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String theory gives rise to a multitude of
self-consistent string vacua...

* Correspond to different choices of compactification
manifolds/orbifolds, Wilson lines, vevs for
numerous moduli fields, fluxes, etc.

* Historically, such vacua were not stable, but it was
believed that a stabilization mechanism and/or
vacuum selection principle would be found.

* Recent developments suggest that a plethora of KKLT
vacua continue to exist even after stabilization.

Such vacua can be viewed as local minima of a
complex terrain of hills and valleys ...

the string-theory landscape.



The real string landscape...

Pl .JI'..‘

!:!T iLu-::nnv.] tr:rrae;r.'alllr:rié.;:

Tucson, Arizona



10500

100000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000

Pretty darn big

00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000



Does it matter?
Yes!

The low-energy phenomenology that emerges
from the string depends critically on the
particular choice of vacuum state.

Detailed quantities such as

* choice of gauge group
* number of chiral generations
* SUSY-breaking scale

* cosmological constant, etc.

...all depend on the particular vacuum state selected.



How then can we make progress in the absence
of a vacuum selection principle?

Recent proposal: Examine the landscape
statistically, look for correlations between low-
energy phenomenological properties that would

otherwise be unrelated in field theory.

Douglas,...

This then provides a new method for extracting
phenomenological predictions from string theory.



This idea has triggered a surge of activity examining

the statistical properties of the landscape...

SUSY-breaking scale

Cosmological constant

Ranks of gauge groups

Prevalence of SM gauge group
Numbers of chiral generations, etc.

Douglas, Dine, Gorbatov, Thomas,
Denef, Giryavets, de Wolfe,
Kachru, Tripathy, Conlon,
Quevedo, Kumar, Wells, Taylor,
Acharya, Gorbatov, Blumenhagen,
Gmeiner, Honecker, Lust,
Weigand, Dijkstra, Huiszoon,
Schellekens, Nilles, Raby, Ratz,
Wingerter, Faraggi,...

This line of attack has also led to various paradigm

shii

ts...

Alternative notions of naturalness
New cosmo/inflationary scenarios
Anthropic arguments
Field-theory analogues

Landsape versus swampland
Land-skepticism

Douglas, Dine, Gorbatov,
Thomas, Weinberg, Susskind,
Bousso, Polchinski, Feng, March-
Russell, Sethi, Wilczek,
Firouzjahi, Sarangi, Tye, Kane,
Perry, Zytkow, KRD, Dudas,
Gherghetta, Arkani-Hamed,
Dimopoulos, Kachru, Freivogel,
Vafa, Banks,...



The String Vacuum Project (SVP)

A large, multi-year, multi-institution, interdisciplinary
collaboration to explore the space of string vacua,
compactifications, and their low-energy implications through

enumeration and classification of string vacua
detailed analysis of those vacua with realistic low-
energy phenomenologies

statistical studies across the landscape as a whole.

Will involve intensive research at the intersection of

Particle physics: string theory and string phenomenology
Mathematics: algebraic geometry, classification theory

* Computer science: algorithmic studies, parallel
computations, database management.
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Abstract

The time 1s ripe for bringing svstematic methods to bear on the construction and analysis of com-
pactifications of string theory as models of realistic particle physics. We propose to pursue a systematic
study of the space of string compactifications leading to four-dimensional physics with a series of focused

* Wiki at: http://strings0O.rutgers.edu:8000
* European SVP website at:

http://www.ippp.dur.ac.uk/~dgrell/svp



Unfortunately, although there have been
many abstract theoretical discussions of
string vacua and their statistical properties,
there have been very few direct statistical
examinations of actual string vacua.

In spite of recent progress, this is because the
construction and analysis of actual string vacua
remains a fairly complicated aftair.



There have been exceptions, however...

* A recent computer analysis of millions
of supersymmetric intersecting D-brane
Blumenhagen,
models on a particular orientifold Gmeiner, Honecker,

Lust, Weigand
background
* although these models are not stable (they
have flat directions), statistical
occurrences of various gauge groups,
chirality, numbers of generations, etc.
were reported.

* A similar study focusing on Gepner-type Dijkstra,

Huiszoon,

orientifolds exhibiting chiral MSSM spectra  Scheisker



Before our work, however, there were almost no studies of the
heterotic landscape. This 1s somewhat 1ronic, since
perturbative heterotic strings were the framework in which
most of the original work 1n string phenomenology was
performed in the late 1980's and early 1990's.

Moreover, heterotic models are fundamentally different from
Type I models...

* tighter constraints (central charges, modular invariance, ...)
* gauge groups generated differently, maximal ranks
* different phenomenologies (e.g., gauge coupling unification)

Expect potentially different statistical properties/correlations.
(May even provide useful guides for heterotic model-builders.)



In this talk, we shall discuss the results of the first statistical
study of the heterotic landscape.

* We shall begin by focusing on a sample size of 10° distinct four-
dimensional non-supersymmetric heterotic string models.

* We shall then enlarge our discussion to include tens of millions of
four-dimensional heterotic string models with N=0,1,2,4 SUSY.

* Finally, we shall discuss general statistical 1ssues and problems
that affect analyses of this type.

Since our work, other statistical examinations of various portions of the
heterotic landscape have also appeared --

* Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter
* Faraggi, Kounnas, Rizos



First, three apologies...

* Sample sizes are relatively small, but state of the art
* In this talk, will only concentrate on gauge groups
and one-loop vacuum amplitudes (cosmological

constants) --- analysis of other features (particle

representations, Yukawa couplings, etc.) in progress

* Models not stable, thus not the sort of models we
1deally would like to be studying!

* all N=0 models are tachyon-free, thus stable at tree
level, but certainly not stable beyond this
* even SUSY models have flat directions



On the other hand...

* All models are self-consistent at tree level
* conformal/modular invariance, proper GSO projections,
proper spin-statistics relations, etc.

* Models range from very simple to extraordinarily
complex, with many overlapping layers of orbifold
twists and Wilson lines, all randomly generated but
satisfying tight self-consistency constraints

* Such high degree of intricacy 1s exactly as expected for
semi-realistic models that might describe the real world.



* Studies of such models, even though unstable, can
eventually shed light on the degree to which vacuum
stability affects other phenomenological properties.

* N=0 string models may provide an alternative means
of understanding our N=0 world, thus worth

understanding in their own right.

* It's fun.

So let's proceed...



The models

Four-dimensional weakly-coupled heterotic strings

Realized through the free-fermionic construction:
* Worldsheet (super)CFT with c=(9,22) realized in terms of free
complex NS or Ramond fermions
* Different spin-structures contribute to partition function with
GSO phases preserving modular invariance and guaranteeing
proper spin-statistics relations

Models generated through random but self-consistent
choices of fermion boundary conditions (R or NS) and
spin-structure phases

Models restricted to tachyon-free N=0 for now,
generalized to N=0,1,2,4 later

Complex fermions only
* No rank-cutting: all gauge groups rank=22, simply laced



Kawai, Lewellen,

Advantages of the fermionic construction: Tye; Antoniadis,

Bachas, Kounnas

* Relatively easy to generate models with an intricacy
and complexity that is hard to duplicate through more

geometric constructions --- indeed, through sequential
layers of twists and projections, can easily generate models for
which no geometric interpretation is apparent.

* Substantial overlaps with Narain (bosonic) lattice
formulations and orbifold /Wilson-line constructions.

* Although reaches only discrete points in full model
space, such points tend to represent the models of

most phenomenological relevance (e.g., containing non-
abelian gauge groups).

* Full tree-level spectrum and couplings calculable.

* Straightforward to automate for computer searches.



Indeed, models constructed using these
techniques span almost the entire spectrum of
closed-string models...

* SM and MSSM-like models
* String GUT models
°* Models with and without exotic chiral matter, etc.

Indeed, despite the abstract mathematical power of more
geometric (CY) formulations, most detailed work in
closed-string model-building over the past two decades
has occurred through free-field
(bosonic/fermionic/orbifold) constructions.



First, a warm-up exercise...

The heterotic “landscape” in D=10



non-SUSY

S0(32)
SO(8) SUSY
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Nine distinct models, connected through orbifold “web”
Two models with N=1 SUSY, one N=0 but tachyon-iree,

six N=0 and tachyonic

Large variation in gauge groups

Ranks £ 16




non-SUSY
S0O(32)
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Lessons from D=10...

o U(16)

|

every model.
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Only some gauge groups are realizable, not all

Correlations can exist between seemingly unrelated
features (e.g., SUSY and gauge group)
Our model-construction techniques will not reach




Now turn to D=4.
Landscape is vastly more complex...

* Many, many models in this class alone.

* Orbifold twists/Wilson lines can be extremely
complicated, can act sequentially in non-trivial
overlapping ways with fairly complicated
patterns of simultaneous GSO projections

* Now can have N=1,2,4 SUSY as well as N=0

(both with and without tachyons) --- first focus on
N=0 tachyon-free models

* Rank of gauge groups < 22 --- in this study,
rank=22 only.

Need to generate models randomly and analyze
them systematically.



How we do it:

Step #1: Generating models

Level of SUSY

i

001101101111 111111111111111111111 gO0O1000
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Seed for rand() K_JT # DD’I‘[DDDDDEJ' 1110000000001 110000000 §001101
0110110000{}1001111000000001110000 JO11010

110000100111110711001100011011011008010101

L right-movers left-movers hases
Run time 5 ' P

Can generate millions/billions of self-consistent
configurations of twists/phases very easily!

D. Senechal




Step #2: Analyze candidate model

* For each spin-structure, enumerate all states in Fock

space satistying level-matching and GSO constraints
* Organize these states into meaningful representations
* first gravitinos, then appropriate gauge multiplets,

finally rest of spectrum

determine N

find
gravitinos *

identify &
analyze
gauge bosons

determine gauge group, G

-

determine spectrum

all other states classified
by “charges” under G and
grouped into suitable multiplets




Resulting
spectrum is then
quoted in terms of
Dynkin labels and
U(1) charges,
labelled as real or
complex, chiral or
non-chiral, etc.

D. Senechal

Supersymmetry N =0

57 gauge bosons in SU(4) x SU(2)414 x U(1)75

34 Fermions irreps:
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Important point: Many different configurations of
orbifold twists/Wilson lines give rise to exactly the
same particle spectrum in spacetime!

A given string model can have multiple realizations in
terms of the underlying construction.

Thus, must analyze the spectrum of each candidate
model and compare with those of all previous models
before deciding whether a new, distinct string model has
truly been found.

This is computationally intensive, and turns out to be the

limiting factor in studies of this type.
(more about this later...)



So what do we tind?

First, discuss statistical results from a
sample of ~10° non-supersymimetric,
tachyon-free models...

KRD, hep-th/0602286



Since all models have rank 22, it turns out that one important way
to categorize models is according to their numbers of irreducible
gauge group factors.

How “shattered” (or “twisted”) is the total gauge group?

Models range from

Least “shatter”
[analogue of SO(32) in D=10]



Models fill out a “tree” when arranged as a function of
shatter...

f=1: SO(44) only — unique model is “root” of tree

34 distinct models, 4 unique gauge

=2 groups of form G= SO(44-n) x SO(n) for
n=8,12,16,20
186 distinct models, 8 distinct gauge groups.
ek This is the first shatter level at which E groups
appear, always E8.
Thousands of distinct models, 34 distinct gauge
=4

groups. First appearance of E7, U(1), and
SU(n) with n=4,8,12



Models fill out a “tree” when arranged as a function of

shatter...

=5 34 distinct gauge groups. First appearance of
E6 and SU(n) with n=6,10, 14.

=6 70 distinct gauge groups. First appearance of SU(7).
Disappearance of SU(14).
=7: 75 distinct gauge groups, only one with ES8.

First appearance of SU(5).

89 distinct gauge groups. Disappearance of ES8.

First appearance of SU(3).
-- thus, e.g., no models with E§ x SU(3) x ... !

=8:



Models fill out a “tree” when arranged as a function of
shatter...

f=29: G=U)" x SU®2)%*™ only

f=21: G=UM)" x SU®2)2 x SU3) only
--- SU(3) factor must appear

=20- 24 distinct gauge groups, all containing
either SU(3)% or SU(4)~SO(6)

=19: 37 distinct gauge groups, all containing either
SU(3)> or SU(3) x SU@) or SU(5) or SO(8).



In aggregate,

* 123,573 distinct models
* only 1301 distinct gauge groups
distributed across all levels of shatter.



Which levels of shatter are most likely?

0.15 I I I I I I I I I I I | I I I I I

0.1

probability

0.05 —

O 1 I I — I I I — ] [N — | l

5 10 15 20
# of gauge group factors

Even shatters appear to dominate at large shatter.



Which levels of shatter give rise to the most
distinct gauge groups (rather than models)?

150 I I I ] I I I I I ] | | I I ] I | I
- (N=1.2x109)

100 -

# of distinct gauge groups
O
o
I

0 L1 l N I — ] I ] N I — | |

5 10 15 20
# of gauge group factors




Which levels of shatter give rise to the greatest number of
distinct string models per gauge group?

BDO I I I | | [ [ I | I | I | [ [ I I |

(O]
o
o

(gauge group multiplicity)
0 N
o o
S o

o) 10 15 20

# of gauge group factors



Another important issue concerns the composition of
the gauge groups.

As always, total rank = 22,

How is this total rank distributed amongst

* SO’ groups
* 'SU' groups
* 'E' groups

* T groups [groups with rank 1: U(1), SU(2)] *?

For counting purposes, SU(4)~SO(6)
is distributed equally between SO and SU.



As a function of shatter, these individual contributions to
the total rank are...

T T I I T I I T T I I T T

* These are averages
<0 over all string models
with a given shatter.
* Total of all lines=22.
* Mostly 'SO' for small
shatters, mostly 'T
for large shatters.

* 'SU' sizable for
intermediate
shatters, always =2
for {=21.

o L _E e * 'E' groups extremely

5 10 15 50 unlikely, given their

S0

|_L
wn

b—l
o

(total rank)

SU

# of gauge group factors smallest rank is 6.



How likely are individual 'SO' and 'SU' gauge factors?

0.8

-
o)

probability of factor
o
N

o
(4]

4 6
rank of factor

* These are averages
over all string models
in the sample.

* SU(2) is ubiquitous,
but SU(3) much rarer.

* SU4)~SO(6), thus two
curves coincide at
rank=3.

* For larger ranks, 'SO'
groups slightly more
common than 'SU'
groups in our sample.



Indeed, across all string models in our sample,

* 10.65% contain SU(3) factors. Among these models,
the average number of such factors is 1.88.

* 95.06% contain SU(2) factors; average number 6.85.

* 90.80% contain U(1) factors; average number 4.40.

By contrast, across all distinct gauge groups,

* 23.98% contain SU(3) factors; average number 2.05.
* 73.87% contain SU(2) factors; average number 5.66.
* 91.47% contain U(1) factors; average number 5.10.

Thus, e.g., although SU(3) factors appear in 24% of gauge groups,
those groups emerge from actual string models in our sample only
half as frequently as we would have expected.



In fact, 99.81% of all heterotic string models in our
sample which contain one or more SU(n) factors also

exhibit an equal or greater number of U(1) factors.
True for SU(3) and all SU(n), n=b.

By contrast, this is true of only 75% of models with
SO(2n=6) factors and only 61% of models with 'E'
factors... i.e., no such correlation for these groups!

The origin of this SU(n)/U(1) correlation involves the
possible embeddings of the charge/momentum
lattice on integer/half-integers lattice sites.



How much do SU(3), SU(2), and U(1) individually
contribute to the total rank?

20 -
1o —
r i ) * These factors tend
S i ] to make sizable
g 10 |- - contributions only
Q - |
o - when the shatter
: is significant.
5 -
O | | | | | ] I ] ] | | | |

o 10 15 20

# of gauge group factors



How likely are SU(3), SU(2), and U(1) to appear
simultaneously in a given string model in our sample?

0'3_"' e« SM gauge group
= i . does not even
gﬂ - ° . appear until
o 05 B . | approximately {>10.
ED L | * Probability for SM
= . . actually hits
2 - o’ ©o- *1 for =21
2 0 __ . __ °*° 0 for f=22.
= i | *SM gauge group is
é i ’ - most likely to
3. i . } emerge in
; | . .1....1.] approximate range
5 10 15 20 between 15 and 21.

# of gauge group factors



How likely are SU(3), SU(2), and U(1) to appear
simultaneously in a given string model in our sample?

probability of SM gauge group

0-3 I I I

0.2 —

0.1

O.“““i“!lll'llll'l_.

T T I I T T T I

I T T I

O 10

15

# of gauge group factors

20

* These conclusions
agree with all known
such semi-realistic
string models in
literature.

* Provides limits on
possible hidden-
sector gauge groups
for such models.

* Useful guide for
future string model-
building.



How likely are SU(3), SU(2), and U(1) to appear
simultaneously in a given string model in our sample?

probability of SM gauge group

0-3 I I I

0.2 —

0.1

T T I I T T T I I T T I

O.“““i“!lll'llllll

O 10 15

# of gauge group factors

20

Indeed, averaged
across all degrees of
shatter, the total
probability of
obtaining the SM
gauge group in this
sample of models is
only 10.05% ---
similar to what is
found for Type I
strings.



How about cross-correlations between all possible
gauge groups of interest?

What are the joint probabilities that two different
gauge group factors will appear within the same
string model simultaneously?

This is especially useful to know if one factor is “observable”,
the other “hidden”...



Correlation probability table (quoted in % of models)...

U, | SU,| SUs| SU, | SU, [ SU-5] SOs| SO | SO-10] Eess || SM [ PS
U, [ 37.13 | 86.56 | 10.64 | 65.83 | 2.41 | .20 [32.17 | 14.72 | 8.90] 035 10.05 | 61.4%
ST, 04.05 | 10.05 | 62.80 | 214 | 7.75 | 37.20 | 13.33 | 12.80 | 047 || 981 | 54.31
ST, 775 | 561|089 028] 144| 035| 006| 10| 7.19] 5.04
ST, 35.04 | 1.43 | 582 | 2441 | 11.15| 6.53| 022 5.18 | 33.20
STU- 028 ] 0.09| 046 0.14] 0.02 0l 073 1.21

SU-. 050 | 3.30] 1.65| 1.03| 0.06] 0.25]| 4.87
SO 12.68 | 643 | 8.66| 030 1.10]22.02
SO 204| 257| 013 025 0.44

SO-10 303 025 0.03| 5.25
J 0.01 0 013
SM 712 ] 3.86
PS 26.86

total: || 90.80 | 95.06 | 10.64 | 66.53 | 2.41 | 8.20 | 40.17 | 15.17 | 14.94[ 0.57 [| 10.05 | 62.05

* SM = Standard Model; PS = Pati Salam SO(4) x SO(06)
* Off-diagonal entries show pairwise percentages;

diagonal entries show percentages for factor appearing twice.
* “Total” is uncorrelated probability for single group factor.




Correlation probability table (quoted in % of models)...

U, | SU,| SUs| SU, | SU, [ SU--] SOs]| SO0 | 5O-10] Fe-s || SM [ PS
U, | S7.13 | 86.56 | 10.64 | 65.83 | 2.41 | 8.20 | 32.17 | 14.72 | 8.90| 035 [ 10.05 | 61.48
ST, 0405 | 10.05 | 6280 | 2.14 | 7.75 | 3720 | 1333 | 12.80 | 047 | 9.81 | 5431
ST, 775 ] 561|080 028 144] 035 006 107 7.19| 5.04
ST, 35.04 | 143 | 5.82 | 2441 | 11.15| 6.53| 022 5.18 | 33.29
SU- 028 | 0.00| 046 0.14] 0.02 0 073] 121

SU-. 050 | 3.30] 1.65| 1.03| 0.06] 0.25]| 4.87
SOx 1268 | 643| S.66]| 030 L.10]22.02
SO 204 257 013 025 9.44

SO-10 303 | 025 0.03| 5.25
Eg-s 0.01 0 0.13
SM 712 | 3.86
PS 26.86

total: || 90.80 | 95.06 | 10.64 | 66.53 | 241 | 8.20 | 40.17 | 15.17 | 14.94[ 0.57 [| 10.05 | 62.05

* Almost all SU(3), SUn=5) factors come with U(1), as already noted.

* No models with SU(5) x (any E-group); no models with SM x (E-group);
only one with SU(3) x (E-group).

* Overall, Pati-Salam is much more prevalent than SM, while SO(10) is
somewhat more prevalent and SU(5) is slightly less prevalent than SM.




Finally, we have seen that we found only ~1300 distinct gauge

groups for over ~120,000 models. How does the number of
gauge groups grow with the number of models constructed?

1500

1000

000

# of distinct gauge groups

S10) 100
# of distinct models (thousands)

* Gets harder and
harder to find new
gauge groups as we
continue to generate
models.

* Curve appears to
saturate at a
maximum number of
possible heterotic
gauge groups...?



Now we turn to the one-loop vacuum energy
densities (cosmological constants) A

associated with these models.

2,
Define: A = / A7 YA (’T)
F (

Im 7)?
where Z(T) is the one-loop partition function:

Z(7) = Tr(—1)" g ¢

Then A — %M4A

where M is the reduced Planck scale.



Since these models are non-supersymmetric, we
generally expect non-zero A.

Of course, just as with the ten-dimensional SO(16) x
SO(16) heterotic string, the presence of a non-zero A
indicates that these models are unstable beyond tree
level.

Why then focus on this quantity?



Warning: brief editorial ahead.



Simplest possible one-loop amplitude one can calculate ---
its properties may hold lessons for more complicated

amplitudes. For example, general n-point amplitudes are related
to this amplitude through differentiations (e.g., string threshold
corrections). Similar expressions thus apply even for SUSY theories.

By examining the behavior of such stringy amplitudes,
gain insight into the extent to which effective supergravity

calculations might hold in the full string context. (E.g.,
how great a contribution do massive string states actually make?)

When correlated with information about gauge groups,
may learn how gauge groups intfluence the sizes of these
sorts of amplitudes.

Finally --- and most importantly --- values of A relate

directly back to fundamental questions of SUSY-breaking

and vacuum stability. If we can find models with A =0 (even

approximately), we will have found good approximations to stable
vacua with broken SUSY.



We now rejoin the mathematics,
already in progress...



First, note that when we evaluate the partition function
for a given string model, we obtain a double-power series:

Z(T Z hnm q"
mn I

Net numbers of bosons minus fermions
with left/right worldsheet energies (m,n).

Change variables to

°* sum S = m+tn (total WS energy ~ mass?)
* difference d = Im-nl (“off-shell” amount)

and accordingly, define new degeneracy matrix:

Asd = b(S—fﬂ)/?,(B%—d)fQ + b(S—I—d)X?,(S—d)/Q



We can then write the one-loop vacuum amplitude as

where

I sd

— exp(—2msT) cos(2mdT)

contribution to A from each state with
total WS energy s and “off-shell” degree d.

Thus, for each heterotic string model, we simply
calculate the net degeneracies of bosons minus
fermions in the spectrum for each relevant (s,d)
and then tally the above sum to find A.



But note the magnitudes of these individual contributions:

5 d Isﬂr S d Iﬂf
—10[ 1| —12.192319 || 1.0 |1 O 0.000330
—0.5 11 —0.617138 || 1.0 | 1 [ —0.000085

0.0 0 0.549306 || 1.0 | 2 0.000035
0.0]1 —0.031524 || 1.0 | 3 | —0.000018
0.0 1] 2 0.009896 || 1.5 | O 0.000013
0.5 (0 0.009997 || 1.5 | 1 [ —0.000004
0511 —0.001626 || 1.5 | 2 0.000002
05| 2 0.000587 || 1.5 | 3 | —0.000001

The biggest contributions are from off-shell tachyons with
(S9d) = (_19 1) ==> (man) = (Oa _1) !

These are 22 times larger than from massless on-shell states!



Do such (m,n)=(0,-1) states actually

!
exist in the non-SUSY string spectrum? Yes!
As long as there's a graviton, there's also:

proto-graviton: b 00 @ |0)r

... same as the graviton but without coordinate excitation.

Always there for same reason that graviton is always there!

Try to cancel its contributions with a similar fermion?
proto-gravitino: { b F10)p @ 10)L .
... same as the gravitino but without coordinate excitation.

Always projected out when gravitinos are projected out!



Upshot:

* Even before massless states are considered,
uncancelled off-shell (bosonic) tachyonic string states
produce a significant bias towards A <O (i.e., A > 0).

* Although contributions from massive states fall
exponentially, their numbers grow exponentially.
Contributions all the way up to 5™ or 6™ mass levels
are also significant.

Thus, contributions from the infinite towers of string states, both
on-shell and off-shell, are critical for determining not only the
magnitude but also the sign of the one-loop cosmological
constant. Examination of the massless string spectrum (e.g.,
through effective low-energy field-theory analysis) is not enough.



So what values of A do we find for our sample?

# of models (thousands)

12

=t
-

o

| ] I I

(N=1.2x109%) |

* Both positive and
negative values
emerge, with over
73% positive (i.e.,
negative A --> AdS).

* Over 1075 models,
but smallest value
of Al found is
0.0187.

Why none smaller?



There's a great redundancy in values of A !

# of values of A (thousands)

15

._l.
o

o

o 10
# of distinct models (thousands)

15

* The number of values
of A found is
significantly less than
the number of models
examined!

* Unrelated models
with completely
different gauge groups
and particle content
can nevertheless have
identical values of A'!



There's a great redundancy in values of A !

N

This trend becomes

Lo

increasingly severe
as we generate more
and more models...

AW

4 of values of A (thousands)

0 o0 100
4 of distinct models (thousands)



Why does this happen?

85% of the
degeneracies

15% of the
degeneracies

The number of possible modular-invariant
partition functions is significantly smaller than
the number of distinct string models which can
be constructed.

Two different partition functions can differ by a
function which is purely imaginary (makes no
contribution to A).

Two different partition functions can differ by an
expression proportional to the Jacobi factor

1

(v —vi—v3) =0
Two different partition functions can differ by an
expression which has an Atkin-Lehner symmetry

(i.e., non-zero, but integrates to zero over the
fundamental domain). (Moore, 1987; KRD, 1990)



In fact, it appears that the number of cosmological
constant values may actually saturate...

If so, fit curve to exponential form

S(t) = Np (1 — e7"/'0)

| |

maximum “time constant”
value

find Ng~5500, ty~70,000 .

Of course, haven't really examined enough models
to observe saturation reliably...



Thus, just as for gauge groups, there is a tremendous
degeneracy in the space of heterotic string models, with
many distinct models with different gauge groups and

particle content sharing exactly the same value of A .
There are flat “directions” even in the non-SUSY landscape.

Stringy symmetries across infinite towers of massless and
massive string states matter!

Having more string models does not necessarily imply
more values of A !

Does this persist beyond one-loop? Expectation YES...



Are there significant correlations between
gauge groups and A ?



Yes!

(A)

1000

800

600

400

200

Look at A versus degree of shatter:

L

[ | IS | ) (N - | I (N - I. ] -T

0 5
# of gauge group factors

10

15

20

* These are statistical
averages across all
models with same
degree of shatter.

* More twists tends to
lead to smaller one-
loop vacuum
amplitudes.



Plot the same data versus average rank of factors = 22 /f:

1000

800

600

400

200

.

* Statistically almost a
linear relationship.

* Suggests that
contributions from
vector representations
dominate, with
scalars cancelling
against spinors and
other higher reps.

Big groups lead

o

to big A .



Go one step further, hold <rank> fixed.

Is A correlated with “abelianity” --- abelian vs. non-abelian
gauge groups?
80 I I | I I | I I I I I I | I I I I | | I
i models with }
: . U(1)'s, SURR)'s |
Look at string models ] only ]
with U(1)'s and SU(2)'s 60 . a
only (completely - . -
)
shattered). Find... 3 - i
40 . -
Another strong go 0~ o b b 1
0 5 10 15 20
correlation, number of U(1)’s
independent of ! —
previous one. More SU(2)'s. More U(1)'s.

Very non-abelian. Very abelian.



How does A depend on cross-correlations of gauge-
group factors?

ST,
104.6

112.9

110.7

SUss
162.3

1721

1207

109.1

106.6

157.1

167.9

090.9

113.3

136.1

162.5

115.2

115.0

150.9

166.7

135.9

156.3

191.6

199.2

200.9

203.2

274.5

167.5

J01.6

207.8

2534

4174

163.0

* Table shows average A for models with corresponding
gauge group combinations.
* Models with SM gauge group have smallest values of A .



One can also consider the inverse:
For each A bin, calculate average number of gauge
group factors for models in that bin...

- I I I I “I" I I I I I I I I I -
" ” i - * Choosing A
E - . restricts number of
E 15 B _ factors to fairly
=) i 1 narrow range (not
gﬂ i 1 true for inverse
0 10 - - — correlation!)
5 I i * Models with small
;ﬂ I | A] have completely
N shattered gauge

I } groups.

oo by




One can also consider the inverse:
For each A bin, calculate average number of gauge
group factors for models in that bin...

- I | I | "I" I | I I | I I I I -
0 ” I 1 * Fundamental limit on
E - - shattering ==
b 15 _ minimum size of A ?
5 | 1 * Conversely, if model
Eﬂ I - with acceptable A is
o 10 - o — found, overwhelmingly
= | 1  more likely to have SM
;ﬂ I than any GUT
9 O _—}' extension.
.




What is the probability that a randomly chosen heterotic

string model has a negative A (i.e., positive A )?

probability (A<O0)

0.4

0.3

0.2

0.1

5 10 15 20
# of gauge group factors

* No significant
probability until
shatter reaches 4-5.

* Probability then
remains constant as
further shattering
OCCurs.

* Overall probability
averages to 27%.



Now let's examine how all of this depends on
the presence or absence of SUSY.

To do this, we enlarge our data set of heterotic models
to include:

* 4.95 x 105 models without SUSY, tachyon-free
* 3.77 x 106 models with N=1 SUSY
* 0.49 x 105 models with N=2 SUSY
. 1106 models with N=4 SUSY

(largest sets of heterotic string models ever constructed...)

How do our previous distributions depend on N ?

* KRD, M. Lennek, D. Senechal, V. Wasnik,
arXiv:0704.1320



Which degrees of shatter are most likely?
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shatter shatter

* In both cases: large shatters dominate...



probability

But as we increase the amount of supersymmetry...
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. the peak probability broadens significantly and

shifts somewhat towards smaller shatters!



probability

But as we increase the amount of supersymmetry...
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Thus increasing SUSY tends to favor models with

larger gauge-group factors.



probability

But as we increase the amount of supersymmetry...
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Interesting observation: N=4 shatter plot has an approximate

reflection symmetry around shatter = 10. Exact? General
property of maximal SUSY landscape? Prove analytically?



Ordinarily, we could now proceed to examine other
important features of our data set...

* Relative populations of models with different
degrees of SUSY across the landscape...

* Relative probabilities of different gauge groups as
functions of the numbers of supersymmetries...

° etc...

But before we can do this, we must first deal with an
important computational issue.



This is a subtle issue which is generic
to statistical landscape studies of this type:

The problem of floating correlations

This problem has not been discussed previously in the
literature, but it turns out to play a huge role in obtaining
meaningful statistical results from a data set to which one has
only limited computational access.

* KRD and M. Lennek, hep-th/0610319 (PRD)



The problem of floating correlations is the observation that
some statistical correlations are unstable --- they “float” (or
evolve) as the sample size increases.

Why does this happen?

Essentially, as we continue to randomly generate models, it
gets harder and harder to find new (i.e., distinct) models.
Thus, physical characteristics which were originally “rare” are
often forced to become less “rare” as the sample size increases
and we probe more deeply into the space of models.



In particular,

consider the process of randomly generating string models...

eeo

f./

parameter
space

T
7
[
/

model
space

* One must generically employ
a model-construction
technique which specifies
models according to some set
of internal parameters (e.g.,
fluxes, orbifold twists,
boundary conditions or
phases, Wilson lines, etc.)

* Each set of parameters maps
to a single model, but the
mapping is rarely unique!

Thus some models are much more likely to be generated than
others! This feature is essentially unavoidable.



Thus, we don't see We see a deformed

the model space version of it, a
directly: “probability space”:

| [
o

Qmodel Qprob

Does this difference matter for our statistical
correlations between physical observables?

Yes, if the physical properties are somehow correlated
with these probability deformations.



To use a real-world
example, it's the difference
between this:

and this: ...or even this:

“ Bush
I
e e ="
|
Cartogram based on population. Cartogram based on population density.

Sadly, these things do matter and can affect outcomes.



How can we get around this problem?

eeo

f./

parameter

N

N

QR

VLN

* Partial solution: don't count
the “new” model if it's already
in the data set. Consider it a
“failed attempt”, disregard
this case, and try again.



How can we get around this problem?

eeo

parameter

a '\\\$A.\ %
Ce ——————/7/ B ‘/Z
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fo / ?Sé’fé

* But we are still not finding
the very “rare” models (such
as Model B), close to the
“unreachable” region. It will
take a considerably larger
data set before we will
stumble across such rare
models, and we have no
information about where they
are, how common they are,
or whether they even exist!

This is the whole problem: we do not have computational access to the

entire landscape! Thus, our statistical data “floats” as we keep digging for

new nuggets (which, since they are still “new”, are necessarily “rare”).



What we need is a way of extracting information (even if
only limited information) about the full landscape on the
basis of only partial information.

Analogous to lattice gauge theory: need to extract
information about the continuum limit on the basis
of calculations done at finite lattice spacing.

Solution:

* Restrict attention to relative ratios of probabilities of
models with different characteristics.

* But calculate these ratios only when the spaces of
models with these characteristics are equally explored.



Of course, we need a measure for “equally explored”.
How can we judge how deeply we have penetrated into a
particular model space?

Solution: Look at number of attempts to generate a
model with a specified characteristic.

If it is easy to generate new models of a given type, then
the corresponding space of models of that type is
relatively unexplored. As we progress, it gets much
harder to find new models of that type and the number
of failed attempts per new model increases.

Thus, by measuring numbers of models found against numbers
of attempts to generate new models, and comparing this ratio
for two different groups of models, we can extract information

about the relative volumes of their corresponding full model
spaces and thereby deduce their true relative probabilities.



This assumes, of course, that the physical properties of
interest are correlated with the probability deformations of

their corresponding model spaces (so that “rare” models tend to
have Property #1, “common” models have Property #2, etc.).

This will be the case if the biases associated with the
underlying model-construction technique are correlated
with the physical properties of the models they produce.

We have found this to be true in most cases.



O
Example: Plucking balls from an urn. O O
o O

o0

An urn contains 300,000 balls of different colors. One third of the balls
are red. We seek to know what fraction of balls in the urn are red, and we
try to determine this by choosing a ball randomly from the urn, noting its
color, marking it for future identification, replacing the ball in the urn,
mixing, and then repeating over and over.

It all balls are treated equally (no bias), approximately one third of all balls
selected will be red. This will not vary significantly with sample size.



However, suppose the red balls have a different size than the others,
so that the probability of picking a red ball from the urn on a given

try 1s Y times the probability of picking a ball of any other color.

What fraction of selected balls will be red? .Q ...
Clearly this “floats” with the sample size: )

®°

1.25

<= True fraction emerges
only upon full exploration
of the urn.

"total

But suppose we don't have

good models,

enough time/ability to wait

model
I 1 |'.;II| | | 1 1T 1 | I_EI_.r"I_I.'-I'I

N I N B B B B A

that long and we don't
know ¥ What can we do?

( L OO 200 SO0

total models (in thousands)

L



Keep a running record of

* X,.q=number of failed “red” attempts to find the last new red ball

Xother = Number of failed “other” attempts to find a new ball of
any other color.
Then
Number of red balls inurn ~_ # red balls that have been found
Number of other balls inurn ~ # other balls that have been found

(:'rlh‘l I T T I T I T I T I T |

evaluated at values for
which X ;=X

0.6 Other

—
]
|
|
|
|

= “Continuum’ limit
reached quite quickly

regardless of chosen X!

{\:I‘] 1 1 | - 1 | 1 1 | 1 1 1 1 | 1 1 |
5 10 15

attempts,/model



In fact, the true computational situation we face for the landscape

is even more complicated ---

* There can be a whole spectrum of different sizes (intrinsic
probabilities) for the different balls (string models).

* There 1s no guarantee that the sizes (intrinsic probabilities) Of
the balls (models) are 1n any way correlated with their colors

(physical characteristics).

mmm) In general, there can be a huge “CKM matrix” between colors
and sizes, all of whose entries are essentially unknown!

Need methods of extracting meaningful statistical

information, even for such general situations.

* KRD and Lennek, hep-th/0610319 (PRD)



Using these techniques, for example, we can
estimate the relative probabilities of models with
different levels of SUSY...



First, note that we cannot just take a census of the models
we have randomly generated --- these ratios float!

percentage of heterotic landscape

40
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| :
{ N=1 SUSY ]
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1000 2000

total number of models (in thousands)

3000

* As we generate more and
more models, it becomes
increasingly likely to
generate non-SUSY
models than SUSY models.

* Suggests that at any given
moment, we have already
explored more of the SUSY
model space than the non-
SUSY model space.



Indeed, looking at attempts/model, we verify this...

SUSY class 2 distinct models | # attempts | avg. attempts/model

N =0 (tachyonic) 1279484 3810838 2.98
N'=0 (tachyon-free) 4 946 388 18 000 000 3.64
N=1 3772679 | 24200097 G.41

N=2 192790 | 13998843 28.41

N=4 1106 6523277 5 898.08

Total: 10492447 | 66 533055 G.34

* We have penetrated the SUSY model spaces much more fully than
the non-SUSY model space.

* Thus, as we continue to generate new models, it becomes harder and
harder to find new SUSY models compared with non-SUSY models.

* Relative ratios of SUSY and non-SUSY models therefore float as a
function of sample size, as already seen.




Indeed, looking at attempts/model, we verify this...

SUSY class

# distinct models

# attempts

avg. attempts/model

N=0 (tachvonic) 1279484 3 810838 2.98
N'=0 (tachyon-free) 4946 388 18 000 000 3.64
N=1 3772679 | 24200097 6.41

N'=2 102790 | 13 998 843 28.41

N'=4 1106 G 523277 5 898.08

Total: 10492447 | 66533055 6.34

Thus, we must compare relative numbers of models in each

SUSY class only at those points during our search

at which their average attempts/model are equal!

It 1s only these ratios which will be truly stable, 1.e.,

* independent of sample size

* independent of the chosen reference value of attempts/model.




In this way, we extract the “continuum” limit,
ultimately obtaining...

SUSY class % of heterotic landscape
N =0 (tachyonic) 32.1
N =0 (tachyon-free) 46.5
N=1 20.9
N=2 0.5
N=4 0.003

* Nearly half of the heterotic landscape is non-SUSY but tachyon-free!
The SUSY portion of the heterotic landscape represents less than La

of the full landscape, even at the string scale!
* Models exhibiting extended (N>1) SUSY are exceedingly rare,
representing less than 1% of the full landscape.



In this way, we extract the “continuum” limit,

ultimately obtaining...

SUSY class

% of heterotic landscape

N =0 (tachyonic)
N =0 (tachyon-free)

N=1
N=2
N =4

32.1
46.5

Will these results change after moduli stabilization?

Seems unlikely, since most modern methods of moduli stabilization (fluxes,

superpotentials, etc.) tend to further break (rather than restore) spacetime SUSY.

Such results therefore tend to shift burden of proof onto SUSY
enthusiasts ... a dramatic reframing of the underlying question!




Another example: gauge-group populations versus SUSY.
These ratios also float significantly.

e.g., probability of realizing SU(3) gauge group in N=1 models...

60IIIIIIIIIIIIIII|||||II|| .SU(S)Seernsrarefor

[ (N=1 SUSY) | small sample sizes, but
becomes significantly

less rare as sample size

N
-

grows!
* How high does it get?

Need to extract
continuum limit relative
to other gauge groups,
eventually on an

% of models with SU(3)
N
o
|
|

absolute scale.

* Using previous methods,

OIIIIIIIIIIIIIIIIIIIIIIII
0 200 400 600 800 1000 1200

# of models (in thousands) stable results...

can ultimately extract



How likely are different gauge group factors?

cauge group || N=0| N=1| N=2| N=4
U, 99.9 94.5 68.4 89.6
SUs 62.46 097.4 64.3 60.9
SU;, 99.3 93.0 93.0 45.1
SU, 14.46 30.0 39.0 H3.5
SUx 16.78 43.5 66.3 33.8
SU- 0.185 1.7 10.6 73.0
SOx 0.482 1.6 6.2 21.1
S0, 0031| 02| 16| 187
SO-10 0.005 | 0.03%] 077 75
Eo s 0.0003 | 0.03| 0.16] 1L

* SU(3) has “floated” all the way to 98%.
* SU(n+1) groups preferred over SO(2n) groups for each rank n.




How likely are different gauge group factors?

cauge group || N=0| N=1| N=2| N=4
U, 99.9 94.5 68.4 89.6
SUs 62.46 097.4 64.3 60.9
SU;, 99.3 95.0 93.0 45.1
SU, 14.46 30.0 39.0 H3.5
SUx 16.78 43.5 66.3 33.8
SU- 0.185 1.7 10.6 73.0
SOx 0.482 1.6 6.2 21.1
S0, 0031| 02| 16| 187
SO-10 0.005| 0.038 | 07| 75
Eo s 0.0003 | 0.03| 0.16] 1L

* Groups with smaller ranks are much more common than

groups with larger ranks... true for all levels of SUSY.




How likely are different gauge group factors?

cauge group || N=0| N=1| N=2| N=4
U, 99.9 94.5 68.4 89.6
SUs 62.46 097.4 64.3 60.9
SU;, 99.3 95.0 93.0 45.1
SU, 14.46 30.0 39.0 H3.5
SUx 16.78 43.5 66.3 33.8
SU- 0.185 1.7 10.6 73.0
SOx 0.482 1.6 6.2 21.1
S0, 0031| 02| 16| 187
SO-10 0.005| 0.038 | 07| 75
Eo s 0.0003 | 0.03| 0.16] 1L

* Finally, gauge-group factors comprising the SM are much
more common than any of its grand-unified extensions.




Or, collapsing these results in terms of the entire landscape
versus its supersymmetric subset...

cauge entire SUSY

oroup || landscape | subset SIS @RopS willa

larger ranks are favored

Uy 98.00 93.89 more strongly with
SUs 73.22 96.62 SUSY than without
SUs; 98.85 97.88 SUSY.

SU, 19.42 30.21 ’ zgss’af%a(lll)fitgrss[](g)
SUs5 25.37 44.03 Ny

SU-5 0.73 1.92 prevalent with SUSY...
SOxg 0.87 1.71 they are “sacrificed” in
SOq0 013 0 23 order to make room for

SO- 10 0.02 0.06 larger-rank gauge

Fo 18 0.01 0.03 Sronps




Finally, how many realizable gauge groups are there
as a function of the number of supersymmetries?

3000

0o
o
o
o

# of distinct gauge groups

0

1000

N=2 SUSY -

0

N=1SUSY _--—-""
N=0 SUSY ...... —
| -
11 | 11 I 11 I 11 I 11 I 11 | ]
200 400 600 800 1000 1200

# of distinet models (in thousands)

* In all cases, there are
many more models
than gauge groups.

* But as SUSY increases,
string constraints get
tighter, with distinct
models increasingly
forced to have distinct
gauge groups.

* Thus, there are fewer
distinct models per
gauge group as SUSY
increases.



Even this gauge-group multiplicity floats!

However, using our previous methods, we can extract stable
ratios (relative to N=1 case) for multiplicities as well as for
overall numbers of realizable gauge groups...

avg. multiplicity | # of realizable

SUSY class per gauge group | gauge groups
N=0 (tachyon-free) 1.65 1.35
N=1 1.00 1.00
N=2 0.89 0.03

* Evidently, requirement of avoiding tachyons in N=0 case is less
stringent than preserving SUSY, at least as far as gauge-group
multiplicities are concerned. (Opposite is true in D=10!)

* We do not quote absolute results because we could not obtain a
stable overall normalization. Only relative ratios were stable.

* For N=4, each distinct string model had a unique gauge group!



And the list goes on...

* Chirality

* Numbers of fermion generations

* Hypercharge normalizations

* Gauge coupling unification

* Yukawa couplings

* String threshold corrections

* Intermediate-scale physics (SUSY-
breaking, new gauge structures, ...)

° etc.

This work is in progress, due out soon.

KRD, M. Lennek, D. Senechal, V. Wasnik (to appear)



Conclusions, Prospects,
and Warnings



Clearly, a statistical analysis of the string
landscape has lots of potential to address
questions of relevance to phenomenology ---
even without a vacuum-selection principle.

Much more work remains to be done...

Other phenomenological features need to be examined:
particle content, etc., as already discussed.

Develop algorithmic/statistical tools to handle analyses of
this type.

Extend analysis to broader classes of string theories (more
general constructions, also non-perturbative formulations).
Develop methods to generate large classes of stable vacua ---
comparison of results will then indicate phenomenological
role played by vacuum stability.

Comparison with Type I results may even permit statistical
confirmation of duality conjectures.

Indeed, the SVP will be tackling many of these questions.



But one must be aware of certain dangers...

* The “lamppost” effect --- the danger of restricting
one's attention to those portions of the landscape
where one has control over calculational techniques.

* The “Godel” effect --- landscape is so large that it is
possible that no matter how many input “priors” one
demands, there will always be another observable
which cannot be uniquely predicted.

* The “bull's-eye” effect --- don't always know what
the target is, since we are not certain how our low-
energy world embeds into the fundamental theory
(SUSY? GUTs? technicolor? something else?).



Nevertheless, despite these dangers,

* Direct examination of actual string models uncovers features
and behaviors that might not otherwise be expected.

* Through direct enumeration, we gain valuable experience in
the construction and analysis of phenomenologically viable
string vacua.

* As string theorists, we must ultimately come to terms with
the landscape. Just as in astrophysics, botany, and zoology,
the first step in the analysis of a large data set is
enumeration and classification.

* In cases where statistical correlations can be interpreted
directly in terms of underlying physical symmetries, we have
indeed extracted true predictions from the landscape.

Thus, properly interpreted, statistical landscape studies
can be useful and relevant in this overall endeavor. .



