

Experimental HEP Seminar University of California at Davis Davis, CA, February 17, 2009

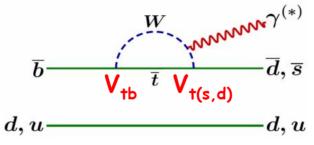
B Factory Measurements of the b \rightarrow s(d) γ "Radiative Penguin" Transition Rates

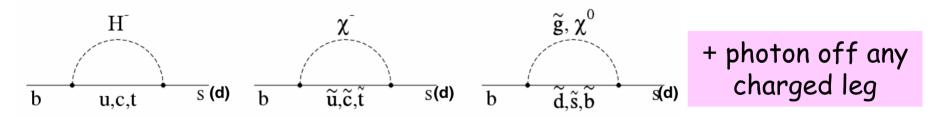
Bruce A. Schumm

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

- Effective Neutral Currents: General Motivation
- $b \rightarrow s\gamma$ Penguins

Outline


- SUSY parameter space implications
- b \rightarrow s γ "Inclusive" approach
- $B \rightarrow X_S \gamma$ "Semi-Inclusive" approach
- b \rightarrow dy Penguins and $|V_{td}/V_{ts}|$
 - Motivation
 - $B \rightarrow (\rho, \omega)\gamma$ "Exclusive" approach
 - $B \rightarrow X_d$ "Semi-Inclusive" approach
 - Status of |V_{td}/V_{ts}|
- Conclusions


Effective Neutral Currents and Radiative Penguins

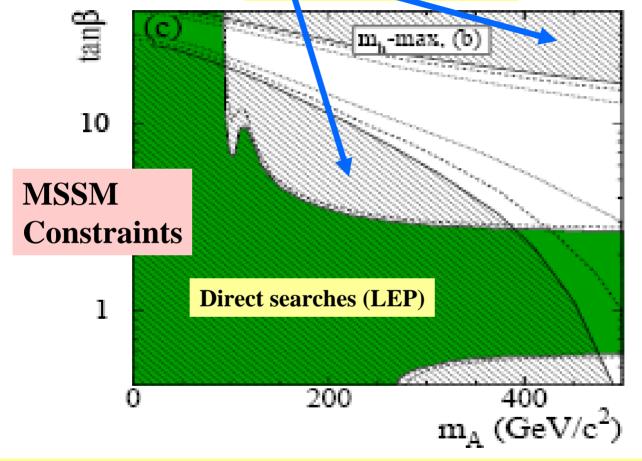
The SM b \rightarrow s(d) γ transition is high order (two weak plus one EM vertex) ...

so new physics can enter at leading order:

Although rare (~ 5×10^{-4} for s γ and ~ 10^{-5} for d γ), the isolated high-energy photon is a powerful signature.

- Effective Neutral Currents: General Motivation
- $b \rightarrow s\gamma$

Outline


- SUSY parameter space implications
- Inclusive approach
- Other approaches
- $b \rightarrow d\gamma$ and $|V_{td}/V_{ts}|$
 - Motivation
 - $B \rightarrow (\rho, \omega)\gamma$ ("Standard" Approach)
 - $B \rightarrow X_d$ ("Semi-Inclusive" Approach)
 - Status of |V_{td}/V_{ts}|
- Conclusions

$B \rightarrow s\gamma$ and SUSY Parameter Space

$B \rightarrow s\gamma$ constraints

$b \rightarrow s\gamma$ has a significant impact on the tan β -m_A plane...

 $B \rightarrow s\gamma$ and SUSY Parameter Space (cont'd)

... on some of our favorite scenarios ...

Fate of "Snowmass" MSSM study points

SPS1a	killed by b \rightarrow s γ
SPS1a'	OK
SPS1b	killed by b \rightarrow s γ
SPS2	killed by Ωh² (GUT) / <mark>OK(low)</mark>
SPS3	killed by Ωh ² (low) / <mark>OK(GUT)</mark>
SPS4	killed by g-2
SPS5	killed by Ωh ²
SPS6	OK
SPS9	killed by Tevatron stable chargino

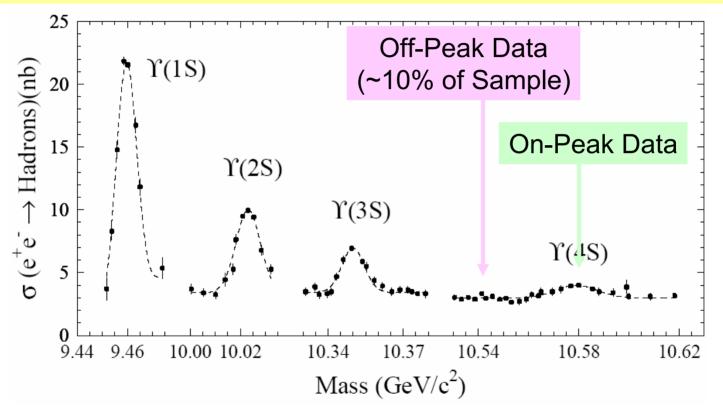
$B \rightarrow s\gamma$ and SUSY Parameter Space (cont'd)

... and just in general.

<u>C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo,</u> "Supersymmetry Without Prejudice", <u>arXiv:0812.0980v1</u> [hep-ph]

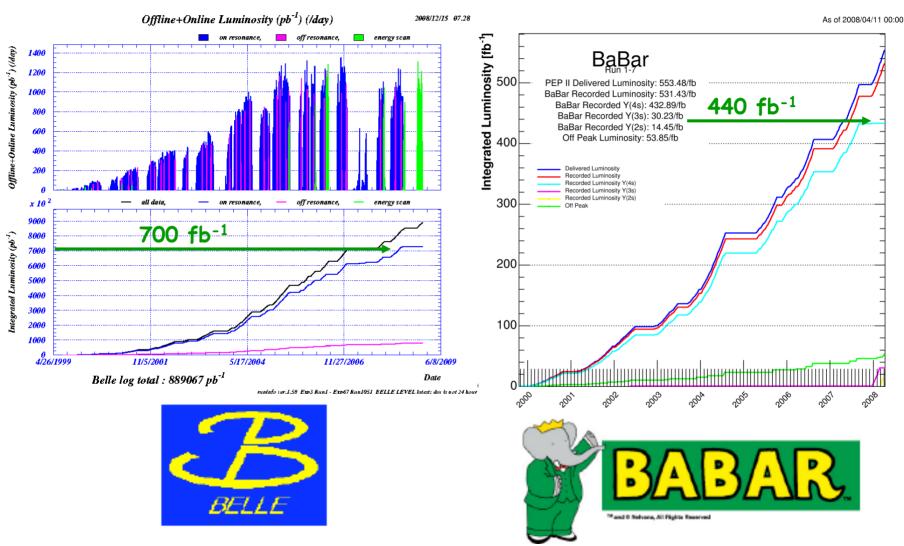
Explore 10⁷ points over 19dimensional parameter space of CP-conserving MSSM

b \rightarrow sy most effective constraint (72% of models surviving prior constraints are eliminated; better than direct searches for SUSY partners)

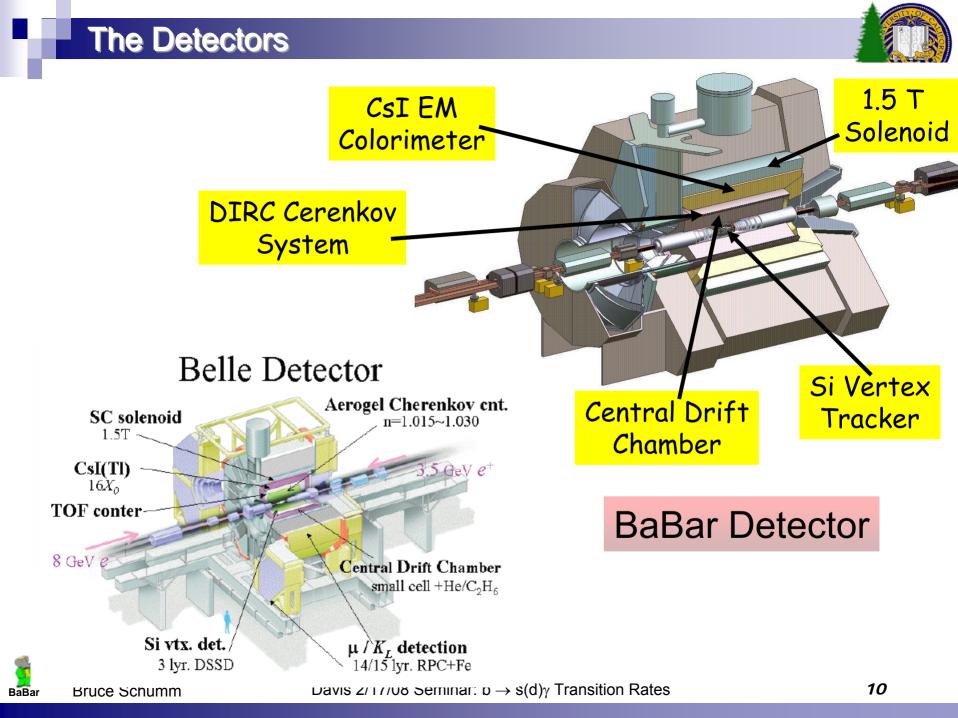

9999039 slha-okay.txt 7729165 error-okay.txt 3270330 lsp-okay.txt 3261059 deltaRho-okav.txt 2168599 gMinus2 okay.txt 617413 b2sGamma-okay.tx 594803 BSZMuMu okay.txt 592195 vacuum-okay.txt 582787 Bu2TauNu-okay.txt 471786 LEP-sparticle-okay.txt invisibleWidth-okay.txt 471455 468539 susyhitProb-okay.txt stableParticle-okay.txt 418503 chargedHiggs okay_txt 418503 132877 directDetection-okay.txt 83662 neutralHiggs-okay.txt 73868 omega-okay.txt 73575 Bs2MuMu-2-okav.txt 72168 stableChargino-2-okay.txt 71976 triLepton-okay.txt 69518 jetMissing-okay.txt 68494 final-okay.txt

The eter Cross Section in the Upsilon Region

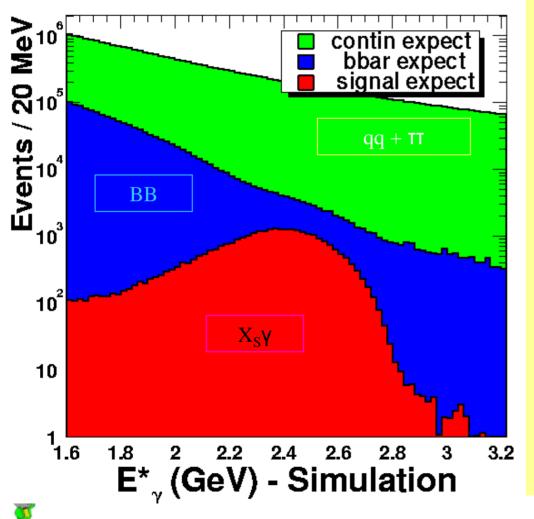
The Y(4S) resonance is the lightest *bb* resonance that decays into "open Beauty" (B^+B^- or $B^0\overline{B}^0$)



Y(4S) resonance is ~1 nb at peak, competing with a "continuum" background of ~3 nb



B Factory Data Sets



Inclusive Measurement of b \rightarrow sy: Introduction

Most exacting approach ("Inclusive") is aggressive:

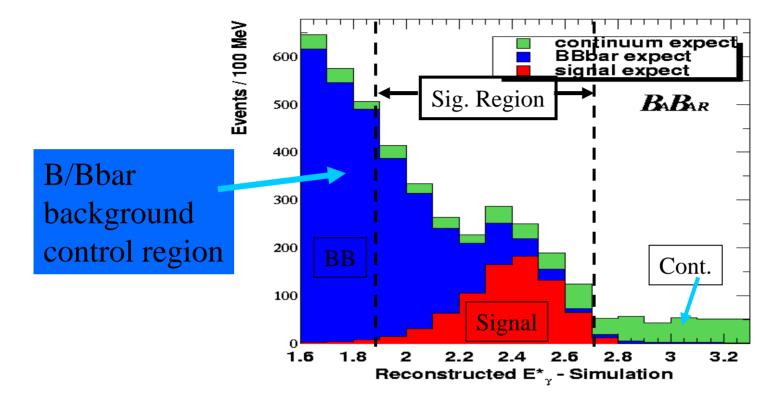
Davis 2/17/08 Seminar: $b \rightarrow s(d)\gamma$ Transition Rates

Bruce Schumm

BaBar

Use only high-energy γ as signature

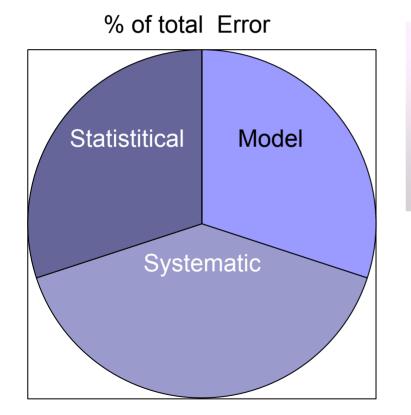
Suppress continuum with event shapes, requirement of a high-energy lepton.


Estimate remaining contribution by scaling offpeak data.

Challenge: background from $\pi^0(\eta) \rightarrow \gamma\gamma$ decays (plus some fakes) in B decays

11

Inclusive Measurement of b \rightarrow sy: Signal/Background

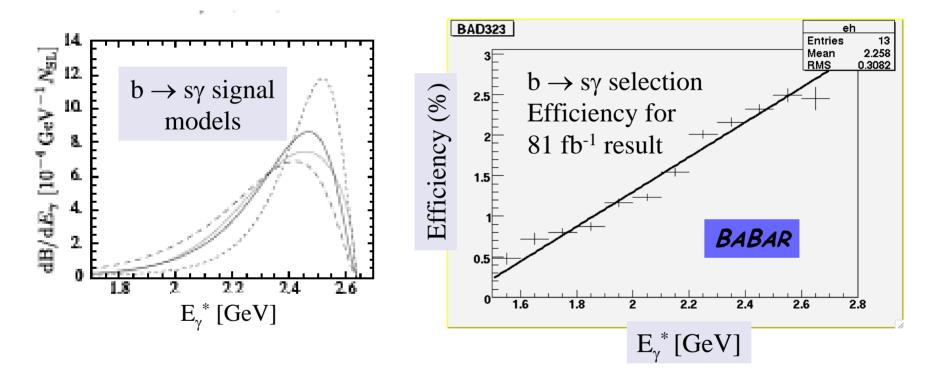


- · After event selection, S/B is roughly 1:1
- Continuum measured from below-peak running
- B/Bbar backgrounds must be identified and constrained

Inclusive Measurement of b \rightarrow sy: Challenges

BaBar result with 81.5 fb⁻¹ (Phys. Rev. Lett. 97:171803,2006) Br (B \rightarrow X_s γ) = (3.67 \pm 0.29 \pm 0.34 \pm 0.29)

First round of B Factory results provide ~15% measurement of $b \rightarrow s\gamma$ transition rate


To exploit > 1 ab⁻¹ sample, need to focus on reducing systematics

Inclusive Measurement of b \rightarrow sy: Model Dependence,

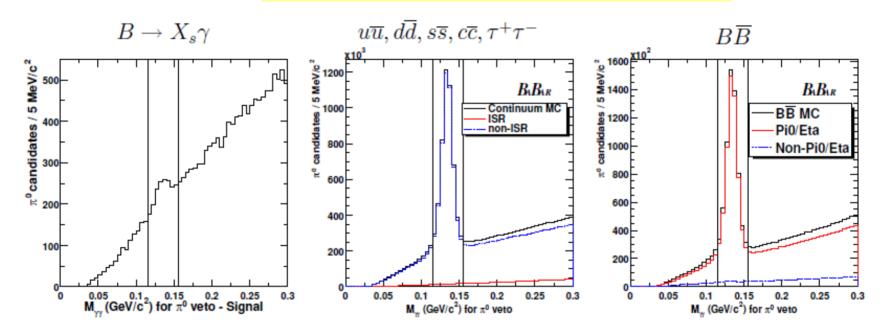
Model dependence arises through E_{γ}^{*} dependence of selection efficiency

Engineer event selection to flatten efficiency (some loss of statistics) \rightarrow reduce to < 3%

Inclusive Measurement of b \rightarrow sy: B/Bbar Backgrounds

Sources of Remaining B/Bbar Background

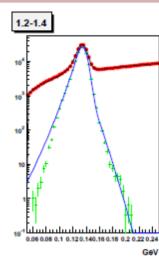
Object	Source	Control Region	Signal Region
γ	π^0	57.3%	66.6%
γ	η	17.1%	15.7%
γ	Other meson	8.7%	5.1%
γ	e	9.3%	4.7%
γ	Other	0.4%	0.4%
Total γ		92.8%	92.4%
е	Any	4.8%	3.7%
n/n _{bar}	Any	1.7%	2.9%
p⁺/p⁻	Any	0.0%	0.1%
π/K	Any	0.4%	0.8%
Total non- γ		7.2%	7.6%
Total		100%	100%

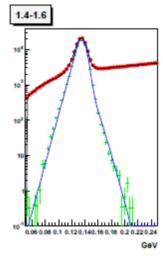


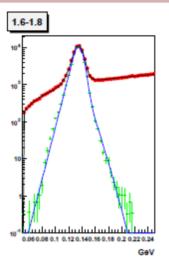
Inclusive Measurement of b \rightarrow sy: π^0 , η Backgrounds

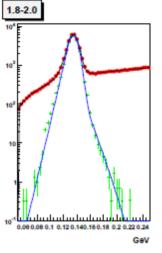
If high-energy γ passes selection, then

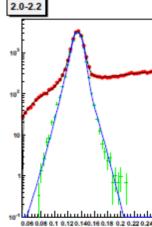
look for low-energy γ and veto event

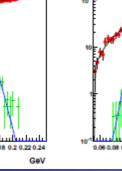

But, ~50% of the time the low-energy photon is missing, or $M_{\gamma\gamma}$ falls outside the veto window

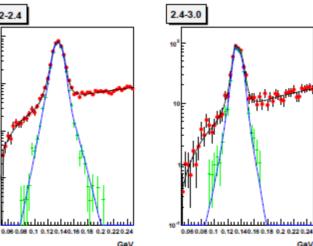


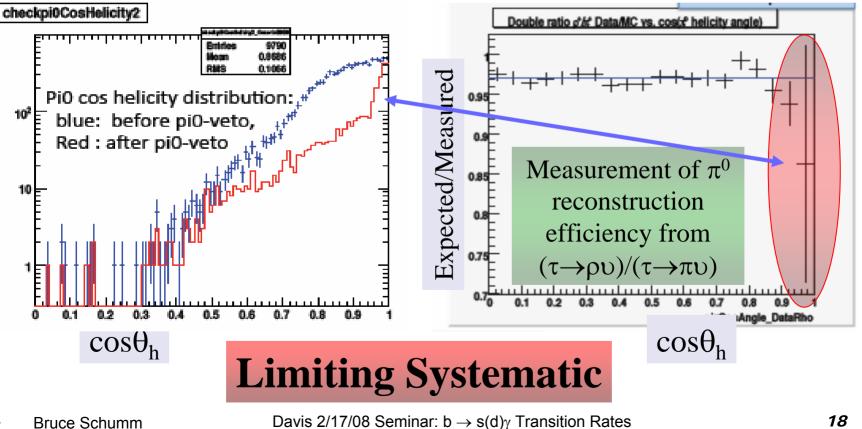

π⁰,η


Inclusive Measurement of b \rightarrow sy: π^0 , η Backgrounds


Basic Idea: Use measured $\pi^{0}(\eta)$ peak (as a function of $E_{\pi,\eta}$ to estimate production rate and $M_{_{\gamma\gamma}}$ shape; lower high-energy E_{γ} cut to get more statistics.

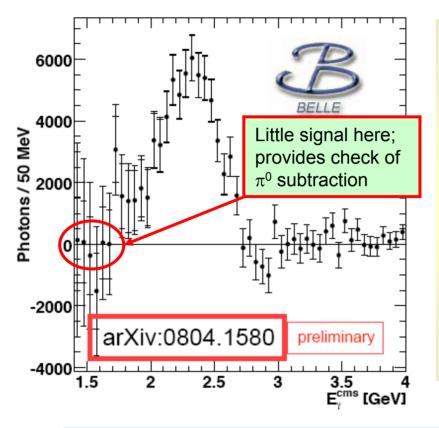





GeV

Inclusive Measurement of b \rightarrow sy: π^0 , η Backgrounds

Define $\cos\theta_h \cong (E_{\gamma,\text{high}} - E_{\gamma,\text{low}}) / (E_{\gamma,\text{high}} + E_{\gamma,\text{low}}) = \text{energy asymmetry}$ Signal selection requirement of $E_{v}^{*} > 1.8$ GeV pushes asymmetry up, and energy of 2nd photon down.


 \rightarrow Sensitive to reconstruction efficiency for 30-80 MeV photons.

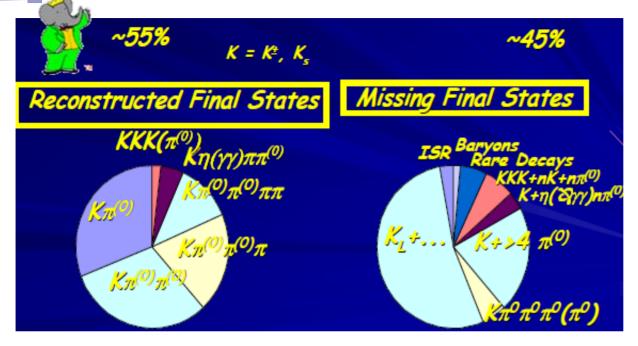
BaBar

Inclusive Measurement of $b \rightarrow s\gamma$: Practicalities

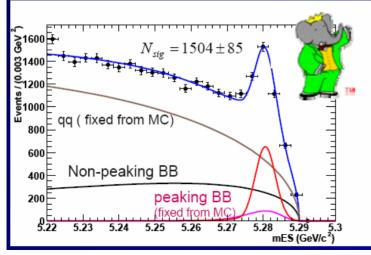
Most up-to-date result is from BELLE, with all 605 fb⁻¹

BaBar still working ideas to reduce B background errors, particularly from π^0 , η contamination

BaBar goal is to get well below 10% in overall error

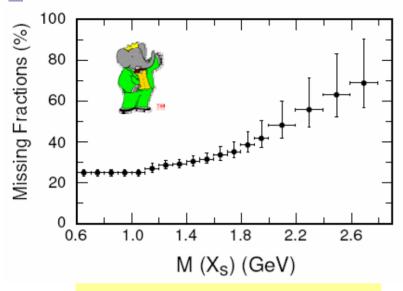

BELLE: $(3.37\pm0.43)\times10^{-4}$ arXiv:0804.1580605 fb^{-1}BaBar: $(3.92\pm0.56)\times10^{-4}$ PRL97,17180382 fb^{-1}NOTE: Measurements scaled to E, cms > 1.6 GeV

Bruce Schumm

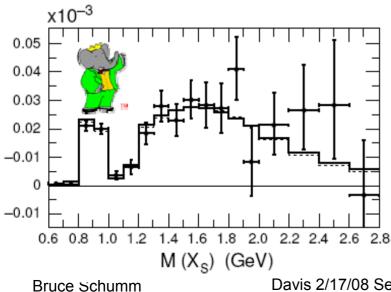

b \rightarrow s γ Via a Sum of Exclusive Final States (BaBar)

Reconstruct a total of 38 exclusive $b \rightarrow s\gamma$ final states that comprise about 55% of the total width

Fit to reconstructed mass of exclusive final state to determine signal yield



This "Semi-Inclusive" approaches employs a fit to the mass distribution, for which backgrounds tend to be self-calibrating...


BaBar

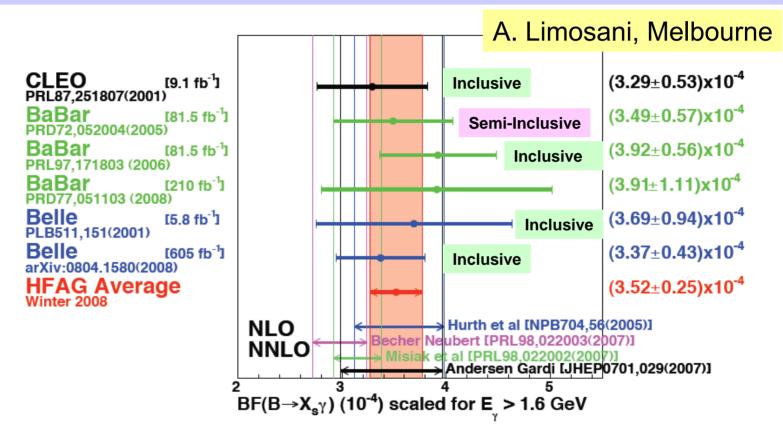
BaBar Semi-Inclusive Analysis (continued)

Mass Recoiling Against γ

BaBai

But need to rely on models to correct for the 45% of states that are not measured (depends on mass $M(X_s)$ that photon recoils against).

RESULT


 $BF(B \rightarrow s\gamma) = (3.49 \pm 0.57)x10^{-4}$ PRD72:052004

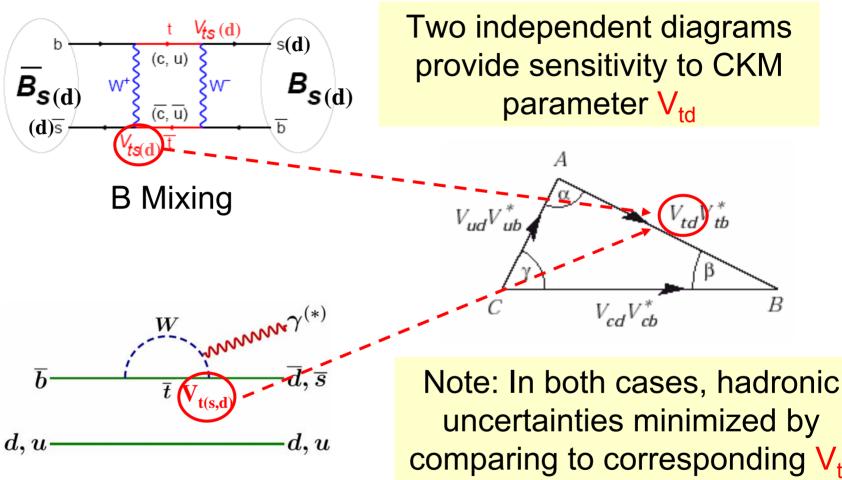
- 82 fb⁻¹ analyzed is less than 10% of world sample
- Has systematics independent of those of inclusive approach

Summary of Measurements of the $b \rightarrow s\gamma$ Rate

Experimental accuracy commensurate with theoretical control, but work continue on both ends

Most of BaBar data set still unanalyzed

- Effective Neutral Currents: General Motivation
- $\circledast \ b \to s\gamma$


Outline

- SUSY parameter space implications
- Inclusive approach
- Other approaches
- b \rightarrow d γ and $|V_{td}/V_{ts}|$
 - Motivation
 - $B \rightarrow (\rho, \omega)\gamma$ ("Standard" Approach)
 - $B \rightarrow X_d$ ("Semi-Inclusive" Approach)
 - Status of |V_{td}/V_{ts}|

Conclusions

Radiative Penguins

comparing to corresponding V_{ts} process (B_s mixing, b \rightarrow s γ) \rightarrow Observable is $|V_{td} / V_{ts}|$

V_{td}/V_{ts} from Penguins: Motivation

ICHEP '08 B Mixing Results [Farrington(CDF), Moulik(D0), averaged by DeLodovico(BaBar)]:

$$|V_{td}|/|V_{ts}| = 0.207 \pm 0.001_{exp} \pm 0.006_{theo}$$

How do penguins fit into the picture?

 $x_{d} = \Delta m_{B} / \Gamma_{B} \sim 1 \Rightarrow \Delta m_{B} \sim \Gamma_{B}$ $Br(b \rightarrow d\gamma) \sim 10^{-5} \Rightarrow \Gamma_{dy} \sim 10^{-5} \Gamma_{B}$ suppressed by 10⁻⁵ relative to mixing

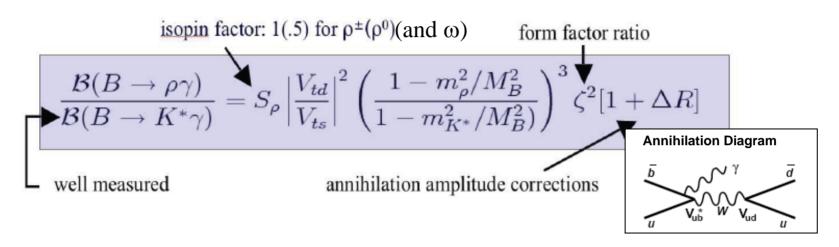
Furthermore (Ali, Asatrian, Greub, Phys. Lett B 429, 87):

"These $[b \rightarrow d\gamma]$ vertices are CKM-suppressed in the standard model, but new physics contributions may not follow the CKM pattern in flavorchanging-neutral-current transitions and hence new physics effects may become more easily discernible in $B \rightarrow X_d + \gamma$ (and its charge conjugate) than in the corresponding CKM-allowed vertices $b \rightarrow s\gamma$ and $b \rightarrow sg$ "

With $|V_{td}/V_{ts}|$ precisely constrained by mixing, $b \rightarrow d\gamma$ is a compelling testbed for new physics.

Mixing:

Penguins:


Davis 2/17/08 Seminar: $b \rightarrow s(d)\gamma$ Transition Rates

SM effects

Exclusive Approach: $B \rightarrow \rho(\omega) \gamma$

Standard ("Exclusive") Approach: measure exclusive rate $Br(B \rightarrow \rho(\omega) \gamma)$; normalize with $Br(B \rightarrow K^* \gamma)$

Values of ς^2 and ΔR are available from

Ali, Parkhomenko, arXiv:hep-ph/0610149

Ball, Zwicky, J. High. Energy Phys. 0604, 046 (2006); Ball, Jones, Zwicky, Phys. Rev. D 75 054004 (2007)

at approximately 8% overall accuracy.

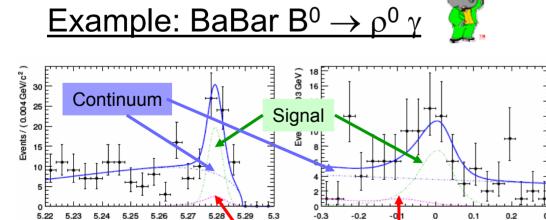
Belle: New result this Spri	ng				
351 fb ⁻¹ (2006)	→	598 fb ⁻¹ (April 2008)			
BaBar: New result this Summer					
Dabar. New result this Summer					
316 fb ⁻¹ (April 2007)	→	423 fb ⁻¹ (July 2008)			

Challenge: BRs are small (<10⁻⁶); backgrounds are high

- continuum
 Multi-variate rejection with event shape, B tagging information, ...
- $B \rightarrow K^*\gamma$; $K^* \rightarrow K\pi$ Require excellent particle ID
- $B \rightarrow (\rho^{\pm,0},\omega)(\pi^0,\eta)$ Veto if γ found such that $M_{\gamma\gamma} \sim M_{(\pi,\eta)}$

Measurement of $B(B \rightarrow \rho(\omega) \gamma)$ (continued)

Remaining separation achieved by two-dimensional fit to⁴ the largely independent kinematic variables


$$M_{_{ES}} = \sqrt{E_{_{beam}}^{*2} - p_{_{B}}^{*2}}$$

$$\Delta E^* = E^*_{\scriptscriptstyle B} - E^*_{\scriptscriptstyle beam}$$

*In e+e- CMS frame

"Energy-substituted mass"; since $E_{beam} \sim M_B$, largely a measurement of momentum balance

 $E_B = E_{beam}$ for properly reconstructed candidate; total energy measurement

 $b \rightarrow s\gamma$ Feedthrough

m_c (GeV/c²)

- "self-calibrating" continuum background subtraction
- efficiencies (~5-15%)
 estimated with control
 samples

BaBar

∆ E (GeV)

Recent Updates of $B \rightarrow \rho(\omega) \gamma$

BEL	BELLE:		Phys.Rev.Lett.101:111801,2008, Erratum-ibid.101:129904,2008	
	Mode	Belle '06 (x10 ⁻⁷)	Belle '08 (x10 ⁻⁷)	
	ρ+ γ	$5.5^{\scriptscriptstyle +4.2 +0.9}_{\scriptscriptstyle -3.6 -0.8}$	$8.7^{\tiny +2.9 \ +0.9}_{\tiny -2.7 \ -1.1}$	
	ρ ⁰ γ	$12.5^{\scriptscriptstyle +3.7 +0.7}_{\scriptscriptstyle -3.3 -0.6}$	$7.8^{\scriptscriptstyle +1.7 +0.9}_{\scriptscriptstyle -1.6 -1.0}$	
	ωγ	$5.6^{\scriptscriptstyle +3.4}_{\scriptscriptstyle -2.7}{}^{\scriptscriptstyle +0.5}_{\scriptstyle -1.0}$	$4.0^{+1.9}_{-1.7} \pm 1.3$	

BaBar: → 423		→ 423 fb ⁻¹	Phys.	Rev.D78:112001,200	8
Ľ	Mode	BaBar '07 (x	(10 ⁻⁷)	BaBar '08 (x10 ⁻⁷)	
	ρ+ γ	$11.0^{+3.7}_{-3.3} \pm 0.$	9	$12.0^{\scriptscriptstyle +4.2}_{\scriptscriptstyle -3.7}\pm 2.0$	
	$\rho^0 \gamma$	$7.9^{\scriptscriptstyle +2.2}_{\scriptscriptstyle -2.0}\pm 0.6$		$9.7^{\tiny +2.4}_{\scriptstyle -2.2}\pm 0.6$	
4	ωγ	$4.0^{_{+2.4}}_{_{-2.0}}\pm0.4$	5	$5.0^{\scriptscriptstyle +2.7}_{\scriptscriptstyle -2.3}\pm 0.9$	

C

Isopsin-Averaged Branching Fractions

Assuming SU₃(F) symmetry $[B(B \rightarrow \rho^0 \gamma) \sim B(B \rightarrow \omega \gamma)]$ and

$$|\rho^{\circ}\rangle = \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle - |d\overline{d}\rangle \right) \qquad |\omega\rangle = \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right)$$

(approximately true by static quark model) we can write

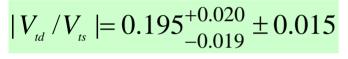
$$\Gamma(B^{\scriptscriptstyle +} \to \rho^{\scriptscriptstyle +} \gamma) = 2\Gamma(B^{\scriptscriptstyle 0} \to \rho^{\scriptscriptstyle 0} \gamma) = 2\Gamma(B^{\scriptscriptstyle 0} \to \omega \gamma)$$

from which it follows

$$\mathbf{B}[B \to (\rho, \omega)\gamma] \equiv \frac{1}{2} \left\{ \mathbf{B}(B^{+} \to \rho^{+}\gamma) + \frac{\tau_{B^{+}}}{\tau_{B^{0}}} \left[\mathbf{B}(B^{0} \to \rho^{0}\gamma) + \mathbf{B}(B^{0} \to \omega\gamma) \right] \right\}$$

→ Can combine ρ^+ , ρ^0 , ω results to derive $|V_{td}/V_{ts}|$ from

$$\frac{\mathrm{B}(B \to (\rho, \omega)\gamma)}{\mathrm{B}(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \left(\frac{1 - m_{\rho}^2 / M_B^2}{1 - m_{K^*}^2 / M_B^2}\right) \varsigma^2 \left[1 + \Delta R\right]$$



$|V_{td}/V_{ts}|$ from Exclusive (ρ,ω) Decays

Assuming static quark model, SU(3)_F symmetry, can combine to get "isospin-averaged" BF, and then $|V_{td}/V_{ts}|$: BELLE:

 $B(B \to (\rho, \omega)\gamma) = (11.4 \pm 2.0^{+1.0}_{-1.2}) \times 10^{-7}$ yielding

Phys.Rev.Lett.101:111801,2008, Erratum-ibid.101:129904,2008

BaBar:

assuming the world-average $B(B \rightarrow K^* \gamma) = (4.16 \pm 0.17) \times 10^{-5}$

Combining, for exclusive radiative decay overall:

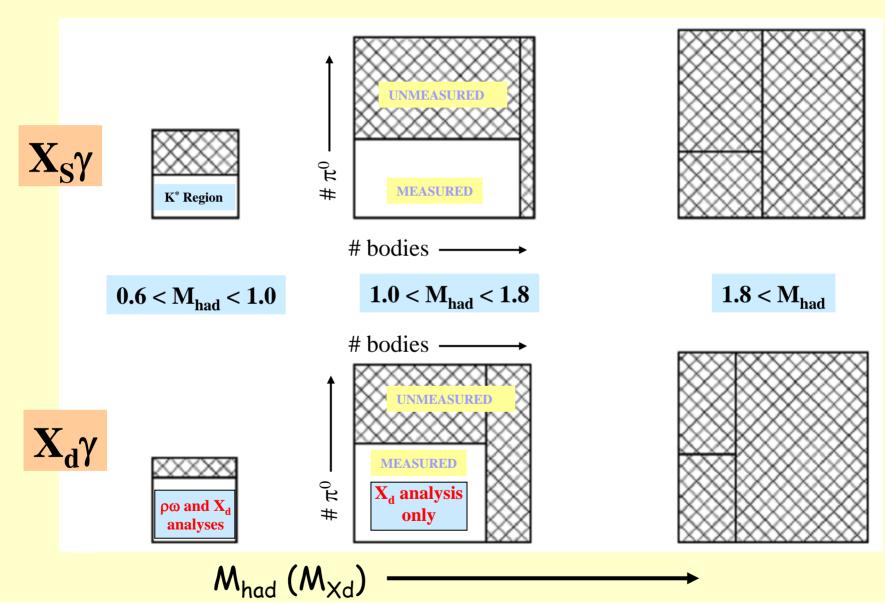
 $|V_{td}/V_{ts}| = 0.210 \pm 0.015 \pm 0.018$

Semi-Inclusive Approach: $B \rightarrow X_d \gamma$ (Preliminary)

"New" Approach (BaBar): Reconstruct seven exclusive final states $X_{d\gamma}$ in range 0.6 GeV/c² < M_{Xd} < 1.8 GeV/c²

Ý.
 ••

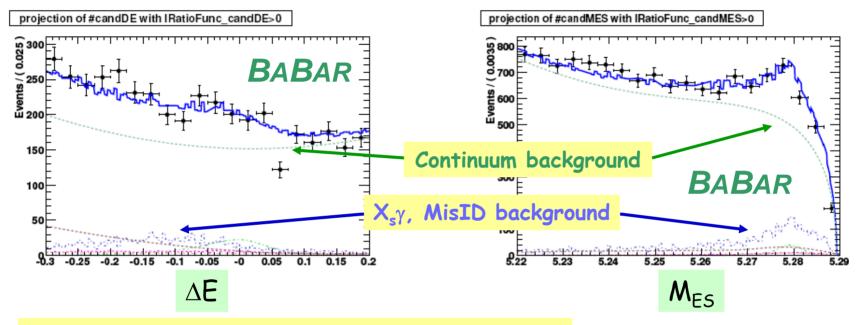
iType	X_s	X_d
1	$K^+\pi^-\gamma$	$\pi^+\pi^-\gamma$
2	$K^+\pi^0\gamma$	$\pi^+\pi^0\gamma$
3	$K^+\pi^-\pi^+\gamma$	$\pi^+\pi^-\pi^+\gamma$
4	$K^{+}\pi^{-}\pi^{0}\gamma$	$\pi^+\pi^-\pi^0\gamma$
6	$K^+\pi^-\pi^+\pi^-\gamma$	$\pi^+\pi^-\pi^+\pi^-\gamma$
7	$K^+\pi^-\pi^+\pi^0\gamma$	$\pi^+\pi^-\pi^+\pi^0\gamma$
9	$K^+ \eta^0 \gamma$	$\pi^+\eta^0\gamma$


 $|V_{td}/V_{ts}|^2$ related to $\Gamma(b \rightarrow d\gamma)/\Gamma(b \rightarrow s\gamma)$ with ~1% theoretical uncertainty [Ali, Asatrian, Greub, Phys. Lett. B 429, 87 (1998)]

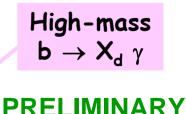
However, must correct for unmeasured regions:

- Higher-multiplicity final states
- Higher-mass hadronic component (i.e. $M_{Xd} > 1.8 \text{ GeV/c}^2$) Bruce Schumm Davis 2/17/08 Seminar: b \rightarrow s(d) γ Transition Rates 32

Measured Regions for $B \rightarrow X_{d(s)} \gamma$



$B \rightarrow X_{(s,d)} \gamma$ Partial Branching Fraction Results



Fit in high-mass $X_d \gamma$ region 1.0 < M_{had} < 1.6 GeV/c²

Yields and partial branching fractions:

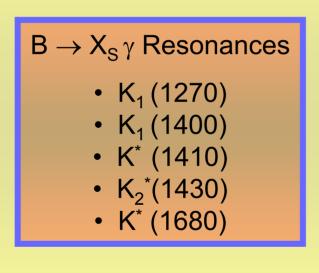
Mode	Mass Range	Yield	Efficiency	Partial B. F. $(\times 10^{-6})$
$b \rightarrow s \gamma$	$0.6 < M_{X_s} < 1.0$	1543 ± 46	8.5%	$23.7 \pm 0.7 \pm 1.7$
$b \rightarrow s \gamma$	$1.0 < M_{X_s} < 1.8$	2279 ± 75	6.1%	$48.7 \pm 1.6 \pm 4.1$
$b \rightarrow d\gamma$	$0.6 < M_{X_d} < 1.0$	66 ± 26	7.0%	$1.2\pm0.5\pm0.1$
$b \rightarrow d\gamma$	$1.0 < M_{X_d} < 1.8$	107 ± 47	5.2%	$2.7 \pm 1.2 \pm 0.4$

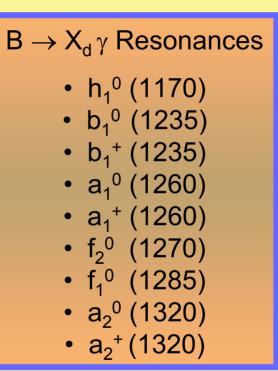
MC Simulation

- Two-body $X_{s(d)}\,\gamma$ decay; mass spectrum of $X_{s(d)}$ system given by Kagan-Neubert model
 - A.L. Kagan, M. Neubert, Phys. Rev. D 58, 094012 (1998)
- Fragment X_s system via prior experimental constraint
- Fragment X_d system via phase space

Missing modes with $0.6 < M_{\chi} < 1.0$

- MC suggests this region is dominated by resonaces (ρ and ω); confirmed by K* dominance of $B \rightarrow X_s \gamma$
- Correction for missing modes well understood




 $B \rightarrow X_{(d,s)}\gamma$: Correction for Missing Modes

Missing Modes with $1.0 < M_X < 1.8$

Force 50% of decays to un-weighted mix of higher-mass resonances

- Force X_d decay to be identical to X_s decay up to substitution $s \leftrightarrow d$

BaBar

Conclusion from missing modes studies:

•Systematic incorporated by varying extra bodies and extra neutrals, independently, by $\pm 50\%$

•Can improve with statistics via internal constraints (e.g. $X_{s\gamma}$ fragmentation)

•Dominant systematic error for $1.0 < M_X < 1.8 \text{ GeV/c}^2$

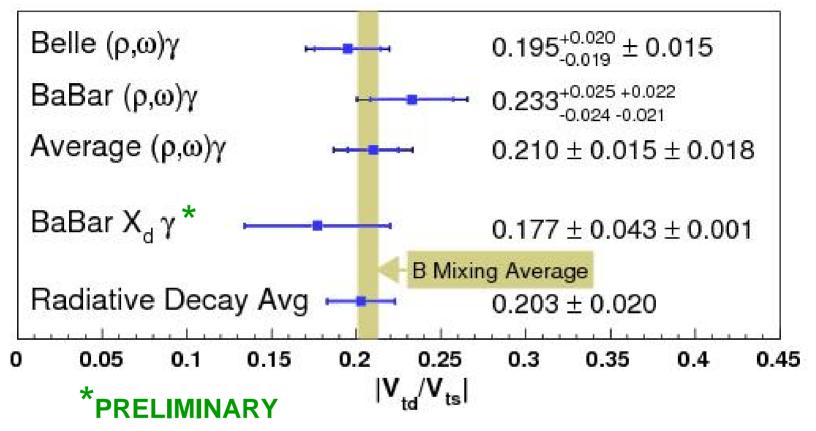
Errors: Stat. ± Experimental Syst. arXiv:0807.4975 [hep-ex]; accepted by PRL					
	Mass Range (GeV/c^2)	$B(b \rightarrow d\gamma) \ (\times 10^{-6})$	$B(b \rightarrow s\gamma) \; (\times 10^{-6})$	$B(b \to d\gamma)/B(b \to s\gamma)$	
	$0.6 < M_{X_{(s,d)}} < 1.0$	$1.2 \pm 0.5 \pm 0.1$	$47 \pm 1 \pm 3$	$0.026 \pm 0.011 \pm 0.002$	
	$1.0 < M_{X_{(s,d)}} < 1.8$	$6.0 \pm 2.6 \pm 2.3$	$168 \pm 14 \pm 33$	$0.036 \pm 0.015 \pm 0.009$	
	$0.6 < M_{X_{(s,d)}} < 1.8$	$7.2 \pm 2.7 \pm 2.3$	$215 \pm 14 \pm 33$	$0.033 \pm 0.013 \pm 0.009$	

Primary experimental result

PRELIMINARY

BABAR

Extrapolation to $\Gamma(b \rightarrow d\gamma)/\Gamma(b \rightarrow s\gamma)$


Measured region 0.6 < M_X < 1.8 is ~50% of width

Extrapolate to full mass region via "KN Model"; KN calculation suggests negligible difference and uncertainty in extrapolation of the ratio (because $m_s, m_d << 1.8 \text{ GeV/c}^2$?)

BaBa

No evidence for non-Standard Model contribution to the decay width.

Concluding Remarks

- $B \rightarrow s\gamma$ continues to be leading constraint on MSSM parameter space
- More data exists (~80% of BaBar sample) to improve measurement, but "inclusive" approach starting to be limited by difficult systematics
- "Semi-inclusive" approach has systematics independent of inclusive approach; very little of existing sample has been analyzed in this way.
- Radiative measurements of |V_{td}/V_{ts}| are becoming precise:

 $|V_{td}/V_{ts}|_{rad} = 0.203 \pm 0.020$

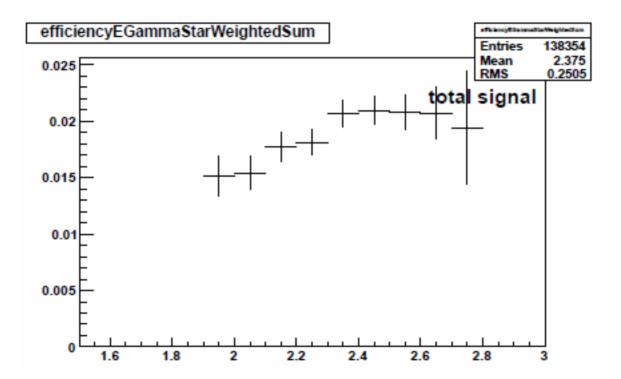
- Semi-inclusive approach works, and is independent of exclusive approach, with small theoretical uncertainty
- Agreement with SM (as constrained by B mixing) is good

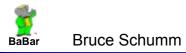
In principle, the severe SM suppression of this radiative process (x10⁻⁶ of B mixing) should make it very sensitive to new physics contributions.

Have we fully thought through the meaning of this constraint?

BaBar

Backup Slides




Inclusive Measurement of b \rightarrow sy: Practicalities

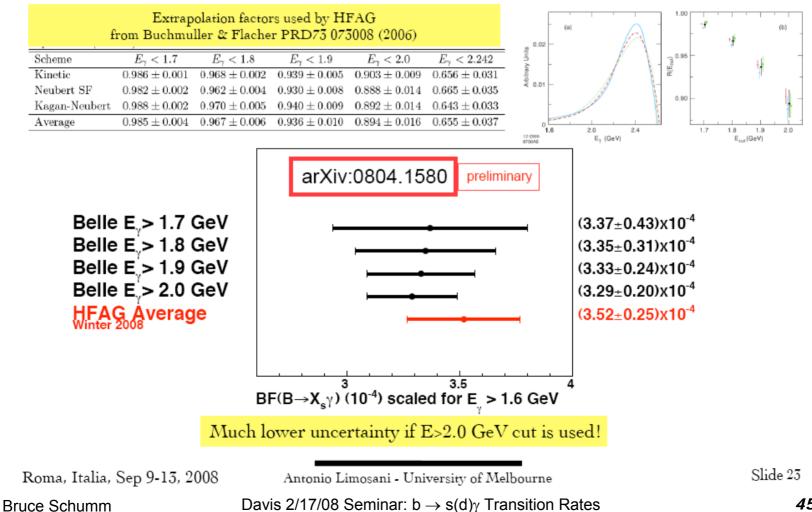
Background + Signal function has 12 parameters.

Signal =
$$\begin{cases} A_g[f_1G(m,\mu_1,\sigma_1) + (1-f_1)G(m,\mu_2,\sigma_2)] & \text{for } m > m_0 \\ N\left[\frac{p\sigma_1/\lambda}{(m_0-m) + p\sigma_1/\lambda}\right]^p & \text{for } m < m_0 \end{cases}$$

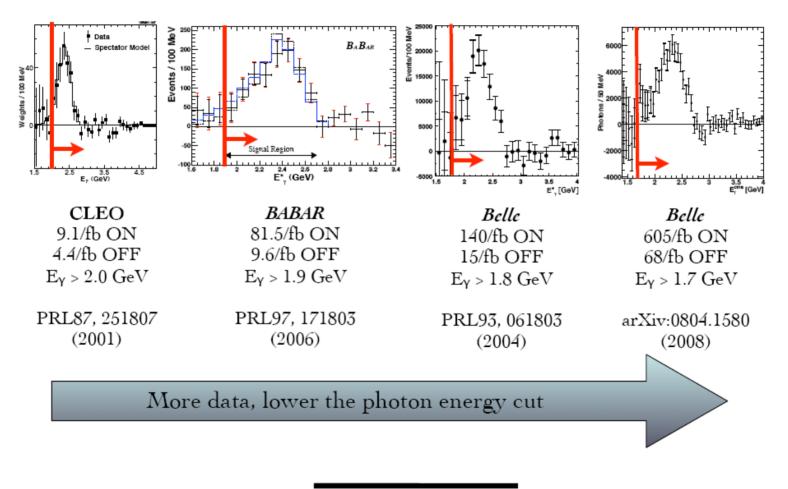
where $m_0 \equiv \mu_1 - \lambda \sigma_1$

Background =
$$\frac{am^b}{(m^2 + c)^d}$$

	Fixed Parameters	Floated Parameters
1. Fit π^0 signal	$\mu_2, \sigma_2/\sigma_1$	$\lambda, f_1, \mu_1, \sigma_1, p, A_g$
2. Fit π^0 signal+bkgd	$\mu_2,\sigma_2/\sigma_1,\lambda,f_1$	$\mu_1,\sigma_1,p,A_g,a,b,c,d$
3. Fit On-peak Data	$\mu_2, \sigma_2/\sigma_1, \lambda, f_1$	$\mu_1,\sigma_1,p,A_g,a,b,c,d$
4. Fit Off-peak Data	$\mu_2, \sigma_2/\sigma_1, \lambda, f_1, \mu_1, \sigma_1, p$	A_g, a, b, c, d



BaBar


Which is the best cut to use?

Summary of Fully Inclusive

Roma, Italia, Sep 9-13, 2008

