 which can be estimated from NDA as

D2 ∼
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We could sum the contribution of the entire tower of operators to µ2
S as we did for the case

of µ2
hS. However, the explicit sum is not needed for the following discussion.

The requirement that mφ < 10−25 eV now imply three types of possible regions in pa-

rameter space: I,II, and III. We discuss each of these regions in turn below and relate them
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hS is
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φ as
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For any observable non-zero value of β, the above bound essentially forces a2 to be zero. As

already discussed, such a small value of a2 will lead to an over-relic-density of scalar singlet

DM over-closing the universe and is ruled out. Similar arguments can be made for WIMP
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FIG. 7: One loop diagrams which which contribute to the effective potential V (H,S) with one
external S field. After electroweak symmetry breaking the effective potential contributes to Higgs-
ultralight-scalar mixing. The first two diagrams are UV divergent and contribute to the renormal-
ization of the S-tadpole and the coupling δ1 respectively. The remaining diagrams mix into higher
dimensional operators and give a finite contribution to Higgs-ultralight-scalar mixing as explained
in appendix B.

As with the case of the logarithmically divergent Higgs contribution Σ(p2)H†HS of Eq. (55),

the DM-loop contribution to the self energy requires a corresponding µ-dependence in δµ2
S(µ)

to maintain RG invariance of the pole mass that governs the range of the dark force. Large

DM-loop contributions to µ2
S can be minimized at all scales by taking gχ to be sufficiently

small: gχ
<∼ 4πmpole

S . Doing so, however, would preclude a value of β of astrophysically

relevant strength. Alternatively, one may allow for a much larger, phenomenologically in-

teresting magntiude for gχ and maintain a small µ2
S by invoking fine-tuning between the

one-loop contribution of Eq. (74) and δm2(µ).

A similar set of alternatives applies to the renormalized coupling δren
1 . One could require

that the product gχa2 be sufficiently small in magnitude, with a correspondingly tiny δ1(µ),

so that the induced H-S mixing is consistent with the present bounds on ηE, DM. To obtain

a large β, one must then take a2 to be sufficiently small, implying an upper bound on the

Higgs exchange contribution to the DM-nucleus cross section via Eq. (71). This choice is

essentially the strategy followed in Ref. [36] to obtain upper bounds on σχN . However, as

seen in Eq.(41), δ1 contributes to µhS and thus to the mass mφ via Eq.(47). The condition of

mφ < 10−25 eV gives a much stronger naturalness constraint on a2 forcing it to be essentially

zero for a non-zero dark force. The constraints from ηE,DM are thus not relevant in such a

naturalness analysis. We will also discuss this in more detail in section VII.

In what follows, we will instead allow for fine tuning in both δ1 since we have already

allowed fine tuning for µS. We show that assuming µ2
S is restricted in parameter space to

satisfy mφ < 10−25eV for any value of µ2
hS in Eq.(47), we can obtain upper bounds on σχN

by analyzing finite, one-loop contributions to µ2
hS, from higher dimensional operators after

EWSB, and their implications for WEP tests. The other regions in parameter space and

S

• Region II: No intricate cancellations between in mixing angle:

27

their implications will be discussed in section VII. To that end, consider the third diagram

of Fig. 7, which generates a contribution to the dimension five operator

C2 (H†H)(H†H)S, (75)

where in the coefficient C2 is finite and given by

C2 = κ
a2

2

8π2

gχ

M2
0

. (76)

Since this contribution is finite there is no counterterm involved in determing the value

of C2. After electroweak symmetry breaking this term will generate a contribution to the

off-diagonal elements in the h-S mass-squared matrix

µ2
hS = 2C2v

3 + δ1v, (77)

leading to an h-S mixing angle θ

tan θ =
x

1 +
√

1 + x2
, x =

µ2
hS

µ2
h

=
2C2v3 + δ1v

m2
h

, (78)

which was defined in Eqs. (42) and (45). Since this mixing implies a coupling of φ ≈ S

to matter, the loop-induced coefficient C2 will contribute to the Eötvös parameters ηDM,E .

Given the dependence of C2 on a2 and the absence of any fine-tuning in this parameter, we

obtain an upper bound on σχN for non-vanishing β as described below.

Before doing so, we observe the contribution to µ2
hS from full series of diagrams appearing

in Fig. 7 (plus the tadpole graph generated by the χ2S interaction) can be evaluated in a

straightforward way as outlined in the appendix B. After renormalization, the result is

µ2
hS = v

[
δ1(µ) + κ

gχa2

4π2

(
ln

M2
χ

µ2
− 1

)]
+ κ

gχa2
2

4π2

v3

M2
χ

. (79)

Apart from an overall constant in the first term and the replacement M0 → Mχ, this

expression is the same as we obtained using the contributions to the H†HS and (H†H)2S

operators from the second and third diagrams of Fig. 7. The expression in Eq. (79) has

the advantage that it depends on the tree-level χ mass after electroweak symmetry breaking

rather than on the parameter M0 as in the effective operator analysis. We will henceforth use

the finite, second term in Eq. (79) to derive an upper bound on Higgs exchange contributions

to σχN .

To that end, we write the mixing angle as

sin θ ≈ tan θ ≈ x ≈ κ
a2

2

4π2

gχv3

M2
χm2

h

+
δren
1 v

m2
h

= κ
a2

2

π3/2

v3

MP m2
h

β +
δren
1 v

m2
h

, (80)

where δren
1 denotes the quantity in square brackets in Eq. (79). The mixing angle sin θ

also characterizes the universal H-S mixing contribution to the Eötvös parameters ηE,DM .
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this slice of 
parameter 

space.



Conclusions
• A dark force, via quantum effects, implies a non-zero effect in 

laboratory tests of the WEP as long as the DM is not sterile.

• For scalar singlet DM, relic density considerations combined 
with laboratory WEP tests rule out a dark force in large 
region of parameter space.

• A dark force implies constraints on the SI DM-direct-
detection cross-section via Higgs exchange.

• Depending on the DM model, a dark force can also imply 
constraints on collider signals.

• Dark force parameter space is quite restricted.

• Future planned WEP tests will improve precision by several 
orders of magnitude allowing one to severely constrain dark 
forces.


