Extending Bubbling AdS: Going Beyond the ½ BPS Sector

Sera Cremonini

University of Michigan

UC Davis, February 1 ${ }^{\text {st }}, 2007$

Outline

- Basics of AdS/CFT
- Problem with Interactions in AdS/CFT
- Interactions on the boundary vs. in the bulk
- AdS/CFT beyond small perturbations
- The $1 / 2$ BPS sector and the one matrix model (bubbling)
- The role of collective field theory
- Going beyond the $1 / 2$ BPS sector
- Multi-matrix models: interactions revisited
- Bubbling with less SUSY? The $1 / 4$ and $1 / 8$ BPS sectors \longleftarrow PROGRESS
- Towards Dynamics? (directions for the future)

The AdS/CFT Conjecture

"Holographic" Duality:

Theory of Gravity
 Conformal field theory on boundary

IIB string theory on AdS $_{5} \times$ S $^{5} \longleftrightarrow \mathcal{N}=4 \mathrm{U}(\mathrm{N})$ SYM in 3+1 d
(field) (operators)

Strong / Weak Coupling Duality:

$$
\lambda=g_{Y M}{ }^{2} N \sim g_{s} N \sim R^{4} / I_{s}^{4}
$$

Trust perturbative analysis in YM theory when

$$
\lambda=g_{Y M}{ }^{2} N \sim g_{s} N \sim \frac{R^{4}}{I_{s}^{4}} \ll 1
$$

Classical gravity description reliable when $\frac{\mathbf{R}^{4}}{I_{s}{ }^{4}} \sim \boldsymbol{g}_{s} N \sim \boldsymbol{g}_{\mathrm{YM}}{ }^{2} N \gg \mathbf{1}$
(and N large)

Type IIB SUGRA on AdS $_{5} \mathbf{x}$ S 5

symmetry of d-dim
conformal group

Hyperboloid $X_{0}^{2}+X_{d+1}^{2}-\sum_{i=1}^{d} X_{i}^{2}=R^{2}$

SO(6) R-symmetry

$S O(6)$ isometry of S^{5}

Simple example: AdS $_{3}$ in global coordinates

$$
d s^{2}=\frac{R^{2}}{\cos ^{2} \theta}\left(-d \tau^{2}+d \theta^{2}+\sin ^{2} \theta d \Omega^{2}\right)
$$

Boundary is at $\theta=\pi / 2: \quad R \times S^{1}$

My favorite AdS picture

AdS/CFT beyond SUGRA: pp-wave background

So far correspondence only between SUGRA and SYM (no strings)

Progress: Extending AdS/CFT to string theory

BM
hep-th/0202021

Why plane-wave background ?

String propagation on pp-wave background can be solved exactly

Green-Scharwz light-cone action becomes quadratic

STRING THEORY on pp-waves

AdS/CFT

(large R-charge)

To get the pp-wave background, start from $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$:

$$
d s^{2}=R^{2}\left[-d t^{2} \cosh ^{2} \rho+d \rho^{2}+\sinh ^{2} \rho d \Omega_{3}^{2}+d \psi^{2} \cos ^{2} \theta+d \theta^{2}+\sin ^{2} \theta d \Omega_{3}^{\prime 2}\right]
$$

Focus on "particle" moving very rapidly (large \mathbf{J}) along ψ and sitting near $\rho=\theta=0$

Systematically:

$$
\left\{\begin{array}{l}
\tilde{x}^{ \pm}=\frac{t \pm \psi}{2} \\
x^{+}=\tilde{x}^{+}, \quad x^{-}=R^{2} \tilde{x}^{-}, \quad \rho=\frac{r}{R}, \quad \theta=\frac{y}{R}, \quad R \rightarrow \infty
\end{array}\right.
$$

$$
d s^{2}=-4 d x^{+} d x^{-}-\left(\vec{r}^{2}+\vec{y}^{2}\right)\left(d x^{+}\right)^{2}+d \vec{y}^{2}+d \vec{r}^{2}
$$

standard plane wave

Main result of BMN : matching of SPECTRUM in large \mathbf{J} limit (large \mathbf{R} charge)

What about interactions?

Cubic Interactions

Simple model of interactions:

$$
S=\int d^{5} x \sqrt{g}\left[\sum_{i} \frac{1}{2}\left(\partial \phi_{i}\right)^{2}+\frac{1}{2} m_{i}^{2} \phi_{i}^{2}+\lambda \phi_{1} \phi_{2} \phi_{3}\right]
$$

For fields on boundary of AdS, well-defined prescription (GKP-W prescription) :

Interactions inside AdS?

Prescription for calculating interactions INSIDE AdS?

There should be a dictionary BUT bulk-boundary prescription may not be fundamental or complete

Approach: construct and study the Hamiltonian

So far...

- To understand AdS/CFT need to set up a precise dictionary between states of two theories
- In "original" AdS/CFT perturbations on AdS $_{5} \times$ S 5

Can we go beyond the perturbative description?
We may consider SUGRA solutions that are asymptotically AdS $_{5} \mathbf{x} \mathbf{S}^{5}$ as GOOD CANDIDATES for dual states in the CFT

Hope: carry out this program in the FULL

BPS sector of the respective theories

First step in this direction: dictionary for $1 ⁄ 2$ BPS sector of Type IIB string theory (LLM, hep-th/0409174)

What about the problem with AdS interactions?

Natural question: what is the appropriate Hamiltonian?
We will construct the Hamiltonian for :

- ½ BPS sector of the theory (well-known)

1 MATRIX MODEL

Motivate H for more general geometries (work in progress)

$$
\begin{aligned}
& \text { MULTI-MATRIX } \\
& \text { MODEL }
\end{aligned}
$$

$1 / 2$ BPS geometries in Type IIB

LLM:

- constructed exact $1 ⁄ 2$ BPS solutions in type IIB SUGRA
- identified them with the free fermion picture of $1 / 2$ BPS sector of $N=4$ SYM

Explicit, regular solutions with $\mathbf{S O}(4) \times \mathbf{S O}(4)$ isometry

Chiral primaries in $\mathcal{N}=4$ SYM

$$
(\Delta=J)
$$

fermionic droplets

Droplet shape

General idea:

10D Spacetime of form

Time-like Killing vector

Crucial feature: all solutions describable in terms of a single function $\mathrm{z}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}\right)$:

$$
\left(\partial_{1}^{2}+\partial_{2}^{2}+y \partial_{y} \frac{1}{y} \partial_{y}\right) z\left(x_{1}, x_{2}, y\right)=0
$$

Regularity of solutions demands certain boundary conditions on $\mathbf{y}=\mathbf{0}$ plane :

$$
z\left(x_{1}, x_{2}, y=0\right)= \pm \frac{1}{2}
$$

Smoothness of solutions: on $y=0$ plane

black and white color coding of solutions

Boundary conditions on $\mathbf{y}=0$ plane specify geometry:

$$
\begin{aligned}
& z\left(x_{1}, x_{2}, y\right)=\frac{y^{2}}{\pi} \int_{\mathcal{D})} \frac{z\left(x_{1}^{\prime}, x_{2}^{\prime}, 0\right) d x_{1}^{\prime} d x_{2}^{\prime}}{\left[\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}+y^{2}\right]^{2}} \\
& \frac{\partial_{i} \partial_{i} z+y \partial_{y}\left(\frac{\partial_{y} z}{y}\right)=0}{\text { 个LINEAR! }} \Longrightarrow \text { Bubbling ! }
\end{aligned}
$$

Where is the fermion description?

We will see in detail :
"Special" 2D plane ($\mathrm{y}=0$) identified with phase space of fermions

Fermion droplets (= geometries) :

SPHERE GIANT

Relation between LLM ansatz and matrix model

Solutions are BPS, thus $\quad \Delta=U(1)_{R}$ charge $=J$

Angular momentum and flux for all LLM solutions given by :

$$
\begin{aligned}
& \Delta=J=\frac{1}{16 \pi^{3} l_{P}^{8}}\left[\int_{D} d\left(x\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{1}{2 \pi}\left(\int_{D} d^{2} x\right)^{2}\right]\right. \\
& N=\int d^{2} x
\end{aligned}
$$

$1 / 2$ BPS Sector described by matrix model with harmonic oscillator potential

Will show this via connection with collective field theory

Matrix Model: Reduction to $1 ⁄ 2$ BPS Sector

Why only 1 matrix for $1 / 2$ BPS sector?

Start from two-matrix model :

$$
H=\frac{1}{2} \operatorname{Tr}\left(P_{1}^{2}+P_{2}^{2}+X_{1}^{2}+X_{2}^{2}\right) \quad J=\operatorname{Tr}\left(P_{1} X_{2}-P_{2} X_{1}\right) .
$$

Rewrite in different way: introduce complex matrices

$$
\begin{aligned}
Z & =\frac{1}{\sqrt{2}}\left(X_{1}+i X_{2}\right) & \Pi & =\frac{1}{\sqrt{2}}\left(P_{1}+i P_{2}\right)=-i \frac{\partial}{\partial Z^{\dagger}}, \\
Z^{\dagger} & =\frac{1}{\sqrt{2}}\left(X_{1}-i X_{2}\right) & \Pi^{\dagger} & =\frac{1}{\sqrt{2}}\left(P_{1}-i P_{2}\right)=-i \frac{\partial}{\partial Z} .
\end{aligned}
$$

With $\quad A=\frac{1}{2}(Z+i \Pi), \quad B=\frac{1}{2}(Z-i \Pi)$.

$$
\begin{aligned}
H & =\operatorname{Tr}\left(A^{\dagger} A+B^{\dagger} B\right), \\
J & =\operatorname{Tr}\left(A^{\dagger} A-B^{\dagger} B\right) .
\end{aligned}
$$

$$
\begin{aligned}
H & =\operatorname{Tr}\left(A^{\dagger} A+B^{\dagger} B\right), \\
J & =\operatorname{Tr}\left(A^{\dagger} A-B^{\dagger} B\right) .
\end{aligned}
$$

$$
\begin{array}{ll}
\operatorname{Tr}\left(A^{\dagger}\right)^{n} \mid 0>, & E=J=n, \\
\operatorname{Tr}\left(B^{\dagger}\right)^{n} \mid 0>, & E=-J=n, \\
\operatorname{Tr}\left(A^{\dagger}\right)^{n} \operatorname{Tr}\left(B^{\dagger}\right)^{m}|0\rangle, \quad E=n+m, \quad J=n-m . & \text { E is not } \mathbf{J}!
\end{array}
$$

$1 / 2$ BPS Sector ($\mathrm{E}=\mathrm{J}$)

Truncation to A oscillators (no B oscillators) so SINGLE MATRIX

These states correspond to : chiral primary operators:
e.g. $\operatorname{Tr} Z^{k_{1}} \operatorname{Tr} Z^{k_{2}} \ldots \operatorname{Tr} Z^{k_{n}}$

BUT a theory of a single matrix can be described by a collective field theory theory of fermions!

Collective Field Theory Description

Simple matrix model $L=\frac{1}{2} \operatorname{Tr}\left(\dot{M}^{2}-M^{2}\right)$
diagonalize $M(t)$

one-dimensional theory
Collective field $\quad \phi(x, t)=\sum_{i=1}^{N} \delta\left(x-\lambda_{i}(t)\right)$
In large \mathbf{N} limit appearance óf new spatial dimension
Gravity is "EMERGING" (collective phenomenon)
dynamics of $M(t)$ \square
(normalization)

$$
H_{\text {coll }}=\int d x\left(\frac{1}{2} \partial_{x} \Pi \phi \partial_{x} \Pi+\frac{\pi^{2}}{6} \phi^{3}+\frac{1}{2}\left(x^{2}-\mu\right) \phi\right)
$$

$$
\int d x \phi(x)=N
$$

We found $\quad H_{\text {coll }}=\int d x\left(\frac{1}{2} \partial_{x} \Pi \phi \partial_{x} \Pi+\frac{\pi^{2}}{6} \phi^{3}+\frac{1}{2}\left(x^{2}-\mu\right) \phi\right)$

Introduce new fields : $\quad \alpha_{ \pm}(x, t)=\partial_{x} \Pi \pm \pi \phi(x, t)$

Collective field theory description for $1 / 2$ BPS SUGRA states

Appropriate Hamiltonian for $1 / 2$ BPS states !

Fluctuations

$$
\phi(x, t)=\phi_{0}(x)+\frac{1}{\sqrt{\pi}} \partial_{x} \eta(x, t) \quad \begin{array}{ll}
\text { Static ground state } \\
& \pi \phi_{0}=\sqrt{\mu-x^{2}}
\end{array}
$$

"Time of flight" coordinate $\tau=\int \frac{d x}{\phi_{0}}, \quad 0<\tau<\pi$

$$
H=\int d \tau\left[\frac{1}{2} \Pi^{2}+\frac{1}{2}\left(\partial_{\tau} \eta\right)^{2}+\frac{1}{6 \pi^{2} \phi_{0}^{2}}\left(\left(\partial_{\tau} \eta\right)^{3}+3 \Pi \partial_{\tau} \eta \Pi\right)\right]
$$

This is what we are interested in

Some manipulations:

$$
\begin{gathered}
\left\{\begin{array}{c}
\alpha=\alpha_{+}-\pi \phi_{0}, \quad \tau>0 \\
=-\alpha_{-}-\pi \phi_{0}, \quad \tau<0 \\
-\pi<\tau<\pi
\end{array}\right. \\
\alpha(\tau)=\sum_{n} \sqrt{n}\left(e^{i n \tau} a_{n}+e^{-i n \tau} a_{n}^{\dagger}\right) \quad \square H^{(3)}=\int_{-\pi}^{\pi} \frac{d \tau}{\phi_{0}^{2}} \alpha^{3}(\tau) \\
H^{(3)}=-4 \pi \sqrt{n_{1} n_{2} n_{3}}\left(n_{1}+n_{2}-n_{3}\right) a_{1} a_{2} a_{3}^{\dagger}+\ldots
\end{gathered}
$$

$$
\text { Chiral primary } \mathrm{s}^{I} \text { with mass } \quad m^{2}=j(j-4)
$$

Derivative couplings can be removed by a field redefinition :

$$
s^{I}=s^{\prime I}+\sum_{J, K}\left(J_{I J K} s^{\prime J} s^{\prime K}+L_{I J K} \nabla^{\mu} s^{\prime J} \nabla_{\mu} s^{\prime K}\right)
$$

$$
\left(\nabla_{\mu} \nabla^{\mu}-m_{I}^{2}\right) s^{I}=\sum_{J, K} \lambda_{I J K} s^{J} s^{K}
$$

$$
\left\{\begin{array}{l}
\lambda_{123}=\left(j_{3}-j_{1}-j_{2}\right) 2 \kappa \frac{\sqrt{j_{1} j_{2} j_{3}\left(j_{3}^{2}-1\right)\left(j_{3}+2\right)}\left(j_{3}-2\right)}{\sqrt{\left(j_{1}^{2}-1\right)\left(j_{2}^{2}-1\right)\left(j_{1}+2\right)\left(j_{2}+2\right)}} \times f_{123} \\
f_{123}=\frac{1}{\sqrt{2 \pi^{3}}} \frac{\sqrt{\left(j_{1}+1\right)\left(j_{1}+2\right)\left(j_{2}+1\right)\left(j_{2}+2\right)}}{\sqrt{\left(j_{3}+1\right)\left(j_{3}+2\right)}} .
\end{array}\right.
$$

Highest-weight states $\longrightarrow s=\frac{\sqrt{\Delta(\Delta-1)}}{\pi(\cosh \mu)^{\Delta}}$.

$$
<3\left|H_{3}\right| 12>\sim\left(\Delta_{3}-\Delta_{1}-\Delta_{2}\right) \sqrt{\Delta_{1} \Delta_{2} \Delta_{3}} \delta\left(j_{3}-j_{1}-j_{2}\right)
$$

matches Coll. F.T. cubic vertex

$$
H^{(3)}=-4 \pi \sqrt{n_{1} n_{2} n_{3}}\left(n_{1}+n_{2}-n_{3}\right) a_{1} a_{2} a_{3}^{\dagger}
$$

Going Beyond the $1 / 2$ BPS Sector

What have we seen so far?

Next?
Study more general states (outside of $1 / 2$ BPS Sector)
 multi-matrix states \downarrow
"Brute force" approach to interactions challenging

Alternative approach?

Interactions for two-matrix states

General strategy for reconstructing full AdS interaction :

- Start from collective field theory vertex $\quad V_{3} \neq 0$
(assume correct description for multi-matrix states)
- Use SL(2,R) symmetry of underlying theory to generate interactions (find useful identities using generators that relate vertices that we know to vertices we don't know)

Feature of SUGRA:

$$
V_{3} \sim\left(\Delta_{3}-\Delta_{1}-\Delta_{2}\right) \delta\left(j_{1}+j_{2}-j_{3}\right)
$$

vanishes on shell for highest-weight state

Meaning of acting with generators?
Rewrite the vertex so that it does not vanish (canonical transformation and non-linear field redefinition)

Warm up : a toy model

Consider particle in two dimensions as toy model for two matrix states

$$
H=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{\omega^{2}}{2}\left(x^{2}+y^{2}\right) \quad \square\left\{\begin{array}{l}
H=a^{\dagger} a+b^{\dagger} b \\
J=a^{\dagger} a-b^{\dagger} b
\end{array}\right.
$$

States

$$
\left|J, n>=\frac{\left(a^{\dagger}\right)^{J+n}\left(b^{\dagger}\right)^{n}}{\sqrt{(J+n)!n!}}\right| 0>
$$

Recall

$$
\left|J, n>=\frac{1}{\sqrt{(J+n) n}} L_{+}\right| J, n-1>
$$

Acting with $\mathrm{L}_{0}, \mathrm{~L}_{+}, \mathrm{L}_{-}$on

$$
\int d^{2} x \frac{1}{\sqrt{\phi_{0}(\vec{x})}} \bar{\Psi}_{J_{1}, n_{1}} \Psi_{J_{2}, n_{2}} \Psi_{J_{3}, n_{3}}
$$

$$
\int d^{2} x \frac{1}{\sqrt{\phi_{0}(\vec{x})}}\left[L_{+}^{(3)}-L_{-}^{(1)}-L_{-}^{(2)}+\frac{1}{2}\left(L_{0}^{(3)}-L_{0}^{(1)}-L_{0}^{(2)}\right)\right] \bar{\Psi}_{J_{1}, n_{1}} \Psi_{J_{2}, n_{2}} \Psi_{J_{3}, n_{3}}=0
$$

Two matrix interactions in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Repeat same procedure but for Hamiltonian

$$
H=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial M^{2}}+\frac{\partial^{2}}{\partial N^{2}}\right)+\frac{1}{2}\left(M^{2}+N^{2}\right)
$$

Eigenfunctions of two-matrix model found by A. Donos, A. Jevicki, J. Rodrigues (hep-th/0507124) :

$$
H=-\frac{1}{2} \frac{\partial^{2}}{\partial M^{2}}+\frac{1}{2} M^{2}+B \frac{\partial}{\partial B} \quad \text { treat as purity }
$$

AdS Result :

Build vertex, act with SL(2,R) generators, and find analog of toy model identity

Bottom line: symmetries may help

Comment on "emergent geometry"

Recall eigenvalues of one matrix yielded a new dimension:

$$
M(t) \rightarrow \Phi(x, t)=\sum_{i} \delta\left(x-\lambda_{i}\right)
$$

Add another matrix $N(t) \Longrightarrow \quad$ Probe additional direction y
LLM used ONE MATRIX to describe $\operatorname{AdS}_{5} \times$ S $^{5} \quad \begin{gathered}\text { LLM probed } \\ \text { angle of } S^{5}\end{gathered}$
EXPLAIN
With two matrices, hope to eventually probe radial direction of AdS

BuT Still challenge

Detailed bubbling picture of $1 / 2,1 / 4,1 / 8$ BPS states ?

	B. Chen, S.C., A. Donos, F.Lin, H. Lin, Work in progress J. Liu, D. Vaman, W. Wen, hep-th/0702???

Natural questions:

- Can we extend AdS/CFT dictionary to full BPS spectrum?
- Is there bubbling if you have LESS SUSY ($1 / 4$ BPS and $1 / 8$ BPS sectors) ?
- What is the GAUGE THEORY picture? Fermions?

General SUGRA ansatz for $\underbrace{1 / 4 \mathrm{BPS}}$ and $\underbrace{1 / 8 \mathrm{BPS}}$ geometries worked out

Gravity picture that has emerged :

$$
\underset{\text { NICE E }}{ } \begin{cases}S^{3} \times 7 D & 1 / 8 \mathrm{BPS} \\ S^{3} \times S^{1} \times 6 D & 1 / 4 \mathrm{BPS} \\ S^{3} \times S^{3} \times 4 D & 1 / 2 \mathrm{BPS}\end{cases}
$$

$1 / 4$ BPS solution STILL depends on only one function z (as in $1 / 2$ BPS case) :

$$
\begin{aligned}
& d s_{1 / 4}^{2}=-h^{-2}(d t+W)^{2}+h^{2} d y^{2}+\frac{1}{y e^{G}} d s_{4}^{2}+y e^{G} d \Omega_{3}^{2}+y e^{-G} d \psi^{2} \\
& \text { COMPLCATED }\left\{\begin{array}{l}
\left\lvert\, z=-2 y \partial_{y}\left(\frac{1}{y} \partial_{y} K\right)\right.
\end{array} \quad\left(g_{m n}^{4 D}=\partial_{m} \partial_{n} K\right)\right. \\
& \left\lvert\, \begin{array}{|ll}
\left|\begin{array}{ll}
\partial_{z} \partial_{\bar{z}} K & \partial_{w} \partial_{z} K \\
\partial_{z} \partial_{\bar{w}} K & \partial_{w} \partial_{\bar{w}} K
\end{array}\right|=y \frac{\frac{2}{e^{2} \partial_{y} K}}{2}\left(-2 y \partial_{y}\left(\frac{1}{y} \partial_{y} K\right)+1\right)
\end{array}\right.
\end{aligned}
$$

Difficulties with $1 / 4$ BPS construction :

- solving equation for K is challenging (explicit solutions?)
even hard to reproduce simple $1 / 2$ BPS states

Natural Question:
Is there an analog of the "special" 2D plane of the $1 / 2$ BPS solutions, on which boundary conditions (for regularity) would be defined?

The answer is yes for examples worked out:

- We embedded many known SUGRA solutions into $1 / 4$ and $1 / 8$ BPS general geometries
- Found some new solutions for simplifying assumptions on K
- Found relevant boundary conditions

Picture:
$1 / 4$ BPS
surfaces in 40

$1 / 8$ BPS
surfaces in 6D

Questions still open:

- Can you draw any shape in these 4D and 6D spaces and get a UNIQUE geometry?
- What do we have on gauge theory side? Fermions?

How can this be useful?

- Push forward AdS/CFT duality with less SUSY (and more general geometries)
- Can we understand more realistic gravity/gauge theory dualities starting from the more "controlled" setting of AdS/CFT? (dS/CFT?)
- Can we learn anything about time dependence? Hard question
- Black hole applications

Future Applications?

We saw LLM describes many vacua of the theory:

- Instanton solutions interpolating between different LLM vacua?
(recent work by H. Lin)
- Bubbles merging or separating (topology change)?

Can we make bubbles fluctuate in time?
Yes, but small fluctuations not necessarily new (just spectrum)

known spectrum of

$$
\mathrm{AdS}_{5} \times \mathrm{S}^{5} \text { (Kimetal.) }
$$

Topology change: can bubbles split or recombine?

If yes, at transition they would locally look like:

Can we resolve the singularity? Can we describe topology change?

[Conclusions...
]

- Although AdS/CFT is still a conjecture, much progress recently
- Nice fermion (bubbling) picture for $1 ⁄ 2$ BPS SUGRA solutions
- Interactions in bulk are challenging, but symmetries may help (they give useful identities for generating multi-matrix interactions)
- Bubbling picture may survive with less SUSY
- Future directions:
- Can we make any progress beyond static solutions? Connect with cosmology work?
- Can we understand whether bubbles can merge and separate?
- Can we go from one vacuum to the other (possibly relevant for cosmology)?

