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Outline

• Why do we need to measure the spin?

• Why is it so difficult to measure the spin?

• What is wrong with the previous proposals?

– Spin measurements

– Coupling measurements

– Mixing angle measurements

• Why do you need to read our paper?

• How should you read our paper?

• What does our paper actually say?

– Analytical approach to measurements of spins and couplings

– No backgrounds (SM and combinatorial), no simulation

– Study on the kinematics of signal

– Present the basic idea of methods

• Examples (SPS1a and top in leptonic decay)

• Mass measurements (using mT2)

• Summary and discussion



Is measurement of spins and masses important ?

• IPMU Workshop on Masses and Spins - 16-20 March 2009,
”Determination of Masses and Spins of New Particles at the LHC”

• Similar workshop will be held at UC Davis (with MC4BSM) 2009

• Many papers · · ·



Why do we need to measure the spin?

• spins differy by 1/2 smae as SM same as SM

• higher levels no yes no



Why is it so difficult to measure the spin?

• How do we measure mass?



Why is it so difficult to measure the spin?

• How do we measure mass? • We cannot measure spin the same way!



Why is it so difficult to measure the spin?

• Missing energy signatures arise from something like:

D C B A

• Several alternative explanations:

S Spins D C B A Example

1 SFSF Scalar Fermion Scalar Fermion q̃ → χ̃0
2 → ℓ̃ → χ̃0

1

2 FSFS Fermion Scalar Fermion Scalar q1 → ZH → ℓ1 → γH

3 FSFV Fermion Scalar Fermion Vector q1 → ZH → ℓ1 → γ1

4 FVFS Fermion Vector Fermion Scalar q1 → Z1 → ℓ1 → γH

5 FVFV Fermion Vector Fermion Vector q1 → Z1 → ℓ1 → γ1

6 SFVF Scalar Fermion Vector Fermion —



Why is it so difficult to measure the spin?
• Inevitable dependence on other parameters:

D C B A
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• Any observable that knows about spins, also knows about

– Masses (mA, mB, mC, mD)

– Couplings and mixing angles (gL and gR) : gL,R ≡ U†
Fg0

L,RUB

– Particle-antiparticle (D/D̄) fraction f (f + f̄ = 1)

• What is it that you are really measuring?
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Most likely chronology
• Measure the SM backgrounds (rediscover SM)

• Find a missing energy signal

• Convince yourself it is a real signal

• Measure the cross-section (times BR)

• Measure the overall mass scale

• Observe structures, measure individual masses

• Measure spins?

• Then perhaps also measure

– Chirality of the couplings (L versus R)
– Mixing angles
– Particle-antiparticle fraction



What is wrong with the previous spin methods ?

• Most previous studies compared two models A and B, which have

• Different spins

– Identical mass spectrum (OK)
– Identical couplings and mixing angles (not OK)
– Identical particle-antiparticle fraction f (not OK)

• If you can see a difference, you have measured the spins

• Not so fast! Problems:

– It’s the wrong chronological order
– It’s not a pure spin measurement



What is wrong with the previous spin methods ?
• We cannot measure the fermion helicity

• Previous work considered only certain helicity combinations (shown in blue)

• We consider all possibilities (both blue and red)
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What is the question that we ask?

• Given the data, which of the 6 spin configurations gives a good fit
for some choice of the unknown parameters

• We only assume that we know things that would be measured at the
time:

– Mass spectrum

• We allow all remaining unknown parameters to float

– Chirality of the couplings
– Superpartner mixing angles
– Particle-antiparticle fraction



What is wrong with the previous methods for

measuring the chirality of SUSY couplings?



What is wrong with the previous methods for

measuring the chirality of SUSY couplings?

• What methods for measuring chirality ?



What is wrong with the previous methods for

measuring the mixing angles of superpartners?



What is wrong with the previous methods for

measuring the mixing angles of superpartners?

• What methods for measuring mixing angles?

• Our method allows to measure not only the
spins, but also some combinations of the
coupling chiralities and the mixing angles of
the new particles



Why do you need to read our paper?
• It is correct.

• You won’t need to read the previous literature.

• Our proposed distributions will be studied anyway.

• You will learn a clever trick

• Referee says: The authors have presented a valuable analytic
exploration of the spin dependence of the well-studied invariant mass
distributions expected in SUSY, UED, and other models. Their
approach is completely model independent, unlike all other spin
studies to my knowledge, and therefore is far more important than
all other spin studies to date. Therefore I recommend publication.
These distributions will be used anyway by experimentalists, and their
spin properties should be understood and utilized. The creation of
new distributions with easily understood properties from the usual
invariant masses is quite clever.



How should you read our paper?

• Most common complaint: I would love to read your paper, but it’s
67 pages! Come on, do you really expect me to read all that stuff?
Who has time for that?



How should you read our paper?

• Most common complaint: I would love to read your paper, but it’s
67 pages! Come on, do you really expect me to read all that stuff?
Who has time for that?

• Good news: you don’t have to read all of it.

• Reading guide:

– Sec. I: Intro (10 pages, no formulas)
– Skip Secs. II and III (16 pages, lots of formulas)
– Sec. IV: The method. (6 pages, 3 basic formulas)
– Sec. V: Examples. (15 pages, only plots, no formulas)
– Skip Sec VI: Conclusions. Do not even look at Appendix A, B or

C.



What does our paper actually say?

• no simulation

• no background

– no SM backgrounds
– no combinatorial backgrounds

(this depends on the decay of the other side)
– will include ambiguity between q and q̄, and ℓn and ℓf

• Assume all masses are known

• Present analytical approach to measurement of spins, coupling and
mixing angles



Spin determination

• cross section (spin of mother particle + branching fractions)

• azimuthal angle between production and decay planes (spin of
intermediate particle)

• production angle (spin of mother particle)

• threshold scan (spin of mother particle)

• asymmetry (exploits shape of invariant mass distributions)

• · · ·



Spin determination - production cross-section

• G. Kane et al: “Basically, if the mass and the production cross-section are measured,

the spin is then determined” (arXiv:0805.1397)
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Spin determination - production cross-section

• Are we really measuring the production cross-section?

Rate = L
h

σ(XX) + σ(XY )BR(Y → X) + σ(Y Y )BR2(Y → X)
i

BR2(X → SM)

• How can we be sure that

– There is no contribution from indirect production of particle Y?

– Think of W pair production from top quarks

– The branching fraction B(X → SM) is 100 %?

• Even if we were able to measure

– It depends on the mass of X (OK, it will be measured)

– It depends on the mass of heavy t-channel paticles (?)

– It depends on the coupling of X to gluons (?)

– It depends on the coupling of X to quarks (?)

– It depends on the representation (Number of colors) of X (?)

– It depends on the spin of X (Yes! That’s what we want)

• Conclusion: it is very unlikely that by measuring a single number (such as a cross-

section) we will be able to determine the spin. We have to look at distributions.



What is a good distribution to look at?

• Invariant mass distributions!

• Advantages: well studied, know about spin.

• For adjacent SM particles

dN

dm2
= a0 + a2m

2 + a4m
4 + · · ·

• Plot versus m2!

• For an intermediate BSM particle of spin s, the highest order term is m4s

• For non-adjacent BSM particles, there are log terms as well.

• Disadvantage: know about many other things (hidden in the coefficients a), not all

of which are measured!

– Masses mA, mB, mC, mD (x,y,z)

– Couplings and mixing angles (gL and gR)

– Particle-antiparticle (D/D*) fraction (f/f*) (f+f*=1)



Model-independent approach

• Most general parameterization of the couplings

D C B A

q ℓn ℓf

cLPL + cRPR bLPL + bRPR aLPL + aRPR

L(F, f, Φ) = Ψ̄F(gLPL + gRPR)ΨfΦ + h.c.

L(F, f, Aµ) = Ψ̄Fγµ(gLPL + gRPR)ΨfAµ + h.c.

• Each vertex has 4 real parameters, |aL|, |aR|, 2 phases

– The phases are unobservable

– The product |aL| · |aR| absorbed in the normalization

– The ratios |aR|/|aL| defined as new parameters

tan ϕa =
|aR|
|aL|

, tan ϕb =
|bR|
|bL|

, tan ϕc =
|cR|
|cL|

.



Helicity combinations
• We cannot measure the fermion helicity

• Previous work considered only certain helicity combinations

• We also consider all remaining possibilities

• Each block gives rise to a specific function F (p)
S;IJ

• The functions FS;IJ provide a model independent basis for the spin analysis
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• The index p denotes one of the five possible SM particle pairs: p =

{jℓ−n , jℓ+
n , jℓ−f , jℓ+

f , ℓ+ℓ−}; m̂p is the unit-normalised invariant mass

m̂p ≡ mp

mmax
p

, 0 ≤ m̂p ≤ 1 ,

i.e. the invariant mass mp scaled by the value of the corresponding kinematic

endpoint mmax
p , which has already been measured from the corresponding mp

distribution.

• K does not depend on masses and spins, only depends on couplings and f/f̄ .

• F does not depend on couplings and f/f̄ , only depends on masses and spins.



Classification of helicity combinations

Processes P11 Processes P12
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Invariant masses in the {F
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• Normalization
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• Observable distributions: qℓ+, qℓ−, ℓ+ℓ−, qℓ+ℓ−



The method
• Observable distributions
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• F functions are known in particular cascade decay (qℓℓ in this case).



• α, β and γ are theory parameters and these can be obtained by fitting experimental

distributions with F functions.

• For qℓℓ, they are

α(ϕb, ϕa) = cos 2ϕb cos 2ϕa ,

β(ϕ̃c, ϕb) = cos 2ϕ̃c cos 2ϕb = (f − f̄) cos 2ϕc cos 2ϕb ,

γ(ϕa, ϕ̃c) = cos 2ϕa cos 2ϕ̃c = (f − f̄) cos 2ϕa cos 2ϕc ,

• The parameters α, β and γ are not completely independent from each other.

For any given α, the physically allowed region in the (β, γ) parameter space is

described by an envelope which satisfies

αβ ≤ γ, βγ ≤ α, γα ≤ β , if α > 0, β > 0 and γ > 0 ,

αβ ≥ γ, βγ ≤ α, γα ≥ β , if α > 0, β < 0 and γ < 0 ,

αβ ≥ γ, βγ ≥ α, γα ≤ β , if α < 0, β > 0 and γ < 0 ,

αβ ≤ γ, βγ ≥ α, γα ≥ β , if α < 0, β < 0 and γ > 0 .

• Couplings (mixing angles) are defined in terms of fitted values
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αβγ ,

cos 2ϕb = ±1

γ

p
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cos 2ϕc = ± 1

f − f̄

1

α

p
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where in all three equations one should take either the “+” or the “−” sign on the

right-hand side.

• The origin of this two-fold ambiguity is easy to understand. Observe that the

defining equations (1-1) for α, β and γ are invariant under the simultaneous

transformations

ϕa → π

2
− ϕa , ϕb → π

2
− ϕb , ϕc → π

2
− ϕc ,

whose effect is precisely to flip the signs in the right-hand sides of definitions of

parameters. Given the defining relation, this transformations are equivalent to the

chirality exchange.

|aL| ↔ |aR| , |bL| ↔ |bR| , |cL| ↔ |cR| .



• Measurement of couplings (mixing angles)
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• Measurement of f/f̄

0 ≤ f ≤ 1
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Does this really make any difference?

• Yes! Dilepton invariant mass distribution. Data from SPS1a.

Athanasiou, Lester, Smillie, Webber 06 Burns, Kong, Matchev, Park 08
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• Spins vary • Mass spectrum fixed to SPS1a values

• Everything else fixed to SPS1a values • Everything else varies

• Easy to distinguish! • Difficult to distinguish!



Does this really make any difference?

• Yes! Yes! Lepton charge (Barr) asymmetry. Data:“UED” with SPS1a mass

spectrum.

Athanasiou, Lester, Smillie, Webber 06 Burns, Kong, Matchev, Park 08
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• Spins vary • Mass spectrum fixed to SPS1a values

• Everything else fixed to SPS1a values • Everything else varies

• Easy to distinguish! • Difficult to distinguish!



The twin spin scenario 1: FSFS/FSFV

• F functions (for any p ∈ {ℓℓ, jℓn, jℓf}) for FSFS and FSFV are related.

F (p)
3;α = F (p)

2;α

1 − 2z

1 + 2z
,

F (p)
3;β = F (p)

2;β = 0 ,

F (p)
3;γ = F (p)

2;γ = 0 ,

F (p)
3;δ = F (p)

2;δ

• The relation

α2 = α3

1 − 2z

1 + 2z

is sufficient to guarantee that all invariant mass distributions (L+−, S+− and



D+−) are exactly the same in the case of S = 2 (FSFS) and S = 3 (FSFV):

L
+−
2

„

m̂
2
ℓℓ; x, y, z, α3

1 − 2z

1 + 2z

«

= L
+−
3

“

m̂
2
ℓℓ; x, y, z, α3

”

,

S+−
2

„

m̂2
jℓ; x, y, z, α3

1 − 2z

1 + 2z

«

= S+−
3

“

m̂2
jℓ; x, y, z, α3

”

,

D+−
2

“

m̂2
jℓ; x, y, z, β2, γ2

”

= D+−
3

“

m̂2
jℓ; x, y, z, β3, γ3

”

.

• Our conclusion therefore is that the issue of confusing the two models FSFS and

FSFV depends on whether the data comes from FSFV and we are trying to fit it

with FSFS, or whether the data comes from FSFS and we are trying to fit it with

FSFV. In the former case the two models will always be confused with each other,

while in the latter case, the confusion arises only if α2 happens to satisfy

|α2| ≤
˛

˛

˛

˛

1 − 2z

1 + 2z

˛

˛

˛

˛

.



The twin spin scenario 2: FVFS/FVFV

• F functions (for any p ∈ {ℓℓ, jℓn, jℓf}) for FVFS and FVFV are related.

F (p)
5;α = F (p)

4;α

1 − 2z

1 + 2z
,

F (p)
5;β = F (p)

4;β ,

F (p)
5;γ = F (p)

4;γ

1 − 2z

1 + 2z
,

F (p)
5;δ = F (p)

4;δ

• Redefine parameters:

α4 = α5

1 − 2z

1 + 2z
,

β4 = β5 ,

γ4 = γ5

1 − 2z

1 + 2z



which would once again guarantee that all invariant mass distributions are exactly

the same in these two cases:

L+−
4

„

m̂2
ℓℓ; x, y, z, α5

1 − 2z

1 + 2z

«

= L+−
5

“

m̂2
ℓℓ; x, y, z, α5

”

,

S
+−
4

„

m̂
2
jℓ; x, y, z, α5

1 − 2z

1 + 2z

«

= S
+−
5

“

m̂
2
jℓ; x, y, z, α5

”

,

D
+−
4

„

m̂
2
jℓ; x, y, z, β5, γ5

1 − 2z

1 + 2z

«

= D
+−
5

“

m̂
2
jℓ; x, y, z, β5, γ5

”

.

• Following the same logic as before, we conclude that whenever the data comes

from FVFV, the model will always be confused with FVFS. However, if the data

comes from FVFS, the confusion arises only if α4 and γ4 happen to satisfy

|α4| ≤
˛

˛

˛

˛

1 − 2z

1 + 2z

˛

˛

˛

˛

,

|γ4| ≤
˛

˛

˛

˛

1 − 2z

1 + 2z

˛

˛

˛

˛

.

In addition to these two equations, the values of α4, β4 and γ4 must also satisfy

the domain constraints.



Spin determination at the Tevatron

• At a pp̄ collider such as the Tevatron, the symmetry of the initial state implies

f = f̄ =
1

2

• On the surface, it may appear that this constraint eliminates only one out of the

four model-dependent degrees of freedom (f , ϕa, ϕb and ϕc) that we originally

started with. However, the constraint cos 2ϕ = (f − f̄) cos 2ϕ in fact completely

fixes the ϕ̃c parameter

ϕ̃c =
π

4
and as a result both β and γ vanish identically:

β = γ = 0 .

• In that case we have

D+−
S ≡ 0

• A similar result holds for the lepton charge asymmetry

A
+−
S ≡ 0 .



Determination of spins and couplings: examples

• For the SPS1a mass spectrum we take the values used in literatures

mA = 96 GeV, mB = 143 GeV, mC = 177 GeV, mD = 537 GeV ,

which translate into

x = 0.109, y = 0.653, z = 0.451 .

• SPS1a is characterised by the following approximate values for the coupling

constants

aL = 0, aR = 1, bL = 0, bR = 1, cL = 1, cR = 0,

and particle-antiparticle fractions f and f̄ at the LHC

f = 0.7, f̄ = 0.3 .



• The spectrum results in the following kinematic endpoints.

mmax
ℓℓ = mD

q

x(1 − y)(1 − z) = 77.31 GeV ,

m
max
jℓn

= mD

q

(1 − x)(1 − y) = 298.77 GeV ,

m
max
jℓf

= mD

q

(1 − x)(1 − z) = 375.76 GeV ,

m
max
jℓℓ = mD

q

(1 − x)(1 − yz) = 425.94 GeV .

• Since we assume that the spectrum has been measured, the values of these

endpoints are also known in advance of the spin measurement. We are therefore

still allowed to write the measured invariant mass distributions in terms of the

dimensionless invariant masses.

• Substituting the SPS1a parameter choice into the definitions of angles yields the

following values of our model-dependent parameters α, β and γ

α = 1, β = −0.4, γ = −0.4 .

• Fitting procedure

χ
2
(α, β, γ) ≡

Z 1

0

“

f0(m̂
2
, α0, β0, γ0) − f(m̂

2
, α, β, γ)

”2

dm̂
2
,



SFSF example (S = 1)

L
+−
1 = 1 ,

S+−
1 =

8

>

>

>

<

>

>

>

:

2.810 m̂2
jℓ ≤ 0.632

1.228 0.632 ≤ m̂2
jℓ ≤ 0.653

−2.880 log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

D+−
1 =

8

>

>

>

<

>

>

>

:

−0.668 + 2.002 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.035 0.632 ≤ m̂2
jℓ ≤ 0.653

6.633 − 6.633 m̂2
jℓ + 5.481 log m̂2

jℓ 0.653 ≤ m̂2
jℓ .



FSFS example (S = 2)

L
+−
2 = 2 − 2m̂

2
ℓℓ ,

S+−
2 =

8

>

>

>

<

>

>

>

:

2.898 m̂2
jℓ ≤ 0.632

1.316 0.632 ≤ m̂2
jℓ ≤ 0.653

−16.583 + 16.583 m̂2
jℓ − 16.583 log m̂2

jℓ 0.653 ≤ m̂2
jℓ ,

D+−
2 = 0 ,



FSFV example (S = 3)

L
+−
3 = 1.052 − 0.104 m̂

2
ℓℓ ,

S+−
3 =

8

>

>

>

<

>

>

>

:

2.815 m̂2
jℓ ≤ 0.632

1.233 0.632 ≤ m̂2
jℓ ≤ 0.653

−0.860 + 0.860 m̂2
jℓ − 3.590 log m̂2

jℓ 0.653 ≤ m̂2
jℓ ,

D+−
3 = 0 ,



FVFS example (S = 4)
L

+−
4 = 0.492 + 1.016 m̂

2
ℓℓ ,

S
+−
4 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2.307 + 3.455 m̂2
jℓ − 4.553 m̂4

jℓ m̂2
jℓ ≤ 0.632

1.028 + 0.577 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

−42.563 − 12.368 m̂2
jℓ + 54.931 m̂4

jℓ

−
“

7.871 + 90.785 m̂2
jℓ

”

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

D
+−
4 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

−0.22 + 0.616 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.092 + 0.212 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

−3.087 + 3.087 m̂2
jℓ

−
“

0.874 + 2.678 m̂2
jℓ

”

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,



FVFV example (S = 5)
L

+−
5 = 0.974 + 0.053 m̂

2
ℓℓ ,

S
+−
5 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2.496 + 2.908 m̂2
jℓ − 4.553 m̂4

jℓ m̂2
jℓ ≤ 0.632

1.217 + 0.030 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

27.809 − 43.679 m̂2
jℓ + 15.870 m̂4

jℓ

+
“

14.382 − 4.710 m̂2
jℓ

”

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

D
+−
5 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

−0.139 + 0.415 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.011 + 0.011 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

1.109 − 1.109 m̂2
jℓ

+
“

1.004 − 0.139 m̂2
jℓ

”

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,



SFVF example (S = 6)
L

+−
6 = 1.626 − 0.981 m̂

2
ℓℓ − 0.405 m̂

4
ℓℓ ,

S+−
6 =

8

>

>

>

<

>

>

>

:

2.87 m̂2
jℓ ≤ 0.632

1.288 0.632 ≤ m̂2
jℓ ≤ 0.653

−0.344 − 4.493 m̂2
jℓ + 4.837 m̂4

jℓ − 5.870 log m̂2
jℓ 0.653 ≤ m̂2

jℓ,

D
+−
6 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

−0.322 + 0.786 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.406 + 1.051 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

5.870 − 11.674 m̂2
jℓ + 5.804 m̂4

jℓ

+
“

3.384 − 3.595 m̂2
jℓ

”

log m̂2
jℓ 0.653 ≤ m̂2

jℓ,



Determination of spins and couplings: SPS1a

Data Can this data be fitted by model

from SFSF FSFS FSFV FVFS FVFV SFVF

SFSF yes no no no no no

FSFS no yes maybe no no no

FSFV no yes yes no no no

FVFS no no no yes maybe no

FVFV no no no yes yes no

SFVF no no no no no yes

• Summary of the results from our spin discrimination analysis

• The two cases labelled “maybe” correspond to the potential confusion of an FSFS

(FVFS) chain with an FSFV (FVFV) chain, which occurs only for a certain range

of the model-dependent parameters.

• The reverse may also be true, depending on the mass spectrum

• How does simulation change conclusion of these tables ?



Measurements of couplings and mixing angles

dN

dm̂2
= FS;δ + αFS;α + βFS;β + γFS;γ

• Available measurements of the model-dependent parameters α, β and γ for each

of the six spin configurations

Spin Parameters measured from distribution

chain L+− S+− D+− L+− ⊕ S+− ⊕ D+−

SFSF − − β β

FSFS α α − α

FSFV α α − α

FVFS α α β, γ α, β, γ

FVFV α α β, γ α, β, γ

SFVF α α β, γ α, β, γ

• Good news for parameter fitters! Typically each distribution requires a 1-parameter

fit (at worst, 2-parameter fit).



FVFS, FVFV and SFVF (three measurements)

• If we have correctly determined the spin chain, these values will be simply the

starting SPS1a inputs. Substituting those in correct spin scenario, we obtain the

two sets of solutions

|aL| = 0, |aR| = 1, |bL| = 0, |bR| = 1,

|cL| =

s

1

2
+

0.2

2f − 1
, |cR| =

s

1

2
− 0.2

2f − 1
,

and

|aL| = 1, |aR| = 0, |bL| = 1, |bR| = 0,

|cL| =

s

1

2
− 0.2

2f − 1
, |cR| =

s

1

2
+

0.2

2f − 1
,

• Constraint on f : 0.7 ≤ f ≤ 1

• FVFS (S=4) fakes FVFV (S=5): our fitting procedure found

α = 0.05, β = −0.4, γ = −0.02



• Corresponding solutions are

|aL| = 0.69, |aR| = 0.72, |bL| = 0, |bR| = 1,

|cL| =

s

1

2
+

0.2

2f − 1
, |cR| =

s

1

2
− 0.2

2f − 1
,

or

|aL| = 0.72, |aR| = 0.69, |bL| = 1, |bR| = 0,

|cL| =

s

1

2
− 0.2

2f − 1
, |cR| =

s

1

2
+

0.2

2f − 1
.

• For the “wrong” spin chain we also obtain a constraint on the allowed range of the

particle-antiparticle fraction f at the LHC:

0.7 ≤ f ≤ 1 .



SFSF and FSFS/FSFV

• SFSF: only β is measured

cos 2ϕb cos 2ϕ̃c = −0.4 or (2f − 1) cos 2ϕb cos 2ϕc = −0.4 .

• All four parameters ϕa, ϕb, ϕc and f remains completely unknown.

• FSFS and FSFV: α parameter (which gives us a relation between ϕa and ϕb) is

measured

α = cos 2ϕb cos 2ϕa = 1 .

• |aL|, |aR|, |bL| and |bR|, up to the usual L ↔ R ambiguity:

ϕa = ϕb =
π

2
=⇒ |aL| = 0, |aR| = 1, |bL| = 0, |bR| = 1 ,

or

ϕa = ϕb = 0 =⇒ |aL| = 1, |aR| = 0, |bL| = 1, |bR| = 0 .

• In either case, |cL|, |cR| and f will remain unconstrained.



Are twin scenarios really identical ?

• What about mqℓℓ distribution ?

• Require two identical cascade decays and apply kinematic constraints.
In principle we know all the momenta of particles including two
missing particles. What about invariant distributions involving a
missing particle?

• What about other distributions such as pT and η of visible particles ?



Application to the SM top

• SM predicts dN

dm̂2
bℓ

= 0.91 + 2.34m̂2 − 3.28m̂4

• non-zero m̂4 confirms W± is a vector boson (confirms FVF spin chain)

• The values of coefficients give cos 2φtWb cos 2φWℓν = 1, i.e., tWb and Wℓν

have the same chiral structure (either left-handed or right-handed)

• There are two independent measurements from the shape

• One constraint from the mbℓ end point

• Can we really measure all three masses ? (Yes, can be done analytically)



How to measure masses

• Resonance - no missing particles

• Transverse mass - a missing particle is balanced by visible particles

• One side of cascades - invariant masses and kinematic endpoints

• Two identical cascades

– Kinematic constraints
– mT2 - measures mass difference only

• · · ·



What if there are two missing particles?: mT2

(Barr, Lester, Stephens, hep-ph/0304226, “m(T2): The Truth behind the glamour”)

(Lester, Summers, hep-ph/9906349)

ℓ̃−

ℓ+

ℓ̃+

χ̃0
1

χ̃0
1

q1

q2

p1

p2

ℓ−

• /ET = ~q1 + ~q2 = − (~p1 + ~p2)

• If ~q1 and ~q2 are obtainable,

m2
ℓ̃
≥ max

˘

m2
T

`

~p1, ~q1

´

, m2
T

`

~p2, ~q2

´¯

• But /ET = ~q1 + ~q2 → the best we can say is that

m2
l̃
≥ m2

T2 ≡ min
/q1+/q2=/ET

h

max {m2
T (~p1, ~q1), m2

T (~p2, ~q2)}
i



What if there are two missing particles?: mT2
(Barr, Lester, Stephens, hep-ph/0304226, “m(T2): The Truth behind the glamour”)

(Lester, Summers, hep-ph/9906349)

m2
l̃
≥ m2

T2 ≡ min
/q1+/q2=/ET

h

max {m2
T (~p1, ~q1), m2

T (~p2, ~q2)}
i

≥ m2

χ̃0
1

• Rely on momentum scan → can be reduced to one dimensional parameter scan

→ can not get analytic differential distribution

• Have to assume mχ̃0
1
→ correlation between ml̃ and mχ̃0

1



The Cambridge mT2 Variable Demystified

(Kong, Matchev, 2006)

~Pmiss

~q2

~Pvis

~p1 ~p2

~q1

m2
T2 ≡ min

/q1+/q2=/ET

h

max {m2
T (~p1, ~q1), m2

T (~p2, ~q2)}
i

Constraint: m2
T (~p1, ~q1) = m2

T (~p2, ~q2)

→
q

~q2
2 + m2 −

q

~q2
1 + m2 = |~p1| − |~p2| > 0

• massless case (m = 0): WW production, mχ̃0
1

<< mℓ̃

2a ≡ p1 − p2 = q2 − q1

2c ≡ /ET

e = c
a

• Solution: ~q1 = −~p2 and ~q2 = −~p1

• Warning: ~q1 and ~q2 are NOT neutrino momenta

a c−c

q1

q2

−a



The Cambridge mT2 Variable Demystified

(Kong, Matchev, 2006)

• Applications:

– Mass correlation even if there are two missing particles:

W and slepton pair production

– Can be used for background rejection



Recent progress on mT2

• · · ·
• unpublished, 2006 by Kong, Matchev

• arXiv:0708.1028 by Lester, Barr

• arXiv:0709.0288 by Cho, Choi, Kim, Park

• arXiv:0709.2740 by Gripaios

• arXiv:0711.4008 by Barr, Gripaios, Lester

• arXiv:0711.4526 by Cho, Choi, Kim, Park

• arXiv:0808.1094 by M. Nojiri, K. Sakurai, Y. Shimizu, M. Takeuchi

• arXiv:0810.4853, Cho, Choi, Kim, Park

• arXiv:0810.5178, Cheng, Han

• arXiv:0810.5576, by Burns, Kong, Matchev, Park

• · · ·



Subsystem mT2

(Burns, Kong, Matchev, Park, arXiv:0810.5576)

• m
(n,p,c)
T2

• # of parameters - # of measurements

– Endpoint method : 2(n + 1) − 2n

– Polynomial method : 9 − 3n −→ n + 1 − 2(n − 2)Nev

– mT2 method : 1
6(n + 1)(6 − 2n − n2)



(Burns, Kong, Matchev, Park, arXiv:0810.5576)

• mT2 method: the only method that can give analytic solution to masses

• 4 constraints (naive counting) are not independent

• kink structure gives more constraints



Kink in subsystem mT2
(Burns, Kong, Matchev, Park, arXiv:0810.5576)

• invariant mass, mx1x2

• mT2,max for n = 2:

– m
(1,1,0)
T2 (kink in the presence of ISR with large pT )

– m
(2,2,0)
T2 (kink in the presence of ISR with large pT )

– m
(2,2,1)
T2 (kink)

– m
(2,1,0)
T2 (kink)

• µ(n,p,c) = Mn
2

„

1 − M2
c

M2
p

«



Kink in m
(1,1,0)
T2

• Slepton production with ISR

(Barr, Gripaios, Lester, arXiv:0711.4008) (Burns, Kong, Matchev, Park, arXiv:0810.5576)
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<
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µ(1,1,0)(PT ) +

r
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PT
2

)2 + M̃2
0

#2

−
P2

T
4
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=

;

1
2
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s

1 +

„
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−
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L

(M̃0,−PT )



Kink in m
(2,2,0)
T2 and m

(2,1,0)
T2

(Burns, Kong, Matchev, Park, arXiv:0810.5576)

F
(2,10)
L

(M̃0) =

(

»

µ(2,2,0) − µ(2,2,1) +

r

µ2
(2,2,0)

+ M̃2
0

–2
− µ

2
(2,2,1)

)
1
2

F
(2,10)
R

(M̃0) =

8

>

<

>

:

2

4µ(2,1,0) +

s

„

µ2
(2,2,1)

− µ(2,1,0)

«2
+ M̃2

0

3

5

2

− µ2
(2,2,1)

9

>

=

>

;

1
2



Summary and discussion
• LHC will find new physics (new particles) if it exists at TeV scale

• The next question is to measure the properties of new particles: masses, spins and

couplings

• A model-independent way of measuring spins and couplings (mixing angles)

– Make plots versus m2

– Spins can be measured from invariant mass distributions in a general and

model-independent way

– A side benefit of the method is the measurement of the couplings and mixing

angles encoded in the parameters α, β and γ

– CMS/ATLAS should measure α, β and γ and let the theorists figure out what

are the underlying values of the model parameters that correspond to those

• Questions

– Generalize to (longer, other?) decay chains? Other application ?

– Backgrounds and detector simulations ? Are the twin scenarios really identical ?

– Can we really measure all masses ?

• Generalization of mT2
in the case of long cascade decay

– Complete mass determination using mT2 only

– Analytic solution makes mT2
computation faster

– Application to mTGen
and better understanding of the kink structure


