Search for Dark matter with ZEPLIN II Liquid Xenon Detector and LUX

xenon two phase dark matter direct detection

Hanguo Wang, UCLA, Physics and Astronomy UC Davis HEP Seminar , Feb. 13, 2007

- **1. Brief Introduction**
- 2. Direct Detection
- **3. The ZEPLIN II Detector**
- 4. Performance and Results
- 5. The LUX Detector

Gravitational lenses:

The blue arcs are light from a distant galaxy whose light has been deflected by the galaxy cluster in the foreground.

Gravitational Lens Galaxy Cluster 0024+1654

Hubble Space Telescope · WFPC2

RC95-10 - ST Sci OPO - April 24, 1995 - W. Colley (Princeton Univ.), NASA

Dark matter - gravitational lenses Reconstruction of the mass distribution in the galaxy cluster

Big Bang Nucleosynthesis

From Turner et al.

M. Signore, New Astro. Rev. 1999

collision of two large clusters of galaxies

The discovery, using NASA's Chandra X-ray Observatory and other telescopes, gives direct evidence for the existence of dark matter. Pink: Hot gas, Blue: Dark Matter

Wilson Microwave Anisotropy Probe (WMAP)

 $\Omega_{m}h^{2} = 0.127_{-0.013}^{+0.007}$ $\Omega_{b}h^{2} = 0.0223_{-0.0009}^{+0.0007}$ $h = 0.73_{-0.03}^{+0.03}$

Dark Matter: Everything here is only <1% of the whole story

A WIMP χ (Weakly Interacting Massive Particle) Created in the Bug Bang: Is predicted in Supersymmetric theory of particle physics:

Lightest particle, neutralino, with a mass

~ 100 x proton mass and stable

Has exactly the right properties to be the dark matter!

We see only SM particles Today Symmetry break at higher M scale

Standard particles

SUSY particles

Relative size of luminous galaxy and the dark matter halo

GM

Cored spherical isothermal halo $\rho(r) = \rho_0 \frac{a^2 + r_0^2}{a^2 + r^2}$

With Maxwelian local distribution

$$f(\upsilon)d^{3}\upsilon = \frac{e^{-\upsilon^{2}/\upsilon_{0}^{2}}}{\pi^{3/2}\upsilon_{0}^{3}}d^{3}\upsilon$$

Indirect searches: CDF & D0 at Fermilab (TeV-tron) CMS & Atlas at CERN (LHC)

Joakim Edsjö

Direct Detection Strategy

The Milky Way Galaxy

form factor effect with various targets

Coherent enhancement on event rate

Recoil Spectra of different Targets

$$\frac{dR}{dE_R} = \frac{\sigma_0 \rho_x}{4\nu_e m_x \mu_{x,N}^2} F^2 \left(E_R \right) \left[\operatorname{erf} \left(\frac{\nu_{\min} + \nu_e}{\nu_0} \right) - \operatorname{erf} \left(\frac{\nu_{\min} - \nu_e}{\nu_0} \right) \right]$$

Nuclear Recoil Energy (keV)

Annual Modulation

$$\frac{dR}{dE_R} = \frac{\sigma_0 \rho_x}{4\nu_e m_x m_r^2} F^2 \left(E_R \right) \left[\operatorname{erf} \left(\frac{\nu_{\min} + \nu_e}{\nu_0} \right) - \operatorname{erf} \left(\frac{\nu_{\min} - \nu_e}{\nu_0} \right) \right]$$

⁴⁰K: 4*10⁷ γ/day (~1.5MeV)

 $10^{3} / (kg-day)$

all materials used for detector construction are contaminated by Uranium and Thorium

Cosmic rays produce large rate in detector too

Current limit ~ 0.1 event/kg/day

Detector response to WIMPs and Background WIMP or Nuclear Neutron Recoil (I, S, Th) 0 Electron Recoil **Ionization** (I,S,Th)**Scintillation** Radioactive **Phonon** background **Target Nuclei Background Discrimination**

Principle Tests Setup & Results

A simple purification process developed to achieve 5ms electron lifetime in liquid xenon

2.0

NIM A329 (1993) 361-36

single phase studies using a 2kg liquid xenon detector

1995-1996

2kg single phase detector @ Mt. Blanc LAB Aug. 1996

1kg two-phase study setup

$$N_{ph/e} \approx 70 \bullet \left(\frac{E}{P} - 1.3\right) \bullet X \bullet P$$

E: Electric field (kV/cm), P: Gas Pressure (Bar), X: electron Drift Distance (cm)

1997

Why Xenon

- •Available in Large Quantities
- •Large abundance for both $s_{\frac{1}{2}}$ (¹²⁹Xe~26%) and s_0 (¹³²Xe~27%)
- •High Atomic Number ($\sigma_{WIMP-Nucleon} \propto A^2$, Z_{Xe} =54, A=131)
- •High Density (~ 3g/cm³ liquid) (compact detector design)
- •High Scintillation Light (175nm) & Ionization Yield
- •Small fano factor (F = 0.041 Energy Resolution $\frac{\Delta E}{E} = 2.35 \sqrt{\frac{FW}{E}}$)

- •Scintillation decay profile difference (primary) (PSD)
- •Large quenching factor (observed energy/e.e.Energy)
- •Can be Highly Purified
 - long light attenuation length (~m)
 - long free electron life time (~ 5 ms)
- •Gamma & Recoil signal Discrimination
- •Capable of Scale up to Large Volume (ton)
- •No Long Lived Radioactive Isotopes (low background)

Liquid Xenon Scintillation Mechanism

(A) Pulse Shape discrimination: due to decay profile difference between nuclear recoil & electron recoil
(B) When E_{drift} applied, and measure E_i & E_s, Very good background rejection due to (E_i/E_s)_{M.I.P.}>> (E_i/E_s)_{H.I.P.}
ZEPLIN I (A)
ZEPLIN II (A&B)

Nuclear recoil Electron recoil

Mesh Structure

Drift and Luminescence Field Modeling

Single Electron Detection Area, phe 5 10 15 20 25 0 160 $\chi^{2}/ndf 56.61$ 55 140 $61.71 \pm$ G Ampl 1.884 G Mean 0.3170 ± 0.1382E-01 G Sigma $0.1808 \pm$ 0.9869E-02 A single electron 120 Exp Norm 1981.± 969.1 Exp Slop $27.48 \pm$ 4.293 leaving 100 evts/bin liquid surface 80 can be detected using S2! 60 (~9p.e./e) 40 20 ղ.թ.հ.թ. 0

0.1

0

0.2

0.3

0.5

Area, V.ns

0.4

0.6

0.7

0.8

0.9

The first piece being made at UCLA Physics Machine shop in 2001!

PTFE cone and field ring holder

Stainless Steel cast Vacuum Vessel

9. 16. 2002

ZEPLIN II PMT Assembly 7 UV sensitive low temperature PMTs (by ElectronTubes Inc.)

PTFE Heater gas extraction field shaping rings wire mesh

Zep II Charge Extraction & Luminescence Field Grid

Cold deflection test

Detector Shielding Set up

A: Xenon Target B: Veto C: Neutron Shield D: Lead

ZEPLIN II Underground Operation at Boulby Mine

First science run:

- 5 months continuous operation
- 1.0t*day of raw DM data
- Results submitted to Astropart. Phys.

Location of ZEPLIN II Detector

z2 background 1000us 060424 data.0001 Event 69 Summary

z2 background 1000us 060424 data.0001

Optical feedback: A detailed look with wider window

Neutron multi-scatter In ZEPLIN II

Discrimination and acceptance box determination

AmBe source calibration 60 Co calibration $^{500}_{400}$ $^{500}_{400}$ $^{500}_{400}$ $^{500}_{200}$ $^{507}_{507}$ $^{507}_{600}$ $^{508}_{870}$ $^{507}_{800}$ $^{507}_{870}$ $^{508}_{870}$ $^{507}_{800}$ $^{507}_{870}$ $^{508}_{870}$ $^{508}_{870}$ $^{60}_{870}$

- Upper bound set at 50% n.r. acceptance
- Fixed S2/S1 lower bound
- Energy range from 5 to 20keVee
- 98.5% γ discrimination

Science Run Results

Blue star: Even in coincident with veto

Lower band due to Radon daughters on side walls

Background expectations

Radon Daughters

Cross-Section results, first run

In review: submitted to Astropart. Phys.

- **28.6±4.3expected (total)**
- 10.4 upper limit to n.r.
- 225 kg*days
- 7.2kg fiducial

Standard Halo Scalar Interaction

WIMP-nucleon cross section limits for 31 days (225 kg-days): 6.6 x 10⁻⁷ pb (@65GeV)

ZEPLIN long term strategy II

5-ton

1-ton

Nano-Tip Charge Readout

Future Multi-Ton detector

The LUX Detector

One Possible System for Installation

LUX Dark Matter Experiment - Summary

- Brown, Case, LLNL, LBNL, Rochester, Texas A&M, UC Davis, UCLA
 - XENON10, ZEPLIN II (US) and CDMS; v Detectors (Kamland/SuperK/SNO/Borexino); HEP/γ-ray astro
 - (Also ZEPLIN III Groups after their current program completed)
- 300 kg Dual Phase liquid Xe TPC with 100 kg fiducial
 - >99% ER background rejection for 50% NR acceptance, E>10 keVr (Case+Columbia/Brown Prototypes + XENON10 + ZEPLIN II)
 - 3D-imaging TPC eliminates surface activity, defines fiducial
- Backgrounds:
 - Internal: strong self-shielding of PMT activity
 - $\gamma/\beta < 7x10^{-4}$ /keVee/kg/day, from PMTs (Hamamatsu R8778 or R8520).
 - Neutrons (α,n) & fission subdominant
 - External: large water shield with muon veto.
 - Very effective for cavern γ +n, and HE n from muons
 - Very low gamma backgrouns with readily achievable <10⁻¹¹ g/g purity.
- DM reach: 2x10⁻⁴⁵ cm² in 4 months
 - Possible ~5x10⁻⁴⁶ cm² reach with recent PMT activity reductions, longer running.

LUX program: exploit scalability

- LUXcore: Final engineering for large-scale detector
 - Cryostat, >100 kV feedthrough, charge drift, light collection over large distance
 - Full system integration, including ~1m water shield
 - 40 kg narrow "core", 14 PMTs, 20 cm Ø x 40 cm tall.
 - Radial scale-up requires full-funding.
 - Under construction, Jan 2007, operations at Case: spring 2007.

- LUX in ~ 6m Ø water shield
- Very good match to early-implementation DUSEL (e.g., Homestake "Davis" cavern)
 SNOLAB LOI
- System scalable to very large mass.

Cryostat arrived at Case (Feb. 12 2007)

LUX Dark Matter Goal

- Dark Matter Goals
 - LUX Sensitivity curve at 2x10⁻⁴⁵ cm² (100 GeV)
 - Exposure: Gross Xe Mass 300 kg Limit set with 120 days running x 100 kg fiducial mass x 50% NR acceptance
 - If candidate dm signal is observed, run time can be extended to improve stats
 - ~1 background event during exposure assuming most conservative assumptions of ER 7x10⁻⁴ /keVee/kg/day and 99% ER rejection
 - ER bg assumed is dominated by guaranteed Hamamatsu PMT background (R8778 or R8520) recent PMTs from Hamamatsu achieving lower backgrounds, but not guaranteed
 - Improvements in PMT bg (and rejection power) will extend background free running period, and DM sensitivity
 - Comparison
 - SuperCDMS Goal @ SNOLab: Gross Ge Mass 25 kg
 - (x 50% fid mass+cut acceptance)
 - Limit set for 1000 days running x 7 SuperTowers

XENON10 Results will be announced at APS April Meeting