Holography:
 a tool for the LHC
 Veroníca sanz

Boston Universíty

> What are you gonna do if dynamical symmetry breaking shows up at the LHC?

> What are you gonna do if dynamical symmetry breaking shows up at the LHC?

Wait for lattice computations...

> What are you gonna do if dynamical symmetry breaking shows up at the LHC?

Waít for lattice computations...
use Holography

Holographic QCD

QCD and a holographic model of hadrons. Erlich, Katz, Son and Stephanov. PRLg5 (2005)
chiral symmetry breaking from five dimensional spaces.
Da Rold and Pomarol. NPB721 (2005)
Interpolating between low and high energy QCD via a 5-D YM model.
Hirn and Sanz. JHEP 0512 (2005)

Holographíc Technícolor
A Negative S parameter from holographic technicolor.
Hirn and Sanz. PRL973 (2006)
The Fifth dimension as an analogue computer for strong interactions at the LHC.
Hirn and sanz. JHEP???

summary

summary

summary

We know Holography works for QCD

We apply it to
EWSB

Explore the pheno

We have checked that

Hum...Let's see...
 What do we know about 4D QCD?

many things, but in particular...

Hum...Let's see...
What do we know about 4D QCD?
At hígh energies scale invariant, except NP dynamics, condensates

$$
\langle G G\rangle,\langle q \bar{q}\rangle \ldots \neq 0
$$

Hum...Let's see...

What do we know about 4D QCD?
At high energíes scale invariant, except NP dynamics, condensates

$$
\langle G G\rangle,\langle q \bar{q}\rangle \ldots \neq 0
$$

OPE expansion

$$
\Pi_{O P E}(Q) \sim N_{c} \log (Q), \frac{\alpha_{s}\langle G G\rangle}{Q^{4}}, \frac{\alpha_{s}\langle q \bar{q}\rangle^{2}}{Q^{6}} \ldots
$$

Hum...let's see...

What do we know about 4D QCD?
At high energies scale invaríant, except NP dynamics, condensates

$$
\langle G G\rangle,\langle q \bar{q}\rangle \ldots \neq 0
$$

OPE expansion

$$
\Pi_{O P E}(Q) \sim N_{c} \log (Q), \frac{\alpha_{s}\langle G G\rangle}{Q^{4}}, \frac{\alpha_{s}\langle q \bar{q}\rangle^{2}}{Q^{6}} \ldots
$$

Global symmetries of QCD? Chiral Symmetry
broken by $\langle q \bar{q}\rangle$

$$
\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}
$$

Let's try the simplest thing in 5D

scale invariant

Let's try the simplest thing in 5D

scaleinvariant \rightarrow Ads

$$
\begin{gathered}
d s^{2}=w(z)^{2}\left(d x^{2}-d z^{2}\right) \\
\text { If } w(z)=\frac{l_{0}}{z} \quad \text { then } \quad z \rightarrow \lambda z \quad Q \rightarrow Q / \lambda
\end{gathered}
$$

Scale
invariance conformal
$\Pi(Q) \sim \log (Q) \quad A d S$
$Q \leftrightarrow 1 / z$

Let's try the simplest thing in 5D

Let's try the simplest thing in 5D

scaleinvaríant \rightarrow AdS

But wait!

I thought the dictionary had an entry
"weak in 4D, strong in 5D"

Let's try the simplest thing in 5D

scaleinvariant \rightarrow Ads

QCD at high energies is weak, right?

Let's try the simplest thing in 5D

scaleinvaríant \rightarrow AdS

QCD at high energies is weak, right?

NO 5D weakly coupled description!

But before letting it go and going home...
we use the correspondence $\quad J_{\mu}=\bar{q} \gamma_{\mu} q \longleftrightarrow A_{\mu}$
the action is 5D YM

$$
\mathcal{S}=\int \sqrt{g} d^{5} x\left(F_{M N}^{2}\right)
$$

But before letting ít go and going home...
we use the correspondence $\quad J_{\mu}=\bar{q} \gamma_{\mu} q \longleftrightarrow A_{\mu}$ the action is 5D YM, and we lose control when h.o. $\mathcal{S}=\int \sqrt{g} d^{5} x\left(F_{M N}^{2}+\frac{(D F)^{2}}{L^{2}}+\frac{F D^{2} F}{1^{2}}+\frac{F D^{4} F}{A^{\prime}} \ldots\right)$
"weak in 4D, strong in 5D"
in reality, "at scales around Λ I'm stucle!"

\triangle
All that goes for the 't Hooft coupling, we're still in the large-N !

But before letting it go and going

 home...BUT

in AdS/CFT all the computations are ON-SHELL

$$
D^{2} F \sim F
$$

$\mathcal{S}=\int \sqrt{g} d^{5} x a F_{M N}^{2}+\int_{z=z_{I R}} d^{4} x b F_{\mu \nu}^{2}$
in general A_{μ} fields may couple to other fields

They may see a
different effectíve metric

Cubic terms DO receíve corrections $\frac{F^{3}}{\Lambda^{2}}+\frac{(D F)^{2}}{\Lambda^{4}} F+\ldots$

Let's try the simplest thing in 5D

$$
\text { scaleinvariant } \rightarrow \text { Ads }
$$

Quark condensate

$$
\frac{\alpha_{s}\langle q \bar{q}\rangle^{2}}{Q^{6}} \longrightarrow \alpha_{s}\langle q \bar{q}\rangle^{2} z^{6}
$$

Let's try the simplest thing in 5D

scaleinvariant \rightarrow Ads
Quark condensate \longrightarrow bulk scalar

Let's try the simplest thing in 5D
scaleinvariant \rightarrow Ads
Quark condensate \longrightarrow bulk scalar
chiral symmetries

Quark condensate \longrightarrow bulk scalar Chiralsymmetries \longrightarrow Bulk gauge symmetries
$S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$
$V_{M}, A_{M} \propto L_{M} \pm R_{M}$

Let's try the simplest thing in 5D

$$
\begin{gathered}
\text { Scale invariant } \rightarrow \text { Ads } \\
\text { Quark condensate } \longrightarrow \text { bulk scalar } \\
\text { chiral symmetries } \longrightarrow \text { Bulk gauge symmetries } \\
\text { chiral symmetry breaking }
\end{gathered}
$$

Let's try the simplest thing in 5D

$$
\begin{gathered}
\text { Scale invariant } \rightarrow \text { Ads } \\
\text { Quark condensate } \longrightarrow \text { bulk scalar } \\
\text { chiral symmetries } \longrightarrow \text { Bulk gauge symmetries } \\
\text { chiral symmetry breaking }
\end{gathered}
$$

A_{M} couplesto $X(z) \sim z^{3}$

Let's try the simplest thing in 5D

$$
\begin{gathered}
\text { Scale invariant } \rightarrow \text { Ads } \\
\text { Quark condensate } \\
\text { chiral symmetries bulk scalar } \\
\text { chiral symmetry breaking Bulk gauge symmetries }
\end{gathered}
$$

5D model in Ads
$X(z)$ charged under the bulk
YM $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$
and M_{X} chosen to
$X(z)=A z+B z^{3}$

Let's try the simplest thing in 5D

$$
\begin{gathered}
\text { Scale invariant } \rightarrow \text { Ads } \\
\text { Quark condensate } \longrightarrow \text { bulk scalar } \\
\text { chiral symmetries } \longrightarrow \text { Bulk gauge symmetries } \\
\text { chiral symmetry breaking }
\end{gathered}
$$

5D parameters
$\left(A, B, l_{1}\right)$
4D parameters
$f_{\pi}, m_{q},\langle q \bar{q}\rangle$

5D model in Ads
$X(z)$ charged under the bulk
$Y M S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$
and M_{X} chosen to
$X(z)=A z+B z^{3}$

And the result is...

And the result is...

		Measured	Model
	Observable	(MeV)	(MeV)
	m_{π}	139.6 ± 0.0004	141
Agreement	m_{ρ}	775.8 ± 0.5	832
to the 10\%!	$m_{a_{1}}$	1230 ± 40	1220
	f_{π}	92.4 ± 0.35	84.0
	$F_{\rho}^{1 / 2}$	345 ± 8	353
	$F_{a_{1}}^{1 / 2}$	433 ± 13	440
	$g_{\rho \pi \pi}$	6.03 ± 0.07	5.29

Erlich et al PRL95 (05)

And the result is...

	Measured (MeV)	Model (MeV)	
Agreement	m_{ρ}	139.6 ± 0.0004	141
to the 10\% !	$m_{a_{1}}$	1235.8 ± 0.5	832
	f_{π}	92.4 ± 0.35	84.0
	$F_{\rho}^{1 / 2}$	345 ± 8	353
It is a 3pt function!			
	$F_{a_{1}}^{1 / 2}$	433 ± 13	440

4%
Erlich et al PRL95 (05)

Even though QCD is NOT

$$
\begin{aligned}
& \text { supersymmetric } \\
& \text { (very) large } N_{c}
\end{aligned}
$$

Even though QCD is NOT

> supersymmetric (very) large N_{c}

But seems to be quite conformal
Substítute $X(z)$ by Neumann, Dírichlet BCs and the agreement is still

$$
15 \%
$$

Hirn \& Sanz. JHEP 0512

News from last 2 years

You can apply Holography to QCD and it works!

Applyít
to EWSB

Hirn \& Sanz. PRL95(06)

5D model in AdS,
$\left(l_{1}\right)$ IR brane
uv brane l_{0}

$$
w(z)=\frac{l_{0}}{z}
$$

Agashe et al.
Csaki et al.

5D model in AdS, LR bulle, some $X(z)$'s

$$
\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}
$$

As in QCD

$$
\begin{aligned}
& X_{1}, X_{2} \ldots \quad \text { Couple to } A_{M} \text { and } V_{M} \\
& w(z)=\frac{l_{0}}{z}
\end{aligned}
$$

And here it is,
5D model in Ads, LR bulk, some $X(z)$'s

5D model in AdS, LR bulk, some $X(z)$'s

Does it mean we can do
whatever, and get whatever?

Apparently,
YES

Does it mean we can do
whatever, and get whatever?

Apparently,
YES
in detail,
NOT really

What are the rules?

1. What's the valid approximation?

Always Large-N
(weate coupling in 5D)
No localized kin terms to play with

What are the rules?
2. NDA for the condensates

NDA Background fields \Longrightarrow Natural potential

$$
X\left(l_{0}\right) \sim \frac{1}{l_{0}}
$$

How many of these condensates X_{i} 's we have to take into account?

$$
X_{d} \sim z^{d}
$$

$$
5
$$

$$
w(z)=\frac{l_{0}}{z}\left(1+\frac{o_{d}}{2 d(d-1)} \frac{z^{2 d}}{l_{1}^{2 d}}\right)
$$

What are the rules?

$$
w(z)=\frac{l_{0}}{z}\left(1+\frac{o_{d}}{2 d(d-1)} \frac{z^{2 d}}{l_{1}^{2 d}}\right)
$$

1. towards \mathbb{R}
2. coefficient irrelevant as d grows

What are the rules? At the end of the day...

1. Large-N (5D weate coupling)
2. Pheno relevant condensates

$$
\begin{gathered}
\text { just low d } \\
O_{2}^{V}, O_{2}^{A} \sim O(1)
\end{gathered}
$$

Technical point

$$
\Pi\left(Q^{2}\right)_{O P E} \sim \frac{1}{Q^{2 d}}
$$

NDA in $X(z)$

$$
w(z) \sim \frac{1}{d(d-1)} z^{2 d} \Rightarrow \Pi \sim \frac{d!^{2}}{Q^{2 d}}
$$

Technical point

$$
\Pi\left(Q^{2}\right)_{O P E} \sim \frac{1}{Q^{2 d}}
$$

NDA in $X(z)$

$$
w(z) \sim \frac{1}{d(d-1)} z^{2 d} \Rightarrow \Pi \sim \frac{d!^{2}}{Q^{2 d}} \quad \text { shifman }
$$

Now we know the rules, Let's look at the phenomenology

GD model dual to Technicolor?

5D model dual to Technicolor?

5D model dual to Technicolor?

$$
S=S_{\text {tree }}+\frac{1}{12 \pi}\left(\log \left(\frac{\mu^{2}}{m_{H}^{2}}-\frac{1}{6}\right)\right)=-0.13 \pm 0.1(P D G)
$$

5D model dual to Technicolor?

$$
\begin{gathered}
S=S_{\text {tree }}+\frac{1}{12 \pi}\left(\log \left(\frac{\mu^{2}}{m_{H}^{2}}-\frac{1}{6}\right)\right)=-0.13 \pm 0.1(P D G) \\
\sim 0.1-0.2
\end{gathered}
$$

5D model dual to Technícolor? Problem with the S parameter!

$$
\begin{aligned}
& S=S_{\text {tree }}+\frac{1}{12 \pi}\left(\log \left(\frac{\mu^{2}}{m_{H}^{2}}-\frac{1}{6}\right)\right)=-0.13 \pm 0.1(P D G) \\
& \quad \leq 0 \quad \sim 0.1-0.2
\end{aligned}
$$

5D model dual to Technícolor? Problem with the S parameter!

What's typical value for sin TC? (rescaled QCD)

$$
S_{\text {tree }} \sim \frac{N}{4 \pi}
$$

5D model dual to Technícolor? Problem with the S parameter!

What's typical value for sin TC?

$$
S_{\text {tree }} \sim \frac{N}{4 \pi}
$$

What's the value in pure AdS?

$$
S_{\text {tree }}=\frac{N}{4 \pi}
$$

as in QCD...

$$
N=\frac{12 \pi^{2} l_{0}}{g_{5}^{2}}
$$

5D model dual to Technícolor? Problem with the S parameter!

What's typical value for sin TC?

$$
S_{\text {tree }} \sim \frac{N}{4 \pi}
$$

What's the value in pure AdS?

$$
S_{\text {tree }}=\frac{N}{4 \pi}>0 \begin{aligned}
& \text { casplical } \\
& \text { Eavetece coll }
\end{aligned}
$$

as in QCD...

$$
N=\frac{12 \pi^{2} l_{0}}{g_{5}^{2}}
$$

5D model dual to Technicolor?

Sroblem with the sparameter!

$$
S_{\text {tree }}=\frac{N}{4 \pi}>0 \rightleftharpoons \text { "flat" fermions }
$$

$$
S_{\text {tree }}=\frac{N}{4 \pi}>0 \xrightarrow{\text { 5D model dual to Technicolor? }}
$$

$$
S_{\text {tree }}=\frac{N}{4 \pi}>0 \stackrel{\text { Plat" fermions }}{\text { QCDoblem with the } S \text { parameter! }}
$$

What's the value of s in HolQCD?

What's the value of s in HolQCD?

${ }^{\circ}$ value/sign of s in Holtc?

${ }^{{ }^{v}}$ value/sign of s in Holtc? Let's start by Any sensible 5D model

Things that DON'T work

Things that DON'T work

Whatever ít's, vector and axíal see ít

A simple thing that DOES work

A simple thing that DOES work

$$
\left.\begin{array}{cc}
\uparrow(z) \\
\text { Nentral, couples } \\
\text { to gravity } \\
\text { Non- } \\
\text { tachyonic } \\
\text { targed, } \\
\text { EWSB }
\end{array}\right)
$$

A simple thing that DOES work

$$
\begin{aligned}
& \phi(z) \quad X(z) \\
& \sqrt{\square} \\
& \text { Neutral, couples } \\
& \text { to gravity } \\
& \text { charged, } \\
& \text { EWSB } \\
& \underset{\text { tachyonic }}{\text { Now }} \backsim \quad \backsim v^{2}>0 \\
& o_{A}^{\phi}=o_{V}^{\phi}<0 \quad o_{A}^{X}>0 \\
& O_{V}<0, O_{A}>O_{V}
\end{aligned}
$$

o_{V}

- If we can't predict's, what can we do?
correlations of negative s and spectrum, couplings...?

For example,

conclusions

Holography tested on QCD

Rules of the game:

- Large-N
- NDA for condensates
- Quadratic quantítíes

Rich Pheno (wearely coupled 600 GeV-1 TeV resonances)

$S U(2)_{L} \times U(1)_{Y}$
UV sources now DYNAMICAL!

$$
S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}
$$

In QCD no dependence on l_{0} but TC different

