Domain Walls as Probes of Gravity

Oriol Pujolàs

New York University

hep-th/0612016

With Gia Dvali, Gregory Gabadadze and Rakib Rahman

UC Davis February 5th 2007

What: Gravitational effect of Domain Walls in IR-modified gravity

Why: Gravitating DW solutions in DGP can be found *exactly*. Useful information about intrinsically non-linear theory.

Main Results

Screening of the tension.
 Analog to screening in Schwarzchild-like solutions.

2) Domain Walls are short-distance probes of large-distance modified gravity.

Dvali Gabadadze Porrati (DGP)

$$S = \int d^5x \sqrt{-g} \, \frac{M_*^3}{2} \, R_5 + \int d^4x \sqrt{-h} \, \frac{m_P^2}{2} \, R_4$$

Effectively 4D for distances less than

$$r_c = \frac{m_P^2}{2M_*^3}$$

bulk

$$M_*^3 G_{\mu\nu}^{(5)} = \left[T_{\mu\nu} - m_p^2 G_{\mu\nu}^{(4)} \right] \delta(y)$$

$$M_*^3 \left(K_{\mu\nu} - K h_{\mu\nu} \right) = T_{\mu\nu} - m_P^2 G_{\mu\nu}^{(4)}$$

brane

Generic IR-modified gravity

Linearized Einstein's eqs:

$$\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} - m^2(\Box)\left(h_{\mu\nu} - \eta_{\mu\nu}h\right) = -16\pi G_N T_{\mu\nu}$$

$$m^2(\Box) = \sqrt{\Box}/r_c$$
 DGP

Fierz–Pauli Massive gravity

vDVZ discontinuity

Way Out: higher orders in Perturbation Theory become important at short distances

Non-perturbative continuity

(DGP)

Weak field expansion breaks down. Large r_c expansion is OK.

Non-perturbative continuity

(DGP)

 $-B \frac{2G_5M}{2}$

'Schwarzchild-DGP'

(Gabadadze-Iglesias)

 \mathcal{V}_{g}

K_{µv}

 $\rangle \neq 0$

*Y*_{*}

 r_{c}

A = 0!!

 $B \simeq \frac{r_*}{r_c} !!$

'Schwarzchild-DGP'

(Gabadadze-Iglesias)

$$\phi_N \simeq -\frac{2G_4 M^{(4D)}}{r} - \frac{2G_5 M^{(5D)}}{r^2}$$

Screening:

branch	$M^{(4D)}/M$	$M^{(5D)}/M$
CB	0	$0.56 \ \frac{r_*}{r_c}$
SAB	0	$-0.45 \ \frac{r_{*}}{r_{c}}$

OUTLINE

- Domain Walls in GR
- Strings in GR (sub-critical, super-critical)
- Domain Walls on a DGP brane
 - Conventional Branch
 - Self-Accelerated Branch
- Screening of the tension (both 4D and 5D)
- Extension to other IR-modified gravity

$$ds^{2} = (1 - H | z |)^{2} (-dt^{2} + e^{2Ht} [dx^{2} + dy^{2}]) + dz^{2}$$
$$H = \frac{\sigma}{4m_{P}^{2}}$$

DW inflates. Hubble rate= HHorizon at z = 1/H

(Vilenkin-Ipser-Sikivie)

$$ds^{2} = (1 - H |z|)^{2} (-dt^{2} + e^{2Ht} [dx^{2} + dy^{2}]) + dz^{2}$$

$$H = \frac{o}{4m_p^2}$$

Repulsive force

 $\phi_N = -H \mid z \mid$

Strings in GR (co-dimension=2)

ρ

$T_{\mu\nu} = \mu \, \delta^2(\rho) \, \text{diag}(1, -1, 0, 0)_{\mu\nu}$

 $\delta = 2\pi \frac{\mu}{m^2}$

Deficit angle

No force (on static particles)

Strings in GR (co-dimension=2)

$ds^{2} = (-dt^{2} + dx^{2}) + d\rho^{2} + D^{2}d\theta^{2}$ D =thickness

Transverse space compactified.

(flat worldsheet)

Strings in GR (co-dimension=2)

(Transverse space compactified)

Horizon at $\rho_* = \frac{1}{H_*}$

Domain Walls in DGP: Perturbative arguments

What is *T*_{*} for a DW??

maximally symmetric	Flat	$\kappa = 0$
Domain wall	(2+1) De Sitter	$\kappa = 1$

Birkhoff Theorem:

$$ds^2 = f(R)dZ^2 + \frac{dR^2}{f(R)} + R^2 ds_\kappa^2$$

$$f(R) = \kappa - C/R^2$$

C = 0

5D Minkowski bulk

Non-singular Non-compact bulk

$$ds^2 = dZ^2 + dR^2 + R^{2\kappa} ds_{\kappa}^2$$

Cartesian $\kappa = 0$ Rindler $\kappa = 1$

Ζ

Brane parametrization (embedding):

$$(R(\xi), Z(\xi))$$

$$Z'^2 + R'^2 = 1$$

Induced metric on the brane:

$$ds_4^2 = d\xi^2 + R^{2\kappa}(\xi) \ ds_{\kappa}^2$$

R

 $(\xi = 0)$

DW

Equations for the embedding: Israel junction conditions

$$M_*^3 \left(K_{\mu\nu} - K h_{\mu\nu} \right) = T_{\mu\nu} - m_P^2 G_{\mu\nu}^{(4)}$$

$$\epsilon \kappa \frac{\sqrt{1-R'^2}}{r_c R} = -\kappa \frac{1-R'^2}{R^2} + \frac{\tau}{3m_P^2}$$

 $-\epsilon \frac{R''}{2r_e\sqrt{1-R'^2}} = \kappa \frac{R''}{R} + \frac{\sigma}{2m_P^2}\delta(\xi)$

B)

A)

B) Junction condition on the DW

$$-\kappa \; \frac{\Delta R_0'}{R_0} + \frac{\delta}{4r_c} = \frac{\sigma}{2m_P^2}$$

$$2\kappa\,\epsilon\,Hr_c\,{\rm tan}\,\frac{\delta}{4}\,+\,\frac{\delta}{4}=\frac{\sigma}{4M_*^3}$$

Subcritical Wall

(Conventional Branch)

'brane

bending'

(Conventional Branch)

 $\sigma < 2\pi M_*^3$

Subcritical Wall

 $\kappa = 0$

 $R(\xi) = |\xi| \sin \beta$ $Z(\xi) = \xi \cos \beta$

$$4\beta = \delta = \sigma / M_*^2$$

Subcritical Wall

(Conventional Branch)

 $\sigma < 2\pi M_*^3$

 $\kappa = 0$

5D:

$$\sigma_{\rm eff}^{(5D)} \equiv \sigma + \kappa \ m_P^2 \frac{\Delta R_0'}{R_0}$$

No 5D-screening

4D:

$$\sigma_{\rm eff}^{(4D)} \equiv \sigma - \delta M_*^3 = 0$$

Complete 4D-screening

Super-critical Wall

(Conventional Branch)

$\kappa = 1$

$$\frac{1}{R_0} + \frac{\pi}{4r_c} = \frac{\sigma}{4m_P^2}$$

Partial 4D Screening

Non-zero brane tension $H \neq 0$

Self-Accelerated Branch

 $\delta < 0!!$ 5D 'over-screening' $(\kappa = 1)$

 $\sigma_{eff}^{(4D)} > \sigma !!$ 4D 'anti-screening'

Self-Accelerated Branch

'Replica' Domain wall produced by

summary

branch	DW tension	$\sigma_{ m eff}^{(4D)}/\sigma$	$\sigma_{ m eff}^{(5D)}/\sigma$
CB	$\sigma < 2\pi M_*^3$	0	1
	$\sigma > 2\pi M_*^3$	$1 - \frac{2\pi M_*^3}{\sigma}$??
SAB	$\sigma \ll 2\pi M_*^3$	$2\left(1-\left(\sigma/M_*^3\right)^2/48+\ldots\right)$	$-\left(1-\left(\sigma/M_*^3\right)^2/24+\ldots\right)$
	$\sigma \gg 2\pi M_*^3$	$1 + \frac{2\pi M_*^3}{\sigma} + \dots$??

Sch		rzo	hil	d_		
	Iva			u-		

branch	$M^{(4D)}/M$	$M^{(5D)}/M$
CB	0	$0.56 \ \frac{r_*}{r_c}$
SAB	0	$-0.45 \frac{r_*}{r_c}$

Super-critical walls and 5D-screening

Super-critical walls and 5D-screening

With No DGP 'induced gravity' term (supermassive codimension-2 brane)

 $\sigma > 2\pi M_*^3$

 $\frac{D}{P} \neq 0$ $\frac{D}{P} \neq 0$ pressure along

thickness

normal direction

$$T^{\nu}_{\mu} = \text{diag}(-\rho, -\rho, -\rho, P)$$

$$2\pi M_*^3 = \int d\xi \left(\rho + 2P/3\right) \longrightarrow -\frac{2}{3} P_0 d = \sigma - 2\pi M_*^3$$
$$-P_0 = \frac{6M_*^3}{R_0} \longrightarrow \frac{1}{R_0} = \frac{1}{4dM_*^3} \left(\sigma - 2\pi M_*^3\right)$$

Super-critical walls and 5D-screening

With No DGP 'induced gravity' term (supermassive codimension-2 brane)

$$\sigma > 2\pi M_*^3$$
 \square $\frac{1}{R_0} = \frac{1}{4dM_*^3} \left(\sigma - 2\pi M_*^3\right)$

Super-critical walls and 5D-screening

With No DGP 'induced gravity' term (supermassive codimension-2 brane)

$$\sigma > 2\pi M_*^3$$

R

$$\frac{1}{P_0} = \frac{1}{4dM_*^3} \left(\sigma - 2\pi M_*^3\right)$$

With induced gravity term,

DW

branch	DW tension	$\sigma_{\mathrm{eff}}^{(4D)}/\sigma$	$\sigma_{ m eff}^{(5D)}/\sigma$
CB	$\sigma < 2\pi M_*^3$	0	1
	$\sigma > 2\pi M_*^3$	$1 - \frac{2\pi M_*^3}{\sigma}$	$\left(\frac{r_*}{2r_c}\right)$
SAB	$\sigma \ll 2\pi M_*^3$	$2\left(1-\left(\sigma/M_*^3\right)^2/48+\ldots\right)$	$-\left(1-\left(\sigma/M_*^3\right)^2/24+\ldots\right)$
	$\sigma \gg 2\pi M_*^3$	$1 + \frac{2\pi M_*^3}{\sigma} + \dots$	$\left(-\frac{r_*}{2r_c}\right)$

Schwarzchild-DGP

branch	$M^{(4D)}/M$	$M^{(5D)}/M$
CB	0	$0.56 \ \frac{r_*}{r_c}$
SAB	0	$(-0.45 \frac{r_*}{r_c})$

Generic IR-modified gravity

Linearized Einstein's eqs:

$$\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} - m^2(\Box)\left(h_{\mu\nu} - \eta_{\mu\nu}h\right) = -16\pi G_N T_{\mu\nu}$$

$$m^2(\Box) = r_c^{-2(1-\alpha)} \Box^{\alpha}$$

 $0 \leq \alpha < 1$

 $\alpha = 1/2$ DGP $\alpha = 0$ Fierz-Pauli Massive gravity

Generic IR-modified gravity

Couples to conserved source as

$$h_{\mu\nu} = -16\pi G_N \frac{1}{\Box - m^2(\Box)} \left\{ T_{\mu\nu} - \frac{1}{3} \left(\eta_{\mu\nu} - \frac{1}{m^2(\Box)} \partial_\mu \partial_\nu \right) T \right\}$$

'pure gauge' form

For DWs, $T_{\mu\nu} - (1/3)T\eta_{\mu\nu} \propto \delta^z_{\mu}\delta^z_{\nu} \simeq \text{diag}(1, 0, 0, 0)$

Lowest order Tree-level amplitude

$$\mathcal{A} \propto G_N \int d^4x \, \frac{T_{\mu\nu}T'^{\mu\nu} - \frac{1}{3}TT'}{\Box - m^2(\Box)} = 0$$

Finite size DWs

in longitudinal directions

CONCLUSIONS

- Screening mechanism in DGP -> Extrinsic curvature
- In DGP, sub-critical DWs do not gravitate
 => short distance probe of gravity
- expect the same in other IR-modified gravity theories (non-linearities do not contribute for DWs)
- Almost identical screening pattern as in Schw-DGP (Gabadadze&Iglesias)
- Super-massive codimension-2 branes
- Screening of the 5D-tension