- * ロ > ・ 4 回 > ・ 4 回 > ・ 目 ・ の へ ()・

Twisted Higgs Phenomenology at Hadron Colliders

Michel Herquet

UC Davis HEP Theory Seminar October 2d, 2007

Flashback in 94

$m_t = 169^{+16+17}_{-18-20} \text{ GeV}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology U

3

イロト イヨト イヨト

Flashback in 94

$m_t = 169^{+16+17}_{-18-20} \text{ GeV}$

PDG value, best fit of all indirect EW data

< 回 > < 回 > < 回 > <

э

3/49

Flashback in 94

$m_t = 169^{+16+17}_{-18-20} \text{ GeV}$

PDG value, best fit of all indirect EW data

First top candidate events:

$$m_t = 174 \pm 10^{+13}_{-12} \text{ GeV}$$

э

3/49

Top mass prediction

In Standard Model, at one loop

$$\hat{\rho} \equiv \frac{M_W^2}{\hat{c}_Z^2 M_Z^2} \neq 1$$

э

4 / 49

< 17 ▶

Top mass prediction

In Standard Model, at one loop

$$\hat{\rho} \equiv \frac{M_W^2}{\hat{c}_Z^2 M_Z^2} \neq 1$$

mainly due to the non degenerate doublet (t, b):

$$\Delta_t \hat{\rho} = \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 + m_b^2 - \frac{4m_t^2 m_b^2}{m_t^2 - m_b^2} \log \frac{m_t}{m_b} \right)$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

4 / 49

Higgs mass dependence

$$\Delta_H \hat{\rho} = -\frac{3\alpha}{16\pi \hat{c}_W^2} \left(\log \frac{m_{h^0}^2}{m_W^2} + \frac{1}{6} + \frac{1}{\hat{s}_W^2} \log \frac{m_W^2}{m_Z^2} \right)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

5 / 49

Higgs mass dependence

$$\Delta_H \hat{\rho} = -\frac{3\alpha}{16\pi \hat{c}_W^2} \left(\log \frac{m_{h^0}^2}{m_W^2} + \frac{1}{6} + \frac{1}{\hat{s}_W^2} \log \frac{m_W^2}{m_Z^2} \right)$$

but only logarithmic so

$$m_t^{pred} = 149^{+16}_{-18} \text{ GeV for } m_h = 60 \text{ GeV}$$

 $m_t^{pred} = 186^{+16}_{-18} \text{ GeV for } m_h = 1 \text{ TeV.}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

5 / 49

э

<<p>(日)

Why not quadratic in m_h ? Accidental $SU(2)_L \times SU(2)_R \simeq O(4)$ symmetry in SM scalar potential:

$$V(\phi) = -m^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$
$$\dot{\tau} \phi = \pi_1^2 + \pi_2^2 + \pi_3^2 + \sigma_0^2 \quad \text{if} \quad \phi = \begin{pmatrix} \pi_1 + i\pi_2 \\ \sigma_0 + i\pi_3 \end{pmatrix}$$

э

6 / 49

Why not quadratic in m_h ? Accidental $SU(2)_L \times SU(2)_R \simeq O(4)$ symmetry in SM scalar potential:

$$V(\phi) = -m^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$\phi^{\dagger}\phi = \pi_1^2 + \pi_2^2 + \pi_3^2 + \sigma_0^2 \quad \text{if} \quad \phi = \begin{pmatrix} \pi_1 + i\pi_2 \\ \sigma_0 + i\pi_3 \end{pmatrix}$$

 $\langle \sigma_0 \rangle = v, \ O(4)$ broken to custodial $O(3) \simeq SU(2)_{L+R}$ under which Goldstone π_i 's transform as a triplet

UC Davis HEP

6 / 49

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology

Custodial symmetry breaking in SM

• Gauge sector: triplet of degenerate vector bosons recovered if $g_Y \rightarrow 0$ or $g_L \rightarrow 0$

$$m_{W^{\pm}}^2 = m_{Z^0}^2 \left(rac{g_L^2}{g_L^2 + g_Y^2}
ight)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

7 / 49

Custodial symmetry breaking in SM

• Gauge sector: triplet of degenerate vector bosons recovered if $g_Y \rightarrow 0$ or $g_L \rightarrow 0$

$$m_{W^{\pm}}^2 = m_{Z^0}^2 \left(rac{g_L^2}{g_L^2 + g_Y^2}
ight)$$

• Yukawa sector: breaks $SU(2)_L \times SU(2)_R$ if $\lambda_u \neq \lambda_d$

$$\mathcal{L}_Y \ni \lambda_d \overline{Q}_L \phi d_R + \lambda_u \overline{Q}_L \tilde{\phi} u_R$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology

э

Outline

2HDM with a twisted custodial symmetry

э

8 / 49

2 Constraining the model

Phenomenology at hadron colliders

Outline

2HDM with a twisted custodial symmetry

< 回 > < 三 > < 三 >

UC Davis HEP

э

9 / 49

Constraining the model

Phenomenology at hadron colliders

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology

Generic 2HDM

4 hermitian operators: $\hat{A} = \phi_1^{\dagger} \phi_1, \ \hat{B} = \phi_2^{\dagger} \phi_2,$ $\hat{C} = \frac{1}{2} \left(\phi_1^{\dagger} \phi_2 + \phi_2^{\dagger} \phi_1 \right), \ \hat{D} = -\frac{i}{2} \left(\phi_1^{\dagger} \phi_2 - \phi_2^{\dagger} \phi_1 \right)$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

э

10 / 49

Generic 2HDM

4 hermitian operators:
$$\hat{A} = \phi_1^{\dagger} \phi_1, \ \hat{B} = \phi_2^{\dagger} \phi_2,$$

 $\hat{C} = \frac{1}{2} \left(\phi_1^{\dagger} \phi_2 + \phi_2^{\dagger} \phi_1 \right), \ \hat{D} = -\frac{i}{2} \left(\phi_1^{\dagger} \phi_2 - \phi_2^{\dagger} \phi_1 \right)$

Generic 2HDM potential (14 parameters):

$$V = -m_1\hat{A} - m_2\hat{B} - m_{12}\hat{C} - \tilde{m}_{12}\hat{D} +\lambda_1\hat{A}^2 + \lambda_2\hat{B}^2 + \lambda_3\hat{C}^2 + \lambda_4\hat{D}^2 +\lambda_5\hat{A}\hat{B} + \lambda_6\hat{A}\hat{C} + \lambda_7\hat{A}\hat{D} +\lambda_8\hat{B}\hat{C} + \lambda_9\hat{B}\hat{D} + \lambda_{10}\hat{C}\hat{D}$$

ъ

10 / 49

Higgs basis

Phys. Rev. D 72: 035004, 2005, S. Davidson and H. E. Haber

Arbitrary (ϕ_1, ϕ_2) basis:

$$\begin{pmatrix} \phi_1'\\ \phi_2' \end{pmatrix} = U_{2\times 2} \begin{pmatrix} \phi_1\\ \phi_2 \end{pmatrix}$$
 with $U_{2\times 2} \in U(2)$

+ redefinition of m_i 's and λ_i 's

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

11 / 49

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Higgs basis

Phys. Rev. D 72: 035004, 2005, S. Davidson and H. E. Haber

Arbitrary (ϕ_1, ϕ_2) basis:

$$\begin{pmatrix} \phi_1'\\ \phi_2' \end{pmatrix} = U_{2\times 2} \begin{pmatrix} \phi_1\\ \phi_2 \end{pmatrix} \text{ with } U_{2\times 2} \in U(2)$$

+ redefinition of m_i 's and λ_i 's

Higgs basis: $\langle \phi_1^0 \rangle = v$ and $\langle \phi_2^0 \rangle = 0$. M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 11 / 49

Generic custodial symmetry

Phys. Rev. Lett. 98: 251802, 2007. hep-ph/0703051 J.-M. Gérard and M.H.

 $SU(2)_L \times SU(2)_R$ acts on the [1/2, 1/2]representation M_1 of ϕ_1 :

$$M_1 \equiv \frac{1}{\sqrt{2}} (\sigma_0 \mathbb{I} + i\pi_a \tau^a)$$
$$M_1 \to \frac{U_L M_1 U_R^{\dagger}}{U_R}$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

12 / 49

э

• 同 • • 三 • • 三 •

Generic custodial symmetry

Phys. Rev. Lett. 98: 251802, 2007. hep-ph/0703051 J.-M. Gérard and M.H.

 $SU(2)_L \times SU(2)_R$ acts on the [1/2, 1/2]representation M_1 of ϕ_1 :

$$M_1 \equiv \frac{1}{\sqrt{2}} (\sigma_0 \mathbb{I} + i\pi_a \tau^a)$$
$$M_1 \to \frac{U_L M_1 U_R^{\dagger}}{U_R}$$

Sufficient to ensure $\hat{\rho} = 1$ since all GBs $\in \phi_1$ in Higgs basis M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 12 / 49

Generic custodial symmetry Only $SU(2)_L \times U(1)_Y$ is a local symmetry \rightarrow right transformation of M_2 not completely fixed:

 $M_2 \rightarrow U_L M_2 V_R^{\dagger}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

э.

13 / 49

Generic custodial symmetry Only $SU(2)_L \times U(1)_Y$ is a local symmetry \rightarrow right transformation of M_2 not completely fixed:

 $M_2 \rightarrow U_L M_2 V_R^{\dagger}$

with

$$V_R = X^{\dagger} U_R X$$

and

$$X = \left(\begin{array}{cc} \exp(i\frac{\gamma}{2}) & 0 \\ 0 & \exp(-i\frac{\gamma}{2}) \end{array}\right)$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

13 / 49

Generic custodial symmetry

Only \hat{A} , \hat{B} and

$$\hat{C}' \equiv \frac{1}{2} \operatorname{Tr}(M_1 X M_2^{\dagger}) = \cos(\frac{\gamma}{2}) \hat{C} + \sin(\frac{\gamma}{2}) \hat{D}$$

are invariants of this generic custodial symmetry

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э.

14 / 49

Generic custodial symmetry

Only \hat{A} , \hat{B} and

$$\hat{C}' \equiv \frac{1}{2} \operatorname{Tr}(M_1 X M_2^{\dagger}) = \cos(\frac{\gamma}{2}) \hat{C} + \sin(\frac{\gamma}{2}) \hat{D}$$

are invariants of this generic custodial symmetry

Imposing it: $14 \rightarrow 9$ free parameters

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 14 / 49

э.

CP transformation

We can choose

$$(\mathcal{CP})\phi_1(t,\vec{r})(\mathcal{CP})^{\dagger} = \phi_1^*(t,-\vec{r}) (\mathcal{CP})\phi_2(t,\vec{r})(\mathcal{CP})^{\dagger} = \phi_2^*(t,-\vec{r}).$$

 \hat{A}, \hat{B} and \hat{C} are *CP*-even while \hat{D} is *CP*-odd \rightarrow Imposing explicit *CP* invariance: 10 free parameters

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 15 / 49

ъ

What happens if we consider both *CP* and custodial symmetries ?

2 possibilities...

16 / 49

Usual custodial symmetry $\gamma = 0$

• Invariance under *CP* guaranteed since $\hat{C}' = \hat{C} \rightarrow 9$ free parameters

3

17 / 49

Usual custodial symmetry $\gamma=0$

- Invariance under *CP* guaranteed since $\hat{C}' = \hat{C} \rightarrow 9$ free parameters
- Degenerate $SU(2)_{L+R}$ triplet (H^{\pm}, A^0) and two singlets h^0 and H^0 which mix

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

17 / 49

Usual custodial symmetry $\gamma=0$

- Invariance under *CP* guaranteed since $\hat{C}' = \hat{C} \rightarrow 9$ free parameters
- Degenerate $SU(2)_{L+R}$ triplet (H^{\pm}, A^0) and two singlets h^0 and H^0 which mix
- Limit of MSSM if $g_L \rightarrow 0$ since $m_{H^{\pm}}^2 = m_{A^0}^2 + m_{W^{\pm}}^2$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

17 / 49

э.

・ 「「・ ・ 」 ・ ・ 「 ・ ・

Twisted custodial symmetry $\gamma=\pi$

• Custodial and *CP* symmetries must be imposed since $\hat{C}' = \hat{D} \rightarrow 6$ free parameters

ъ

18 / 49

Twisted custodial symmetry $\gamma=\pi$

• Custodial and *CP* symmetries must be imposed since $\hat{C}' = \hat{D} \rightarrow 6$ free parameters

18 / 49

• Degenerate $SU(2)_{L+R}$ triplet (H^{\pm}, H^0) and two orthogonal singlets h^0 and A^0

Twisted custodial symmetry $\gamma=\pi$

- Custodial and *CP* symmetries must be imposed since $\hat{C}' = \hat{D} \rightarrow 6$ free parameters
- Degenerate $SU(2)_{L+R}$ triplet (H^{\pm}, H^0) and two orthogonal singlets h^0 and A^0
- SM h^0 since *CP* forbids mixing with A^0

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

э.

▲御▶ ▲ 御▶ ▲ 御▶ -

\mathbb{Z}_2 symmetry

Twisted custodial + CP symmetry \rightarrow accidental unbroken \mathbb{Z}_2 symmetry:

$$\phi_1 \to \phi_1 \quad \text{and} \quad \phi_2 \to -\phi_2$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 19 / 49

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э.

\mathbb{Z}_2 symmetry

Twisted custodial + CP symmetry \rightarrow accidental unbroken \mathbb{Z}_2 symmetry:

$$\phi_1 \rightarrow \phi_1$$
 and $\phi_2 \rightarrow -\phi_2$

To avoid FCNCs, impose it to be at most softly broken in all basis with an additional $SO(2)_H$ on the quartic potential

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 19 / 49

< 回 > < 回 > < 回 > <

э.

Potential and spectrum

$$V = -\mu_1 H_1^{\dagger} H_1 - \mu_2 H_2^{\dagger} H_2 - \mu_{12} \left(H_1^{\dagger} H_2 + H_2^{\dagger} H_1 \right) + \Lambda_S \left(H_1^{\dagger} H_1 + H_2^{\dagger} H_2 \right)^2 + \Lambda_{AS} \left(H_1^{\dagger} H_2 - H_2^{\dagger} H_1 \right)^2$$

with $\langle H_1^0 \rangle = v_1, \ \langle H_2^0 \rangle = v_2, \ \tan \beta \equiv v_2 / v_1$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 20 / 49

ъ
Potential and spectrum

$$V = -\mu_1 H_1^{\dagger} H_1 - \mu_2 H_2^{\dagger} H_2 - \mu_{12} \left(H_1^{\dagger} H_2 + H_2^{\dagger} H_1 \right) \\ +\Lambda_S \left(H_1^{\dagger} H_1 + H_2^{\dagger} H_2 \right)^2 + \Lambda_{AS} \left(H_1^{\dagger} H_2 - H_2^{\dagger} H_1 \right)^2 \\ \text{with } \langle H_1^0 \rangle = v_1, \ \langle H_2^0 \rangle = v_2, \ \tan \beta \equiv v_2 / v_1 \\ m_{h^0}^2 = 4\Lambda_S v^2 \\ m_{H^0}^2 = m_{H^{\pm}}^2 = \frac{2\mu_{12}}{\sin(2\beta)} \equiv m_T^2 \\ m_{A^0}^2 = m_T^2 - 4\Lambda_{AS} v^2 \end{cases}$$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

20 / 49

ъ

Yukawa couplings: Type I

*H*₁ and all fermions are Z₂-even while *H*₂ is Z₂-odd:

$$\mathcal{L}_Y \ni \frac{m_d}{v_1} \overline{Q}_L H_1 d_R + \frac{m_u}{v_1} \overline{Q}_L \tilde{H}_1 u_R$$

イロト 不得 とくほとう ほうとう

э.

Yukawa couplings: Type I

• H_1 and all fermions are \mathbb{Z}_2 -even while H_2 is \mathbb{Z}_2 -odd:

$$\mathcal{L}_Y \ni \frac{m_d}{v_1} \overline{Q}_L H_1 d_R + \frac{m_u}{v_1} \overline{Q}_L \tilde{H}_1 u_R$$

• h^0 has SM-like couplings m_f/v while H^0 , A^0 and H^{\pm} couplings are scaled by $\tan \beta$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

21 / 49

э.

イロト 不得 とくほと くほとう

Yukawa couplings: Type I

• H_1 and all fermions are \mathbb{Z}_2 -even while H_2 is \mathbb{Z}_2 -odd:

$$\mathcal{L}_Y \ni \frac{m_d}{v_1} \overline{Q}_L H_1 d_R + \frac{m_u}{v_1} \overline{Q}_L \tilde{H}_1 u_R$$

• h^0 has SM-like couplings m_f/v while H^0 , A^0 and H^{\pm} couplings are scaled by $\tan \beta$ $\tan \beta \to 0$: Inert Doublet Model for DM Phys. Rev. D 74: 015007 (2006). R. Barbieri, L.J. Hall and V.S. Rychkov $_{JCAP}^{VOP}$ 0702: 028 (2007). L. Lopez Honorez et al.

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP 21 / 49

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Yukawa couplings: Type II

H₁ and down type R fermions are Z₂-even while H₂ and up type R fermions are Z₂-odd:

$$\mathcal{L}_Y \ni \frac{m_d}{v_1} \overline{Q}_L H_1 d_R + \frac{m_u}{v_2} \overline{Q}_L \widetilde{H}_2 u_R$$

イロト 不得 とくほとう ほうとう

э.

22 / 49

Yukawa couplings: Type II

H₁ and down type R fermions are Z₂-even while H₂ and up type R fermions are Z₂-odd:

$$\mathcal{L}_Y \ni \frac{m_d}{v_1} \overline{Q}_L H_1 d_R + \frac{m_u}{v_2} \overline{Q}_L \widetilde{H}_2 u_R$$

 MSSM-like: h⁰ has SM-like couplings m_f/v while H⁰, A⁰ and H[±] couplings are scaled by tan β (cot β) for down type (up type) fermions

22 / 49

Four free parameters ...

$m_{h^0} \,\, m_T \,\, m_{A^0} \, aneta$

How to choose them ?

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

Ξ つへで 23 / 49

イロト 不得 とくほと くほとう

Outline

2HDM with a twisted custodial symmetry

2 Constraining the model

Phenomenology at hadron colliders

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

24 / 49

э

< 回 > < 三 > < 三 > 、

Light pseudoscalar hypothesis

S. de Visscher, J.-M. Gérard, V. Lemaitre, F. Maltoni and M.H. Review in preparation

$m_{h^0},\,m_T>\,m_{A^0}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

P 25 / 49

イロト 不得 トイヨト イヨト

• Vacuum stability : $\Lambda_S > 0$ and $\Lambda_S > \Lambda_{AS}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

26 / 49

э.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Vacuum stability : Λ_S > 0 and Λ_S > Λ_{AS}
Unitarity : |Λ_S ± Λ_{AS}| < 8π and |5Λ_S ± Λ_{AS}| < 8π

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

э.

26 / 49

- Vacuum stability : Λ_S > 0 and Λ_S > Λ_{AS}
 Unitarity : |Λ_S ± Λ_{AS}| < 8π and |5Λ_S ± Λ_{AS}| < 8π
- Perturbativity : conservative choice $|\Lambda_{S,AS}| < \pi$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

= 900

26 / 49

- Vacuum stability : $\Lambda_S > 0$ and $\Lambda_S > \Lambda_{AS}$
- 2 Unitarity : $|\Lambda_S \pm \Lambda_{AS}| < 8\pi$ and $|5\Lambda_S \pm \Lambda_{AS}| < 8\pi$
- 3 Perturbativity : conservative choice $|\Lambda_{S,AS}| < \pi$

$m_{h^0}^2 \gtrsim m_{H^{\pm}}^2 - m_{A^0}^2$ and $m_{h^0} \lesssim 500 \text{ GeV}$

ho parameter

• Exact twisted custodial symmetry : SM-like correction $\simeq \log(m_{h^0}^2), m_{h^0} \lesssim 250$ GeV

э

27 / 49

ho parameter

- Exact twisted custodial symmetry : SM-like correction $\simeq \log(m_{h^0}^2), m_{h^0} \lesssim 250$ GeV
- If slightly broken, $m_{H^{\pm}} \neq m_{H^0}$ and

$$\Delta
ho \simeq rac{lpha}{16\pi m_W^2 s_W^2} \left(rac{m_{H^{\pm}}^2 - m_{H^0}^2}{2}
ight) + \Delta
ho_{SM}(m_{h^0})$$

Phys. Lett. B496 :195-205, 2000. P. H. Chankowski, T. Farris, B. Grzadkowski, J. F. Gunion, J. Kalinowski, M. Krawczyk

・ロト ・四ト ・ヨト ・ヨト

э.

27 / 49

ho parameter

- Exact twisted custodial symmetry : SM-like correction $\simeq \log(m_{h^0}^2), m_{h^0} \lesssim 250$ GeV
- If slightly broken, $m_{H^{\pm}} \neq m_{H^0}$ and

$$\Delta
ho \simeq rac{lpha}{16\pi m_W^2 s_W^2} \left(rac{m_{H^{\pm}}^2 - m_{H^0}^2}{2}
ight) + \Delta
ho_{SM}(m_{h^0})$$

Phys. Lett. B496 :195-205, 2000. P. H. Chankowski, T. Farris, B. Grzadkowski, J. F. Gunion, J. Kalinowski, M. Krawczyk

3 Can accommodate $m_{h^0} \simeq 350$ GeV with a 10% breaking

$B^0 - \overline{B^0}$ mixing

Using Phys. Rev. D 38: 2857, 1988. C. Q. Geng and J. N. Ng

28 / 49

• Conservative approach: H^{\pm} contribution within experimental error

• $\tan \beta \lesssim 0.2 - 0.3$ in type I, $\tan \beta \gtrsim 5 - 10$ in type II if $m_{H^{\pm}} < 300$ GeV

 $b \rightarrow s \gamma \operatorname{decay}$

Using Phys. Lett. B 309: 86-90, 1993. R. Barbieri and G. F. Giudice

- Parameters adjusted so that best SM prediction is recovered for $m_{H^{\pm}} \to \infty$
- Constraint in type I weaker than $B^0 \overline{B^0}$. $m_{H^{\pm}} > 300$ GeV independently of $\tan \beta$ in type II

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

29 / 49

Muon (g-2)

Using hep-ph/0103223, 2001. M. Krawczyk

30 / 49

Not relevant in type I
Data in favor of m_{A⁰} ≃ 20 GeV and tan β ≃ 30 in type II

$R_b \text{ in } Z \to b\overline{b}$

Using thesis hep-ph/9906332, 1999. H. E. Logan

31 / 49

- Not relevant in type I
- For $\tan \beta \gtrsim 50$, $m_{A^0} > 50$ GeV if $m_{H^0} > 300$ in type II
- Less constraining than $b \to s\gamma$ for $m_{H^{\pm}}$ if $\tan \beta \gtrsim 1$

Direct constraints

• $m_{h^0} \gtrsim 115 \text{ GeV} (\text{SM Higgs constraint})$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

< 回 > < 回 > < 回 > <

э.

32 / 49

Direct constraints

- $m_{h^0} \gtrsim 115 \text{ GeV} (\text{SM Higgs constraint})$
- $m_{H^0} + m_{A^0} \gtrsim 150 \text{ GeV} (Z^{0(*)} \rightarrow H^0 A^0 \text{ at LEPII})$

э

32 / 49

Direct constraints

- $m_{h^0} \gtrsim 115 \text{ GeV} (\text{SM Higgs constraint})$
- $m_{H^0} + m_{A^0} \gtrsim 150 \text{ GeV} (Z^{0(*)} \rightarrow H^0 A^0 \text{ at LEPII})$

э.

32 / 49

• $m_{H^{\pm}}$ and $\tan \beta$ such that $BR(t \rightarrow (H^{+} \rightarrow c\overline{s}, \tau^{+}\nu_{\tau})b) \lesssim 30\%$ (Tevatron)

Interesting scenarios ? Type I: $\tan \beta \approx 0.2$ $10 \text{GeV} < m_{A^0} < 100 \text{GeV}$ $m_{A^0} + m_Z < m_T < m_{h^0}$ $m_T < m_{h^0} < 300 \text{GeV}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

33 / 49

Interesting scenarios ? • Type I: $\tan \beta \approx 0.2$ $10 \text{GeV} < m_{A^0} < 100 \text{GeV}$ $m_{A0} + m_Z < m_T < m_{b0}$ $m_T < m_{h^0} < 300 \text{GeV}$ **2** Type II: $\tan \beta \approx 30$ $100 \text{GeV} < m_{A^0} < 300 \text{GeV}$ $m_{A0} < m_{b0} < 300 \text{GeV}$ $m_T \approx 300 \text{GeV}$ ・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

Outline

2HDM with a twisted custodial symmetry

2 Constraining the model

Phenomenology at hadron colliders

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

34 / 49

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Interesting decays

• $h^0 \to A^0 A^0$ with BRs from 0.1 to 1 depending on masses. $BR(A^0 \to \overline{b}b) \simeq 0.9$

(日本)(日本)(日本)

= 900

35 / 49

Interesting decays

h⁰ → A⁰A⁰ with BRs from 0.1 to 1 depending on masses. BR(A⁰ → b̄b) ≈ 0.9
h⁰ → H⁰H⁰, H⁺H⁻ if kinematically allowed, with typical BRs ≈ 0.2 - 0.3

= 900

35 / 49

Interesting decays

 h⁰ → A⁰A⁰ with BRs from 0.1 to 1 depending on masses. BR(A⁰ → b̄b) ≈ 0.9
 h⁰ → H⁰H⁰, H⁺H⁻ if kinematically allowed, with typical BRs ≈ 0.2 - 0.3
 H[±] → W[±]A⁰, H⁰ → Z⁰A⁰ both dominant if allowed

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

Possible signals

• Type I: SM Higgs h^0 production and decay into A^0A^0 , H^0H^0 or H^+H^- . 0 to 2 W's or Z's and 4 b's (or τ 's)

э

36 / 49

Possible signals

- Type I: SM Higgs h^0 production and decay into $A^0 A^0$, $H^0 H^0$ or $H^+ H^-$. 0 to 2 W's or Z's and 4 b's (or τ 's)

3

36 / 49

Possible signals

- Type I: SM Higgs h^0 production and decay into A^0A^0 , H^0H^0 or H^+H^- . 0 to 2 W's or Z's and 4 b's (or τ 's)
- Type II: $b\overline{b}H^0$ production and decay into Z^0A^0 . Z's and 4 b's final states

Monte-Carlo study

Exotic model

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

37 / 49

ъ

Monte-Carlo study

Exotic model + populated final states (4 to 8 particles!)

(日本)

37 / 49

Monte-Carlo study

Exotic model + populated final states (4 to 8 particles!) = Need for a new MC tool ...

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

37 / 49

(日本)

MadGraph v4

JHEP 09: 028 (2007). J. Alwall, P. Demin, S. de Visscher, R. Frederix, F. Maltoni, T. Plehn, D. L. Rainwater, T. Stelzer and M.H.

- New models (HEFT, MSSM, 2HDM, ...), framework for user defined models (USRMOD)
- **2** Matching ME description with parton shower
- User friendly interface (online, configuration with cards, calculators, analysis tools, ...)
- More is coming ! (FeynRules, Decay chains, ME techniques, new fast simulation tool, ...)

・ロト ・四ト ・ヨト ・ヨト
Generic 2HDM in MadGraph v4

- Fully generic 2HDM with CP violation and FCNC
- Calculator (TwoHiggsCalc) with a web interface, working both in generic and Higgs basis
- Sufficient to reproduce nearly all possibilities of Higgs phenomenology

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

39 / 49

< 回 > < 回 > < 回 > .

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

40 / 49

ъ

イロト イボト イヨト イヨト

$H^{\pm} \rightarrow W^{\pm} A^0$ with top(s)

• For $m_{H^{\pm}} < 160$ GeV: $t \to H^+ b$, final state is $W^+ W^- b \overline{b} b \overline{b}$. $\simeq 10$ pb at LHC and 0.1pb at Tevatron.

See hep-ph/0701193 R. Godbole

・ロト ・四ト ・ヨト ・ヨト

- 2 For $m_{H^{\pm}} > 160$ GeV: tH^{-} , final state is W⁺W[−]bbb. $\simeq 0.5$ pb at LHC.
- Main background is $t\overline{t} + n$ jets, irreducible if gluon decaying into $b\overline{b}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

42 / 49

ъ.

・ロト ・四ト ・ヨト ・ヨト

$h^0 \to A^0 A^0$

- 4b final state only feasible at Tevatron if h^0 production enhanced compare to SM (Type II and large $\tan \beta$) See Phys. Rev. D 75: 077701 (2007) T. Stelzer, S. Wiesenfeldt and S. Willenbrock
- 2 Associated production, Z + 4b, may be feasible at LHC for light $h^0_{See Phys. Rev. Lett. 99:031801 (2007) K. Cheung, J. Song and Q.-S. Yan}$

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

43 / 49

M. Herquet (CP3 - UCL) Twisted Higgs Phenomenology UC Davis HEP

≣ ৩৭ে 44 / 49

・ロト ・御ト ・ヨト ・ヨト

$H^0 \to Z^0 A^0$

- From decay $h^0 \to H^0 H^0$, 2Z4b final state with cross section around 1pb at LHC.
- Produced in association with b's (in type II), $b\overline{b}H^0$, Z4b final state with cross section around 5pb at LHC
- Direct production at Tevatron (in type II),
 $gg \rightarrow H^0, Z2b$ final state
- Low SM backrounds Z+jets and ZZ+jets

▲ 国 → → 国 →

Challenging analysis

• Backgrounds $(t\overline{t}+jets, nZ+jets and nW+jets)$ must be simulated carefully with matching

See J. Alwall, S. de Visscher and F. Maltoni, in preparation.

46 / 49

Challenging analysis

• Backgrounds $(t\bar{t}+jets, nZ+jets and nW+jets)$ must be simulated carefully with matching

See J. Alwall, S. de Visscher and F. Maltoni, in preparation.

2 b's produced in light A^0 decays could be highly boosted and collinear. How well these "super b-jets" can be tagged ? Can m_{A^0} be measured ?

э.

< 回 > < 回 > < 回 > <

Challenging analysis

 Backgrounds (tt+jets, nZ+jets and nW+jets) must be simulated carefully with matching

See J. Alwall, S. de Visscher and F. Maltoni, in preparation.

2 b's produced in light A^0 decays could be highly boosted and collinear. How well these "super b-jets" can be tagged ? Can m_{A^0} be measured ?

3 Can Matrix Element techniques help?

Conclusion

- A custodial symmetry is necessary in the Higgs sector and a twisted realization exists
- A 2HDM with a twisted custodial symmetry is viable
- Unusual and challenging phenomenology at hadron collider

• = •

Perspectives

- Possible role/consequences of a twisted custodial symmetry in more ambitious models
- Full simulation study of the "golden" signatures
- Obtailed study of Tevatron signal(s)

э

Twisting Higgs phenomenology

Higgs phenomenology does not always reduce to SM, MSSM or NMSSM-like scenarios

49 / 49

Twisting Higgs phenomenology

Higgs phenomenology does not always reduce to SM, MSSM or NMSSM-like scenarios

Stay open to more exotic possibilities

49 / 49