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based on:

1) GIM: 
hep-ph 0709:1714 with G. Cacciapaglia, C. 
Csaki,J.Galloway, G. Marandella, and J. Terning 

2) Shining: in progress with C. Csaki, Y. 
Grossman, G. Perez, and Z. Surujon 



1) Flavor problem and RS GIM

2) 5D GIM mechanism and 4D MFV

3) Shining Flavor and 5D MFV



The quark flavour problem
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LR  (sd)L (sd)R                          
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Parameter 95% allowed range Lower limit on Λ (TeV)

ReC1
K [−9.6, 9.6] · 10−13 1.0 · 103

ReC2
K [−1.8, 1.9] · 10−14 7.3 · 103

ReC3
K [−6.0, 5.6] · 10−14 4.1 · 103

ReC4
K [−3.6, 3.6] · 10−15 17 · 103

ReC5
K [−1.0, 1.0] · 10−14 10 · 103

ImC1
K [−4.4, 2.8] · 10−15 1.5 · 104

ImC2
K [−5.1, 9.3] · 10−17 10 · 104

ImC3
K [−3.1, 1.7] · 10−16 5.7 · 104

ImC4
K [−1.8, 0.9] · 10−17 24 · 104

ImC5
K [−5.2, 2.8] · 10−17 14 · 104

|C1
D| < 7.2 · 10−13 1.2 · 103

|C2
D| < 1.6 · 10−13 2.5 · 103

|C3
D| < 3.9 · 10−12 0.51 · 103

|C4
D| < 4.8 · 10−14 4.6 · 103

|C5
D| < 4.8 · 10−13 1.4 · 103

|C1
Bd

| < 2.3 · 10−11 0.21 · 103

|C2
Bd

| < 7.2 · 10−13 1.2 · 103

|C3
Bd

| < 2.8 · 10−12 0.60 · 103

|C4
Bd

| < 2.1 · 10−13 2.2 · 103

|C5
Bd

| < 6.0 · 10−13 1.3 · 103

|C1
Bs

| < 9.5 · 10−10 32

|C2
Bs

| < 3.2 · 10−11 180

|C3
Bs

| < 1.8 · 10−10 75

|C4
Bs

| < 1.5 · 10−11 260

|C5
Bs

| < 4.2 · 10−11 150

TABLE V: 95% probability range for C(Λ) and the corresponding lower bounds on the NP scale

Λ for arbitrary NP flavour structure. See the text for details.
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SM GIM mechanism



Agashe, Contino, Pomarol, ...

Csaki, Grojean,Pilo, Murayama, Terning, ...

Gherghetta, Pomarol; Agashe, Delgado, May, Sundrum, ...

EWSB in RS type models (dual)

1) RS1 with Higgs on TeV brane (composite Higgs)

2) Gauge-Higgs unification (PGB composite Higgs 
with naturally small mass) 

3) Higgsless (v→∞, technicolor)



EWSB in RS type models 

SU(2)R x U(1)B-L→U(1)Y    SU(2)L x SU(2)R→SU(2)D

Planck
brane
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AdS5

SU(2)L x SU(2)R x U(1)B-L

y = Ruv y = Rir
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 F = wave function overlap @ IR



RS GIM and split fermions

Exponential localization of chiral zero modes.

Fermion mass hierarchy generated by exponentially 
small overlaps of fermion modes with IR localized 
Higgs field. 

Light quarks have small FCNCs. Small enough?

Gluon KK exchange generically leads to
 

(εK)LR ⇒ ΛNP > 2⋅105 TeV  =>  mKK > 9 TeV !

Arkani-Hamed, Schmaltz; Grossman, Neubert (00); 
Burdman (02); Agashe, Perez, Soni (04)



Can we avoid excessively large FCNCs 
by devising a GIM mechanism?



Technicolor with a GIM mechanism

“[...] the model is cumbersome.”

Chivukula, Georgi ‘87; Chivukula, Georgi,Randall ‘87; Randall ’93; Georgi ‘94

 Randall ’93

128 L. Randall / ETC with GIM mechanism
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Fig. 2. Models 1 and 2.

gauge group; that is a linear combination of this SU(n) and the SU(n)’s embedded

in the extended technicolor groups is technicolor. Finally, color and hypercharge

are weakly gauged. We discuss hypercharge in sect. 5.

Now we discuss the fermions. Again we start from the bottom of the moose.

There are fermions which transform as (n + l2~,5 — 1~)and (n +
12D’ ~ — 1~)

and fermions which transform as an (ii~, n + 12L) and an ~ n + 12L),

where the n + 12’s refer to different ETC groups. These fermions are necessary

for anomaly cancellation of the ETC groups. In this model, they are the light

fermions whose exchange mixes the left- and right-handed ETC gauge generators

so that physical fermions can acquire a mass.

The physical fermions (that is light quarks, leptons, and technifermions) are the

(n + 12w) (three up quarks), the (n + 12D) (three down quarks and three leptons),

and the (2, n + 121) (three quark electroweak doublets and three lepton dee-

troweak doublets).

There are (5w, n + 121), (~, n + 121) and (n + 12L’ 251) fermions. These will

condense with the fermions which carry global flavor symmetry when the two

SU(S) and the SU(2S) groups get strong.

There are (i~, 51), (T~,~ and (2SL, 121) fermions. Here l2~,12D’ and

are global flavor symmetry groups. When the S and 2S groups get strong, the

degeneracy of the ETC gauge boson masses will reflect this global symmetry. In

this model, the global symmetry is weakly broken by six-fermion operators,

involving the (i2~,S1), (~, n + 121), (n + l2~,S — 1), (~T, n + 121),

(n + 12L’ 251), ~ 12L) fermions and similarly with (i2~,5D)• This is the

weakest feature of the “model”. We assume the existence of these operators, but

do not address the question of their origin.

The global SU(12) symmetries are also broken by the weakly gauged SU(3) and

U(1) subgroups. These are required so that after the ETC gauge groups are

broken, color SU(3) and hypercharge are maintained. This of course means that



Proposal in 5D dual theory:

I. 5D GIM mechanism
(with C. Csaki, J.Galloway, G. Marandella, and J. Terning)



Flavor symmetries: RS GIM

• kinetic mixings for uR and dR on Planck brane
• degenerate Dirac mass on TeV brane

Planck
brane

TeV
brane

bulk flavor symmetry
U(3)Q x U(3)u x U(3)d

U(3)Q U(3)3→ U(3)D

MDRir

(
χi

uLξi
uR + χi

dLξi
dR

)∣∣
z=Rir

∼ cLΨ̄i
LΨi

L + cRΨ̄i
RΨi

R

4 5D models

We will consider a very general setup in a warped extra dimension, with a metric (in con-
formal coordinates):

ds2 = w(z)2
(

d!x2 − dz2
)

, (4.1)

where in the usual AdS case w(z) = R/z. We will only require that on the UV brane at
z = R, the bulk gauge group is broken to the SM gauge group SU(3)c × SU(2)L × U(1)Y .
The details of the bulk gauge group will be irrelevant for the present discussion, so we will
leave it unspecified. The SM fermions are embedded in 5D fields as follows (we consider
quarks here for semplicity, but leptons can be analogously described)

ΨL =

(

χL ⊂ Q
ξL

)

, and ΨR =

(

χR

ξR ⊂ u, d

)

. (4.2)

Here χ are left-handed fields, while ξ’s are right-handed from the 4D point of view. The
specific representations of those fields depend again on the gauge properties of the bulk, but
on the UV brane we will only consider the Q, u and d components. We will consider Nf

generations, and impose a SU(Nf ) flavour symmetry in the bulk (and IR brane). This means
that equations of motion and boundary conditions on the IR brane are the same for the Nf

generations. In particular, the masses would be the same, as they can only be generated in
the bulk or on the IR brane. Such flavour symmetry is broken on the UV brane: this allows
us to write mixed kinetic terms in the form:

LUV = R iξα
R σ̄µD

µ Kαβ ξ̄β
R

∣

∣

∣

z=R
, (4.3)

both for up and down type quarks, with different mixing matrices. For simplicity of the
notation we will suppress the weak isospin index. A localized kinetic term can in principle
be written also for χL. However, it will be clear soon that a KL $= 1 would generate dangerous
FCNC’s, so we will here assume that it is very small, or proportional to the identity 1. A
symmetry reason for that would be the following: we can extend the bulk flavour symmetry
to SU(Nf )L × SU(Nf )R, with the two SU(Nf ) acting separately on the L and R fields, and
break it to the diagonal SU(Nf ) on the IR brane (so that we can write mass terms or Yukawa
couplings on the IR brane). On the UV brane we can break SU(Nf )R but keep the L part
to protect KL.

LUV determines the BC’s on the UV brane for the R fields:

χR(R) = mRKRξR(R) . (4.4)

1There may be also massive exotic fermions that mixes with the SM fermions.For instance, in Higgsless
models with the rh up and down quark embedded into different SU(2)R doublets. Eventual UV kinetic
terms for such fields should be proportional to the identity or very small.

4

for uR and dr

Cacciapaglia, Csaki, Galloway, Marandella,Terning, AW



5D picture

EOMs flavor independent

This is the only source of flavour mixing! We can therefore solve the equations of motion for
all the fields and impose the IR BC’s (and remaining BC’s on the UV brane): this is enough
to determine uniquely the wave functions up to an overall normalization. The solutions will
look like:

χα
L = AαfL(m, z) χα

R = AαfR(m, z)
ξα
L = AαgL(m, z) ξα

R = AαgR(m, z)
(4.5)

It is crucial here that the functions fL,R and gL,R do not carry any flavor index: all the flavor
information is in the normalization vectors A. The specific form of such functions depends
on the detail of the bulk physics, but their form will not play any role for our argument.

The remaining BC’s in eq. 4.4 will determine the spectrum of the fermions:

fR(m, R)A = mR gR(m, R)KRA
⇓

KRA = fR(m,R)
mR gR(m,R) A

(4.6)

We can solve this equation by diagonalizing KR = V †Kd
RV , and

A = V ·











q1

q2
...

qNf











.

¿From this equation it is clear that there are Nf different towers (that include the light SM
fermions) whose spectrum is determined by the equations

fR(m, R)

mR gR(m, R)
= ki , i = 1 . . .Nf (4.7)

where ki are the eigenvalues of the matrix KR. Those equations will determine the masses
of the light quarks, and their KK states.

4.1 Couplings to the gauge bosons: neutral gauge bosons

Let us now look at the coupling of the neutral gauge bosons, including the Z and its KK
states, but also the KK states of the photon and gluon and any other neutral bulk gauge
boson. Out of diagonal couplings in the flavour space would be particularly dangerous, as
they would generate FCNC’s at tree level. The coupling of the lh fermions can be written
as:
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→

Aα determined by UV brane kinetic terms

                                   

Quark masses set eigenvalues



Charged currents

Parameter counting for hermitian brane kinetic mixing 
exactly as for CKM (use U(3)D below 1/Ruv): 
reproduces CKM mixing (3 angles, 1CP),

Compare to split fermion RS flavour: 
10 CP phases and 21 physical mixing angles 
=>coincidence and CP problem:  EDMs and εK.

Neutral currents

No flavor violation in tree coupling to Z, Z(n), g(n),γ(n) !



Degenerate IR brane Dirac mass has to be large 
because of top: 
→ large mixing of SM zero modes with “wrong 
quantum number” KK modes. 
→ Large vertex correction (S, Zbb).
Nice solution proposed by Agashe, Contino, 
daRold, Pomarol:

Non-minimal SU(2)R representations

SU(2)L SU(2)R U(1)X

QL
2
3

tR 1 1 2
3

bR 1 2
3
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Summary of part I

We have presented a GIM realization using flavor 
symmetries in realistic warped space models such 
as RS1 or MCHM.

We have shown how Minimal Flavor Violation 
(MFV) and next-to-MFV (NMFV) can be 
implemented.

Cacciapaglia, Csaki, Galloway, Marandella,Terning, AW, arXiv:0709.1714 [hep-ph]



II. Let the flavor shine! 

with C. Csaki, Y. Grossman, G. Perez, Z. Surujon



Let the flavor shine! 

GIM construction avoided excessive FCNCs but 
did not explain mass and mixing hierarchies.

Promote Yu and Yd  to dynamical fields (as suggested 
by Fitzpatrick, Perez, Randall) which give 
contributions to bulk masses 
     “5D MFV model”

How can we get a full model? CFT interpretation?
FCNCs?



Basic Idea: gauged flavor symmetry only broken 
in UV. Breaking shines into bulk and on IR

only via almost marginal fields Yu,d.

UV brane IR brane

The shining



“Shining of flavor in RS”: Rattazzi,Zaffaroni ‘00

Planck
brane

TeV
brane

flavor gauge symmetry
U(3)Q x U(3)u x U(3)d

Assume: only breaking of flavor symmetry by Φu,d.

Φu,d are close to marginal, other breaking irrelevant.

Flavor symmetry 
broken 

Φu : (3,3*,1),   <Φu> = Yu (z/R)-ε

Φd : (3,1,3*),   <Φd> = Yd (z/R)-ε

Yu QHu + Yd QHd



Main new ingredient: 
higher dimensional bulk operators break bulk flavor 
symmetry 

=> small breaking effect exponentiates 
m4D ~ Fq Y Fu    with F ~ (TeV/Planck)2c-1 

 
Yu,d give both IR brane Yukawa and splitting of bulk 
masses!

With the KK expansion
χ =

∑

n

fLn(z)χn(x) and ψ̄ =
∑

n

fRn(z)ψ̄n(x), (1.10)

we find the EOMs for the fermion zero modes with bulk mass c = MR

∂zfL,R(z)− 1
z
(2∓ c)fL,R(z) = 0 (1.11)

For a left-handed zero mode (ψ|RR′ = 0 and therefore fR = 0), we get

fL(z) =
z2−c

√
R4((R′)1−2c−R1−2c)

1−2c

(1.12)

In our set-up, the bulk mass term receives an additional contribution shining from the UV brane into the
bulk through the scalar v.e.v.

∫
d5x

(
R

z

)5

Mψχ →
∫

d5x

(
R

z

)5

ψχ

(
M + α

φ†φ

Λ2
+ . . .

)
(1.13)

→
∫

d5x

(
R

z

)5

ψχ

(
M + α

Y †Y

Λ2

(
R

z

)2ε

+ . . .

)
(1.14)

Setting (Counting of 4π’s and cut-off vs. R ok? What is the allowed range for β?)

β = α
Y †Y

R Λ2
, (1.15)

the EOM for the left-handed zero mode becomes
(

∂z −
2
z

)
fL(z) +

1
z
β

( z

R

)−2ε
fL(z) = 0, (1.16)

where we have set c = MR = 0. The solution is given by

fL(z) = N(ε) z2 exp

[
β

2ε

(
R

z

)2ε
]

(1.17)

Let’s check if we recover the (flat) bulk mass solution (1.12) in the limit ε→ 0

N(ε) z2 exp

[
β

2ε

(
R

z

)2ε
)

= N(ε) z2 exp

[
β

2ε

(
1 + 2ε ln

R

z
+ 2

(
ε ln

R

z

)2

+ . . .

)]
(1.18)

= Ñ(ε) z2 exp

[
β

(
ln

R

z
+ ε

(
ln

R

z

)2

+ . . .

)]
(1.19)

= Ñ(ε) z2−β

(
1 + βε

(
ln

R

z

)2

+ . . .

)
(1.20)

(1.21)

UV brane localized fermions are not really distorted since correction matters only for z $ R. In Fig.
1, I assumed that the bulk scalar contribution is an additional contribution to degenerate bulk mass with
c = 1/2. Including the bulk mass term c = 1/2, we need for the bulk scalar vev coupling sizable values of at
least β = −1.1 . . . 0.18 (see Table I in [1]). Is this ok?
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RS flavor analysis 
bulk masses 

wave-function IR brane

effective mass terms

gauge group is extended to an SU(2)L×SU(2)R×U(1)B−L gauge symmetry in the bulk to
incorporate custodial symmetry. This symmetry is reduced on the UV brane to the SM group
SU(2)L×U(1)Y . We will assume that there is a separate doublet for every SM fermion, an
SU(2)L doublet for the left handed doublets and a separate SU(2)R doublet for the right
handed up or down fields. We assume that the bulk has an exact SU(3)Q×SU(3)u×SU(3)d

flavor symmetry. Eventually we will be thinking about this flavor symmetry as a bulk gauge
symmetry. The only sources for flavor violation are on the brane, which are bifundemantals
under the flavor symmetry. In the general case these will break the flavor symmetry in
the UV completely. These sources are transmitted through the bulk via the bulk scalars
yu and yd, which are also bifundamentals yu : (3Q, 3̄u), yd : (3Q, 3̄d). These bulk scalars

have dimension 2, and we will parameterize them as yu = Yu/R
3

2 , yd = Yd/R
3

2 , where Yu, Yd

are the dimensionless 5D Yukawa couplings. These scalars are assumed to have small bulk
masses (in units of the AdS curvature), and to first approximation their VEVs are constant
(it is easy to extend all the discussion to non-constant VEVs and we will discuss how to
do that in ...). The main difference in our approach from that of [?] is that just as in [28]
we are also considering the effects of small higher dimensional operators coupling the bulk
fermions to the flavor symmetry breaking bulk scalars. This coupling will be the source of
the flavor hierarchy. Even though the coefficients of these operators are small (since they are
suppressed by the cutoff scale), due to the exponential sensitivity of the effective 4D masses
on the bulk mass parameter the effects of these small higher dimensional operators can still
be very significant. Thus the bulk masses of the bulk fermions (in units of AdS curvature)
are of the form

cQ = αQ · 1 + βQY †
u Yu + γQY †

d Yd (2.2)

cu = αu · 1 + βuYuY
†
u (2.3)

cd = αd · 1 + γdYdY
†
d (2.4)

Here α is the symmetric bulk mass, that is of order 1, while the parameters β, γ are coef-
ficients of higher dimensional operators suppressed by the cutoff scale, Λ ∼ 16π2/g2

5 ≥ 10
TeV. These operators are of the form (for example for βQ): By†

uyuQ̄Q/Λ2. Thus we find that
the order of magnitude of β = RB ∼ 〈y〉2R/Λ2. For the effective theory to make sense, the
VEV 〈y〉 is expected to be smaller than the cutoff scale. If 〈y〉 2

3 = Λ/n with n = few then
β ∼ ΛR/n3. Thus β could be as large as 0.2 for n = 4. Therefore the main contribution to
the c’s are expected to arise from the flavor symmetric term α. While the flavor violating
contributions are small, they can not be neglected since the fermion masses are exponentially
sensitive to these parameters, so a relatively small splitting in the bulk masses will lead to
a large flavor hierarchy.

In order to further analyze this model let us denote the normalized fermion zero mode
wave functions on the IR brane by fQ,u,d, with an explicit expression for constant bulk masses
given by

f 2 =
1
2 − c

1 − ( R
R′

)1−2c
. (2.5)

2

m(u)
ij = (Yu)ij

v√
2
fQifuj m(d)

ij = (Yd)ij

v√
2
fQifdj

f2 =
1
2 − c

1− ( R
R′ )1−2c



Assume YU,D anarchic, |YU,D| ~ O(1)

SM hierarchies both in masses and mixings fix 
FQ, Fu, Fd  

CKM (2):     FQ2/FQ3 ~ θ23 ~ λ2 , 
                   FQ1/FQ3 ~ θ13 ~ λ3 
masses (6):   Fu2 = mc / (v FQ2),  Fd1 = md / (v FQ1), ...

=>

2

SM flavor group from U(3)Q × U(3)u × U(3)d down to
U(2)Q × U(2)u × U(3)d × U(1)top, where Q, u, d stand
for quark doublets and up and down type singlets re-
spectively. In addition the extra source is quasi-aligned
with the SM sources of flavor breaking and the missalign-
ment is at most of order the CKM matrix but new
sources of CP violation (CPV) are present. Thus, tran-
sitions between the first [second] and third generation
are suppressed by O(λ3

C) [O(λ2
C)], where λC ∼ 0.23 is

the Cabibbo mixing angle. Despite these suppressions,
it was recently pointed out [7] that the presence of addi-
tional, flavor violating, right handed (RH) currents would
yield a stringent bound on this framework resulting with
a bound of ΛNMFV ≥ 8 TeV. This implies a rather severe
little hierarchy problem.

We present a novel variant of the above models, in
which at leading order (LO) flavor violation in the down
type quark sector is eliminated from the theory and at
the same time leave intact the framework appealing fea-
tures such as the solution of the hierarchy problem, flavor
puzzle and others. The fundamental theory is also very
minimal in terms of its number of parameters and con-
tains only four flavor violating parameters, three mixing
angles and one CPV phase. This implies that we also
eliminated the presence of other CPV, “Majorana-like”
phases, which induced an RS1 CP problem [5]. Note that
unlike in the SM, in our model the flavor violating pa-
rameters are of order unity, yet no conflict is obtained
with precision flavor constraints.

The model. Our set-up is very simple. Applying
the MFV paradigm [8] to our case we assume that the
only sources of flavor breaking are the 5D up and down
Yukawa matrices, Yu,d to a bulk Higgs, H . However, un-
like the 4D MFV case (or other extensions with trivial fla-
vor structure, for example universal extra dimension [9])
in our framework the 5D Yukawa matrices are structure-
less. In other words the eigenvalues of Yu,d are all of the
same order. Furthermore, they are totally missaligned so
that the 5D “CKM” matrix V KM

5 is anarchic.

In addition, the theory contains 5D vector-like, 3× 3,
mass matrices CQ,u,d for each of the quark representa-
tions. Bulk MFV implies that the only vector-like flavor-
breaking spurions for the doublets [singlets] are [10]
Yu,dY

†
u,d [Y †

u,dYu,d]. We emphasize that V KM
5 is the only

source of flavor and CPV in our theory. Under the global
symmetry U(3)Q × U(3)u × U(3)d, either Yu or Yd can
be brought to diagonal form, and V KM

5 resides in the re-
maining one. According to our MFV assumption we can
expand the 5D mass matrices as a power series in Yu,d:

Cu,d = Y †
u,dYu,d + . . . , CQ = rYuY †

u + YdY
†
d + . . . , (1)

where universal terms and overall order one coefficients
were omitted for simplicity and the dots stand for sub-
dominant higher order terms (as discussed below). The

relevant part of the 5D Lagrangian is given by

Lgen = CQ,u,d

(

Q̄, ū, d̄
)

(Q, u, d) + H Yu,dQ̄ (u, d) , (2)

where Ci are in units of k the AdS curvature, and we will
assume that the Higgs is a bulk field (see later) so that
Yi are measured in units of 1/

√
k.

Our first result is that despite of the fact that the fun-
damental theory is anarchic MFV the low energy is a
hierarchic one. This is since the eigenvalues the Ci matri-
ces are sizable, which will induce geometrical separation
in the extra dimension picture or the presence of sizable
anomalous dimension in the dual conformal field theory
(CFT) [11].

The second, maybe less trivial result, is that this the-
ory flows to approximate NMFV with additional sources
of flavor and CPV. In order to see that recall that the 4D
mass matrices for the zero modes can be written as [5]
mu,d % 2vFQYu,dFu,d, where Fx correspond to the value
of the quark zero-modes on the TeV brane. More ex-
plicitly, the eigenvalues fxi of the Fx matrices are given
by [3, 5] f2

xi = (1/2 − cxi)/(1 − ε1−2c
xi ) , where cxi

are the eigenvalues of the Cx matrices, ε = exp[−kπrc],
kπrc = log[MP̄l/TeV], MP̄l is the reduced Planck mass
and v % 174GeV. The fxi correspond to the amount of
compositeness of the different generations. The Yu,d are
anarchic, and therefore the corresponding mixing angles
are given by ratios of the Fi eigenvalues. For instance,
the form of the 4D mass matrices for the zero modes
implies that the rotation to mass eigenbasis diagonal-
izes (m2

u,d)ij = 4v2(FQYu,dFu,dF
†
u,dY

†
u,dF

†
Q)ij ∼ fQifQj .

This implies that (VCKM)ij ∼ fQi/fQj and thus the cQi

eigenvalues control the CKM mixing angles. [5].
The couplings of two zero modes to the gauge KK

states (which are localized near the TeV brane), have a
flavor structure that is different from the 4D mass matri-
ces. They are proportional to F 2

Q,u,d, which is not aligned
with mu,d. Thus new flavor and CPV phases are present
in the low energy theory. However, the NMFV limit is
realized since one eigenvalue of (Fu,Q,d) is much larger
than the others, and thus an approximate U(2) is pre-
served (so that F 2

Q and mu,d are quasi-aligned) [6]. Note
that the theory contains RH currents since in the mass
basis the Cu,d matrices are not diagonal.

Flavor cQ, fQ cu, fu cd, fd

I 0.64, 0.002 0.68, 7 10−4 0.65, 2 10−3

II 0.59, 0.01 0.53, 0.06 0.60, 0.008

III 0.46, 0.2 - 0.06, 0.8 0.58, 0.02

TABLE I: The eigenvalues, of Cx, Fx which roughly yield the
right masses and CKM elements at the TeV scale [4].

Our third result is that in the limit where r in Eq. (1)
goes to zero, CQ,Cd, and Yd can all be simultaneously di-
agonalized. Therefore, flavor violation in the down sector



FQ, Fu, Fd ≠ 13x3 will lead to FCNCs

g5

∫
dz

(
R

z

)4

G(1)(z)fL(z)2 ≈ g4

√
log

R′

R
(− 1

log R′

R

+ F (c)2)

c-dependent fermion KK-gauge 
coupling (same Fi as in Yukawa)

in CFT picture
mass ~ compositeness ~ F(c)
mixing with CFT excitation

Generating fermion masses 

similar to the SM

flavor blind 
couplings to the 
strong sector 
possible

!

 Flavor originates 
somewhere else

If high scale ! MFV

qi

qj

H

qi

qj

H

Two possibilities:

G(1),...



The road to the mass basis. 
1) Start with 5D MFV-basis 

YU = V5CKM diag( yu, yc, yt )
YD = diag(yd, ys, yb )

2) Diagonalize bulk masses (cQ, cu, cd)
QL → UQ QL

3) Masses for down-type quarks

4) rotate 4D modes into mass basis
  QL → VQ QL, dR → Vd dR

with

Q̄LifQiU
†
Qij

diag(yd, ys, yb)jkfdkdRk

V †
QfQU†

QD(diag)fdVd = diag(md, ms, mb)



Origin of FCNCs: in the basis where the bulk 
masses are diagonal, the couplings to the KK gauge 
bosons are diagonal but not universal.  

After rotation to the mass-basis, the coupling to  
the KK gluon becomes:

Dangerous 4-fermi operators are generated, 
especially CPV LLRR contributions. 

(
Q̄LV †

QfQγµfQVQQL + d̄RV †
d fdγµfdVddR

)
G(1)µ



Two limiting cases

1) ru ➞ 0, no down-quark FCNCs 
(cQ,cd,Ydeff  simultaneously diagonal)

2) rd ➞ 0, no up-quark FCNCs
(cQ,cu,Yueff  simultaneously diagonal)

If ru ≪ rd then down FCNCs suppressed by ru2

(Fitzpatrik, Perez, Randall claim always the case)

cQ = αQ · 1 + ruβQY †
u Yu + rdγQY †

d Yd



Remember we want to reproduce

Assume perturbativity for Yukawas, we find
αU > 0.6,  αD > 0.7 and ru >1 (not small) 
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SM flavor group from U(3)Q × U(3)u × U(3)d down to
U(2)Q × U(2)u × U(3)d × U(1)top, where Q, u, d stand
for quark doublets and up and down type singlets re-
spectively. In addition the extra source is quasi-aligned
with the SM sources of flavor breaking and the missalign-
ment is at most of order the CKM matrix but new
sources of CP violation (CPV) are present. Thus, tran-
sitions between the first [second] and third generation
are suppressed by O(λ3

C) [O(λ2
C)], where λC ∼ 0.23 is

the Cabibbo mixing angle. Despite these suppressions,
it was recently pointed out [7] that the presence of addi-
tional, flavor violating, right handed (RH) currents would
yield a stringent bound on this framework resulting with
a bound of ΛNMFV ≥ 8 TeV. This implies a rather severe
little hierarchy problem.

We present a novel variant of the above models, in
which at leading order (LO) flavor violation in the down
type quark sector is eliminated from the theory and at
the same time leave intact the framework appealing fea-
tures such as the solution of the hierarchy problem, flavor
puzzle and others. The fundamental theory is also very
minimal in terms of its number of parameters and con-
tains only four flavor violating parameters, three mixing
angles and one CPV phase. This implies that we also
eliminated the presence of other CPV, “Majorana-like”
phases, which induced an RS1 CP problem [5]. Note that
unlike in the SM, in our model the flavor violating pa-
rameters are of order unity, yet no conflict is obtained
with precision flavor constraints.

The model. Our set-up is very simple. Applying
the MFV paradigm [8] to our case we assume that the
only sources of flavor breaking are the 5D up and down
Yukawa matrices, Yu,d to a bulk Higgs, H . However, un-
like the 4D MFV case (or other extensions with trivial fla-
vor structure, for example universal extra dimension [9])
in our framework the 5D Yukawa matrices are structure-
less. In other words the eigenvalues of Yu,d are all of the
same order. Furthermore, they are totally missaligned so
that the 5D “CKM” matrix V KM

5 is anarchic.

In addition, the theory contains 5D vector-like, 3× 3,
mass matrices CQ,u,d for each of the quark representa-
tions. Bulk MFV implies that the only vector-like flavor-
breaking spurions for the doublets [singlets] are [10]
Yu,dY

†
u,d [Y †

u,dYu,d]. We emphasize that V KM
5 is the only

source of flavor and CPV in our theory. Under the global
symmetry U(3)Q × U(3)u × U(3)d, either Yu or Yd can
be brought to diagonal form, and V KM

5 resides in the re-
maining one. According to our MFV assumption we can
expand the 5D mass matrices as a power series in Yu,d:

Cu,d = Y †
u,dYu,d + . . . , CQ = rYuY †

u + YdY
†
d + . . . , (1)

where universal terms and overall order one coefficients
were omitted for simplicity and the dots stand for sub-
dominant higher order terms (as discussed below). The

relevant part of the 5D Lagrangian is given by

Lgen = CQ,u,d

(

Q̄, ū, d̄
)

(Q, u, d) + H Yu,dQ̄ (u, d) , (2)

where Ci are in units of k the AdS curvature, and we will
assume that the Higgs is a bulk field (see later) so that
Yi are measured in units of 1/

√
k.

Our first result is that despite of the fact that the fun-
damental theory is anarchic MFV the low energy is a
hierarchic one. This is since the eigenvalues the Ci matri-
ces are sizable, which will induce geometrical separation
in the extra dimension picture or the presence of sizable
anomalous dimension in the dual conformal field theory
(CFT) [11].

The second, maybe less trivial result, is that this the-
ory flows to approximate NMFV with additional sources
of flavor and CPV. In order to see that recall that the 4D
mass matrices for the zero modes can be written as [5]
mu,d % 2vFQYu,dFu,d, where Fx correspond to the value
of the quark zero-modes on the TeV brane. More ex-
plicitly, the eigenvalues fxi of the Fx matrices are given
by [3, 5] f2

xi = (1/2 − cxi)/(1 − ε1−2c
xi ) , where cxi

are the eigenvalues of the Cx matrices, ε = exp[−kπrc],
kπrc = log[MP̄l/TeV], MP̄l is the reduced Planck mass
and v % 174GeV. The fxi correspond to the amount of
compositeness of the different generations. The Yu,d are
anarchic, and therefore the corresponding mixing angles
are given by ratios of the Fi eigenvalues. For instance,
the form of the 4D mass matrices for the zero modes
implies that the rotation to mass eigenbasis diagonal-
izes (m2

u,d)ij = 4v2(FQYu,dFu,dF
†
u,dY

†
u,dF

†
Q)ij ∼ fQifQj .

This implies that (VCKM)ij ∼ fQi/fQj and thus the cQi

eigenvalues control the CKM mixing angles. [5].
The couplings of two zero modes to the gauge KK

states (which are localized near the TeV brane), have a
flavor structure that is different from the 4D mass matri-
ces. They are proportional to F 2

Q,u,d, which is not aligned
with mu,d. Thus new flavor and CPV phases are present
in the low energy theory. However, the NMFV limit is
realized since one eigenvalue of (Fu,Q,d) is much larger
than the others, and thus an approximate U(2) is pre-
served (so that F 2

Q and mu,d are quasi-aligned) [6]. Note
that the theory contains RH currents since in the mass
basis the Cu,d matrices are not diagonal.

Flavor cQ, fQ cu, fu cd, fd

I 0.64, 0.002 0.68, 7 10−4 0.65, 2 10−3

II 0.59, 0.01 0.53, 0.06 0.60, 0.008

III 0.46, 0.2 - 0.06, 0.8 0.58, 0.02

TABLE I: The eigenvalues, of Cx, Fx which roughly yield the
right masses and CKM elements at the TeV scale [4].

Our third result is that in the limit where r in Eq. (1)
goes to zero, CQ,Cd, and Yd can all be simultaneously di-
agonalized. Therefore, flavor violation in the down sector
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A simple way to see ru > 1 

take trace-less part, αi drop out
cQ - 1/3 Tr(cQ) = (0.11,0.06,-0.17)
cU - 1/3 Tr(cU) = (0.33,0.15,-0.48)
cD - 1/3 Tr(cD) = (0.04,-0.005,-0.033)

linear dependence
( cQ - 1/3 Tr(cQ) ) ~ 1/3 ( cU - 1/3 Tr(cU) )

therefore find:  ru = βQ/γQ >1 (contrary to F/L/R)

gauge group is extended to an SU(2)L×SU(2)R×U(1)B−L gauge symmetry in the bulk to
incorporate custodial symmetry. This symmetry is reduced on the UV brane to the SM group
SU(2)L×U(1)Y . We will assume that there is a separate doublet for every SM fermion, an
SU(2)L doublet for the left handed doublets and a separate SU(2)R doublet for the right
handed up or down fields. We assume that the bulk has an exact SU(3)Q×SU(3)u×SU(3)d

flavor symmetry. Eventually we will be thinking about this flavor symmetry as a bulk gauge
symmetry. The only sources for flavor violation are on the brane, which are bifundemantals
under the flavor symmetry. In the general case these will break the flavor symmetry in
the UV completely. These sources are transmitted through the bulk via the bulk scalars
yu and yd, which are also bifundamentals yu : (3Q, 3̄u), yd : (3Q, 3̄d). These bulk scalars

have dimension 2, and we will parameterize them as yu = Yu/R
3

2 , yd = Yd/R
3

2 , where Yu, Yd

are the dimensionless 5D Yukawa couplings. These scalars are assumed to have small bulk
masses (in units of the AdS curvature), and to first approximation their VEVs are constant
(it is easy to extend all the discussion to non-constant VEVs and we will discuss how to
do that in ...). The main difference in our approach from that of [?] is that just as in [28]
we are also considering the effects of small higher dimensional operators coupling the bulk
fermions to the flavor symmetry breaking bulk scalars. This coupling will be the source of
the flavor hierarchy. Even though the coefficients of these operators are small (since they are
suppressed by the cutoff scale), due to the exponential sensitivity of the effective 4D masses
on the bulk mass parameter the effects of these small higher dimensional operators can still
be very significant. Thus the bulk masses of the bulk fermions (in units of AdS curvature)
are of the form

cQ = αQ · 1 + βQY †
u Yu + γQY †

d Yd (2.2)

cu = αu · 1 + βuYuY
†
u (2.3)

cd = αd · 1 + γdYdY
†
d (2.4)

Here α is the symmetric bulk mass, that is of order 1, while the parameters β, γ are coef-
ficients of higher dimensional operators suppressed by the cutoff scale, Λ ∼ 16π2/g2

5 ≥ 10
TeV. These operators are of the form (for example for βQ): By†

uyuQ̄Q/Λ2. Thus we find that
the order of magnitude of β = RB ∼ 〈y〉2R/Λ2. For the effective theory to make sense, the
VEV 〈y〉 is expected to be smaller than the cutoff scale. If 〈y〉 2

3 = Λ/n with n = few then
β ∼ ΛR/n3. Thus β could be as large as 0.2 for n = 4. Therefore the main contribution to
the c’s are expected to arise from the flavor symmetric term α. While the flavor violating
contributions are small, they can not be neglected since the fermion masses are exponentially
sensitive to these parameters, so a relatively small splitting in the bulk masses will lead to
a large flavor hierarchy.

In order to further analyze this model let us denote the normalized fermion zero mode
wave functions on the IR brane by fQ,u,d, with an explicit expression for constant bulk masses
given by

f 2 =
1
2 − c

1 − ( R
R′

)1−2c
. (2.5)

2



New feature: flavor gauge-bosons

(-uv +ir ) boundary conditions:  mKK ~ 2.4 1/R’~ TeV 

shining flavor breaking generates additional masses

with non-diagonal mass terms 

∫
dz

(
R

z

)3 (
Tr|gQ

5 AQ
µ yu − gu

5 yuAu
µ|2 + Tr|gQ

5 AQ
µ yd − gd

5ydA
d
µ|2

)

gu
4 gQ

4 log
R′

R

2R3

R′2J1(x1)2

∫ 1

0
J1(x1y)2

dy

y

[
Tr(T aydT

by†d) + h.c.
]
Aa(Q)

µ Aµb(u)
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Figure 1: Contribution of the exchange of a flavor gauge boson to FCNC’s in the insertion
approximation.

Now we will approximate (M−2
Q )ab = R′2/x2

1 δab and similarly for Md. Then we can use
the standard gauge Fierz identity for the SU(3) gauge generators and find 3 types of final
terms.

- A standard term of the sort one gets from the exchange of the KK gluons. The origin of
flavor violation here is purely the fact that the fermions do not have universal wave functions.
The contribution here are smaller than those from the exchange of the KK gluon since the
gauge coupling is assumed to be small, so we do not need to separately consider them.
The explicit form of this term is (with the overall mass suppression scale always given by1

Λ−1 = 0.28 a εQεug2 log(R′

R
)R′):

1

9Λ2

(

Tr(Y †
d Yd)

)

[Q̄V †
QfQγµfQVQQ][d̄V †

d fdγµfdVdd] (4.9)

- A term that involves explicitely the 4D Yukawa couplings, and is therefore strongly
suppressed by the 4D fermion masses, so it is quite safe. The explicit expression is given by:

1

Λ2v2
|Q̄mij

d d|2 (4.10)

- Finally, we also find an unusual term, that comes from the cross-terms in the Fierz
identity. It is not directly proportional to the Yukawa couplings, and also not of the form
from the KK gluon exchange. This could be the most dangerous operator.

1

3Λ2
[Q̄V †

QfQγµfQVQQ][d̄V †
d fdY

†
d γµYdfdVdd] + h.c. (4.11)

Probably these operators are not very dangerous either, we need to estimate how they
are related to 4D masses. I will do it if you guys tell me that you agree with all of this in
this section.

1For e.g. εQ = εu = 0.1, a = 1, g = 0.6, and R′ = 1 TeV we find Λ ≈ 27 TeV.
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FCNCs generated by U(3)3-flavor gauge bosons

∼
[
V †

QfQT afQVQ

]

ij
(M−2

Q )abTr[Y †
d T bYdT

c](M−2
d )ce

[
V †

d fdT
efdVd

]

kl

Fierzing the SU(3) generators reveals 3 contributions 
with different flavor structure but same suppression
as gluon KK FCNCs.



Phenomenology: work in progress

Single CP phase leads to some correlations of CPV 
FCNC observables.
Flavor gauge boson contribution in FCNCs, 
discovery potential at LHC?



Conclusions

starting point: 5D MFV (same # parameters in 
Yukawas as SM, 6 masses, 3 angles, 1 CP)

o explanation of mass and mixing hierarchy
o phenomenology very different from 4D MFV
   (due to exponentiation of Yukawas) resulting in a
   testable flavor model (1 CP phase, flavor gauge-
   bosons)
o No CP problem and (εK)LR less severe 
   mKK ~ 2-3 TeV is allowed.

strong dynamics



THE END





1) [(ij) (kl)]2

2) [(il) (kj)]2

3) [(il) (kj)]⊗[(ij) (kl)]

FCNCs generated by U(3)3-flavor gauge bosons II

1
9Λ2

(
Tr(Y †

d Yd)
)

[Q̄V †
QfQγµfQVQQ][d̄V †

d fdγµfdVdd]

1
Λ2v2

|Q̄mij
d d|2

1
3Λ2

[Q̄V †
QfQγµfQVQQ][d̄V †

d fdY
†
d γµYdfdVdd] + h.c.


