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the case of scalar QED
→ 1D path integral in flat space

3. Worldline formalism in curved space
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one-loop qzn in flat space
Dof’s from orthogonal polynomials method ∀D, N

6. Manifolds with boundary
Method of the “image charge”
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Introduction

Worldline method
QFT results from QM path integrals

⇒ no need to compute momentum integrals
and Dirac traces

Alternative way to compute correlation functions

Effective actions of quantum fields coupled to external
fields (gravity, vector), chiral and conformal anomalies
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Worldline formalism in flat space

Case of scalar contribution to QED at 1-loop

Classical action:

S[φ, φ∗, A] =

∫
dDx ( |(∂µ + ieAµ)φ|2 +m2|φ|2 )

The corresponding 1-loop effective action is

e−Γ[A] =

∫
DφDφ∗ e−S[φ,φ∗,A] = Det−1(−∇2

A + m2)
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Worldline formalism in flat space

Thus

Γ[A] = Tr log (−∇2
A +m2)

= −
∫ ∞

0

dT

T
Tr e−(−∇2

A+m2)T

= −
∫ ∞

0

dT

T

∫

PBC

Dx e
−
R T

0
dτ

(
1
4
ẋ2+ieAµ(x)ẋµ+m2

)

=
∑
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0
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T

∫

PBC

Dx e
−
R T

0
dτ

(
1
4
ẋ2+ieAµ(x)ẋµ+m2

)

quantum mechanical path integrals
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Worldline formalism in flat space

Expand in powers of Aµ (sum of plane waves)

Aµ =
N∑

i=1

εi,µ e
ipi·x

get averages of “photon vertex operators”
〈
ε1,µ1 ẋ

µ1(τ1)eip1·x(τ1) · · · εN,µN ẋµN (τN )eipN ·x(τN )

〉

and obtain the “Bern-Kosower master formula”
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Bern-Kosower master formula

Γ[p1, ε1; . . . ; pN , εN ] =
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Bern-Kosower master formula

Γ[p1, ε1; . . . ; pN , εN ] = −(−ie)N (2π)DδD

(
N∑

i=1

pi

)

∫ ∞

0

dT

T

e−m
2T

(4πT )
D
2

N∏

i=1

∫ T

0

dτi

exp

N∑

i,j=1

[1

2
∆ij pi · pj − i •∆ij εi · pj +

1

2
••∆ij εi · εj

]∣∣∣∣∣
lin εi
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dT

T
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2T

(4πT )
D
2

N∏

i=1

∫ T

0

dτi

exp

N∑

i,j=1

[1

2
∆ij pi · pj − i •∆ij εi · pj +

1

2
••∆ij εi · εj

]∣∣∣∣∣
lin εi

integral over the modulus of the circle

one-loop determinant for the free path integral
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Worldline formalism in curved space

A real scalar field coupled to gravity

S[φ, g] =

∫
dDx
√
g

1

2
(gµν∂µφ∂νφ+ m2φ2 + ξRφ2)

produces an effective action (e−Γ[g] =
∫
Dφ e−S[φ,g])

Γ[g] =
1

2
Tr log(−∇2 + m2 + ξR) =

Worldline Path Integral Formalismnew results and applications – p.9/48



Worldline formalism in curved space

A real scalar field coupled to gravity

S[φ, g] =

∫
dDx
√
g

1

2
(gµν∂µφ∂νφ+ m2φ2 + ξRφ2)

produces an effective action (e−Γ[g] =
∫
Dφ e−S[φ,g])

Γ[g] =
1

2
Tr log(−∇2 + m2 + ξR) =

Worldline Path Integral Formalismnew results and applications – p.9/48



Worldline formalism in curved space

which can be represented as

Γ[g] = −1

2

∫ ∞

0

dT

T

∫

S1

Dx e−S[xµ]

with

S[xµ] =

∫ 1

0

dτ

(
1

4T
gµν(x)ẋµẋν + T (m2 + ξR(x))

)

1d non-linear sigma model
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Worldline formalism in curved space

The effective action

Γ[g] =
1

2
Tr log(−∇2 +m2 + ξR)

can be obtained directly from 1st qzn.

start from the relativistic point-particle action

S[e, xµ] =

∫ 1

0

dτ
1

2
[e−1gµν(x)ẋµẋν + e(m2 + ξR(x))]

gauge fix the diffeomorphisms e = 2T

divide out the length of the circle
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Worldline formalism in curved space

1. UV regularization of the non-linear σ model
3 regularization schemes have been studied

Mode Regularization (Bastianelli, OC, Schalm, van Niuewenhuizen)

Time Slicing (de Boer, Peeters, Skenderis, van Niuewenhuizen)

Dimensional Regularization (Bastianelli, OC, van Nieuwenhuizen)
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Worldline formalism in curved space

1. UV regularization of the non-linear σ model
3 regularization schemes have been studied

Mode Regularization (Bastianelli, OC, Schalm, van Niuewenhuizen)

Time Slicing (de Boer, Peeters, Skenderis, van Niuewenhuizen)

Dimensional Regularization (Bastianelli, OC, van Nieuwenhuizen)

DR allows for covariant counterterms

VCT = −~
8
R

2. Factorization of zero modes

non-covariant total derivatives

treated with BRST methods
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Effective action from DR worldline

Γ[g] = −1

2

∫ ∞

0

dT

T

∫
DxDaDbDc e−S

with

S =

∫ 1

0

dτ

(
1

4T
gµν(ẋ

µẋν + aµaν + bµcν) + T (m2 + ξ̄R)

)

where ξ̄ = ξ − 1
4

includes the DR counterterm.
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Effective action from DR worldline

Γ[g] = −1

2

∫ ∞

0

dT

T

∫
DxDaDbDc e−S

with

S =

∫ 1

0

dτ

(
1

4T
gµν(ẋ

µẋν + aµaν + bµcν) + T (m2 + ξ̄R)

)

where ξ̄ = ξ − 1
4

includes the DR counterterm.

bosonic ghosts a and fermionic ghosts b, c provide the
non-trivial path integral measure
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Effective action from DR worldline

Expand in hµν = gµν − δµν , substitute the hN term with

hµν =
N∑

i=1

ε(i)µνe
ipi·x

and pick terms linear in ε(i) ⇒

N -graviton amplitude in momentum space Γ̃ε1,..,εN(p1,..,pN ).

• Get quantum mechanical correlators of the form

*
(ẋµ1

1 ẋν11 + aµ1
1 aν11 + bµ1

1 cν11 )eip1·x1

| {z }
graviton vertex operator

· · · (ẋµNN ẋ
νN
N + a

µN
N a

νN
N + b

µN
N c

νN
N )eipN ·xN

| {z }
graviton vertex operator

+
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Explicit computation

E.g. Two-graviton amplitude +ξ̄
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Explicit computation

E.g. Two-graviton amplitude +ξ̄

Case ξ̄ = 0 (i.e. ξ = 1
4
).

Quadratic part in hµν

Γ̃ε1,ε2(p1,p2) =
1

2

∫ ∞

0

dT

T
e−m

2T 1

(4πT )
D
2

∫
dDx0

×
〈

1

2

[∫ 1

0

dτ
1

4T
(hµν(ẏ

µẏν + aµaν + bµcν))

]2〉∣∣∣∣∣
lin ε1,ε2

where hµν = ε(1)
µν e

ip1·x + ε(2)
µν e

ip2·x x = x0 + y
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Explicit computation

Use Wick contractions and get

Γε1ε2(p,−p) =
1

8

1

(4π)
D
2

∫ ∞

0

dT

T 1+D
2

e−m
2T

× (r1I1 + r2I2 + 2Tp2(r3I3 + r4I4) + 4T 2p4r5I5)

where ri = ε
(1)
µνR

µναβ
i ε

(2)
αβ and

Rµναβ
1 = δµνδαβ , Rµναβ

2 = δµαδνβ + δµβδνα

Rµναβ
3 =

1

p2
(δµαpνpβ + δναpµpβ + δµβpνpα + δνβpµpα)

Rµναβ
4 =

1

p2
(δµνpαpβ + δαβpµpν) , Rµναβ

5 =
1

p4
pµpνpαpβ
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Explicit computation

I1 =

∫ 1

0

dτ

∫ 1

0

dσ (•∆• + ∆gh)|τ (•∆• + ∆gh)|σ e−2Tp2∆0

I2 =

∫ 1

0

dτ

∫ 1

0

dσ (•∆•2 −∆2
gh) e

−2Tp2∆0

I3 =

∫ 1

0

dτ

∫ 1

0

dσ •∆ •∆•∆• e−2Tp2∆0

I4 =

∫ 1

0

dτ

∫ 1

0

dσ (•∆• + ∆gh)|τ (∆•)2 e−2Tp2∆0

I5 =

∫ 1

0

dτ

∫ 1

0

dσ (•∆)2 (∆•)2 e−2Tp2∆0
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Explicit computation

Use (WL) dimensional regularization when necessary
Translation invariance can be used to fix σ = 0

I1 =

∫ 1

0

dτ e−Tp
2(τ−τ2)

I2 =
1

4
Tp2 − 2 + I1 I3 =

1

8
− 1

2Tp2
(1− I1)

I4 =
1

2Tp2
(1− I1) I5 =

1

8Tp2
− 3

4T 2p4
(1− I1)
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Explicit computation

Proper time integral can be carried out at complex D

(4π)
D
2 Γ(p,−p) = −1

8
Γ

(
− D

2

)[
(m2)

D
2 (R1 −R2)

+
(

(P 2)
D
2 − (m2)

D
2

)
(S1 + S2)

]

− 1

32
Γ

(
1− D

2

)
p2(m2)

D
2
−1S2

where

(P 2)a =

∫ 1

0

dτ (m2 + p2(τ − τ 2))a , Si transverse
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Explicit computation

Additional term for the case ξ̄ 6= 0 (i.e. ξ 6= 1
4
)

(4π)
D
2 ∆Γ(p,−p) = − ξ̄

8
Γ

(
1− D

2

)
p2

[
(m2)

D
2
−1(2S1 + S2)

− 4(P 2)
D
2
−1S1

]

− ξ̄2

2
Γ

(
2− D

2

)
p4(P 2)

D
2
−2S1

Worldline Path Integral Formalismnew results and applications – p.19/48



Explicit computation

Additional term for the case ξ̄ 6= 0 (i.e. ξ 6= 1
4
)

(4π)
D
2 ∆Γ(p,−p) = − ξ̄

8
Γ

(
1− D

2

)
p2

[
(m2)

D
2
−1(2S1 + S2)

− 4(P 2)
D
2
−1S1

]

− ξ̄2

2
Γ

(
2− D

2

)
p4(P 2)

D
2
−2S1

Ward Identity from general coordinate invariance

∇(x)
µ

1√
g(x)

δΓ[g]

δgµν(x)
= 0

√
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Extensions

Effective action for spin 1/2 coupled to gravity

Obtained by considering N=1 supersymmetric extension
of previous path integral.

The supersymmetric partners ψµ = eµa ψ
a of the

coordinates xµ generate the gamma matrices. One can
use either ψa or ψµ.

Using ψµ there is no need of introducing the vielbein eµa:
one can work directly with the metric gµν .

Dimensional regularization can be extended to this model
as well: DR is a supersymmetric regularization.
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Extensions

Path integral with ψµ has additional bosonic ghosts αµ

Γ[gµν ] =
1

2

∫ ∞

0

dT

T

∮

PBC

DxDaDbDc

∮

ABC

DψDα e−S

with

S =

∫ 1

0

dτ
1

4T

[
gµν(x)(ẋµẋν + aµaν + bµcν)

+ gµν(x)(ψµψ̇ν + αµαν)− ∂µgνλ(x)ψµψν ẋλ

]
+ Tm2

Linear in gµν (only vertices with a single graviton
emission)!
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Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, ’05)

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint

Can introduce a Chern Simons coupling q
∫ 1

0
dτa

It projects-in p−forms, with p = D
2
− q − 1

D = 4, q = 0 ⇒ p = 1 vector field

Coupling to ext gravity
√

Massive spin 1 by KK reduction

Worldline Path Integral Formalismnew results and applications – p.22/48



Higher spin fields

Obtained by considering N>2 locally supersymmetric
extension of previous models
SO(N) spinning particle models

SO(N) gauge symmetry –> new constraints
Bargmann-Wigner EoM’s

In 4D projects-in a spin-N
2

field
N = 4 in 4D→ graviton
N = 3 in 4D→ gravitino

In generic D, massless rep.’s of the conformal group
SO(D, 2) (Siegel)
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Higher spin fields

Starting point

S[X] =

∫
dt

(
pµẋ

µ +
1

2
ψi,µψ̇

i,µ − 1

2
δµνpµpν

)

Symmetry algebra

H =
1

2
δµνpµpν Qi = p · ψi Jij = ψi · ψj

SO(N) generators

It can be gauged: add gauge fields G = (e, χi, aij)

L = pµẋ
µ +

1

2
ψi,µψ̇

i,µ − e

2
δµνpµpν − χi p · ψi − aij ψi · ψj
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Higher spin fields

Canonical qzn (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)

[ψi,µ, ψ
j,ν ] = δi

jδµ
ν set of N Clifford albegras

wave function is a multispinor Ψα1···αN (x)

Hamiltonian constraint→ K-G equation

SUSY constraints→ N Dirac eqn.’s ∂αi
α̃iΨ...α̃i...(x) = 0
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wave function is a multispinor Ψα1···αN (x)

Hamiltonian constraint→ K-G equation

SUSY constraints→ N Dirac eqn.’s ∂αi
α̃iΨ...α̃i...(x) = 0

vector constraints select propagating DoF’s

ψi,µψj
µ ≈ 0 =⇒ (γµ)αi

α̃i (γµ)αj
α̃jΨ...α̃i...α̃j ...(x) = 0
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Higher spin fields

Canonical qzn (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)

[ψi,µ, ψ
j,ν ] = δi

jδµ
ν set of N Clifford albegras

wave function is a multispinor Ψα1···αN (x)

Hamiltonian constraint→ K-G equation

SUSY constraints→ N Dirac eqn.’s ∂αi
α̃iΨ...α̃i...(x) = 0

vector constraints select propagating DoF’s
(
γTµΓγµ

)αiαj Ψ...αi...αj ...(x) = 0 , Γ ∈ {C,Cγ∗, Cγµ, ...}

γTµΓ(n)γµ ∼ (n− D

2
)Γ(n) ⇒ n =

D

2
acts trivially
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Higher spin fields

E.g. D = 4, N = 3, trivial constraint γTµ Γ(2)γµ

Ψα1α2α = (Γµν)α1α2
χµν α

⇒ χµν α = −χνµα

non-trivial constraints




∂µχµν α = ∂[σχµν]α = 0

∂α
α̃χµν α̃ = (γµ)α

α̃χµν α̃ = 0
=⇒





χµν α = ∂µφν α − ∂νφµα
∂µφ/− ∂/φµ = 0

Rarita− Schwinger eq. ⇒ spin−3

2
field

Similarly D = 4, N = 4⇒ spin-2 field
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Higher spin fields

Goal: path integral qzn.

Start from free fields

Configuration space action

S[X,G] =

∫ 1

0
dτ

[
1

2
e−1(ẋµ−χiψµi )2 +

1

2
ψµi (δij∂τ −aij)ψjµ

]

Need to find the correct integration measure

Gauge transf. on sugra multiplet

δe = ξ̇ + 2χiεi δχi = ε̇i − aijεj + αijχj

δaij = α̇ij + αimamj + αjmaim
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e−1(ẋµ−χiψµi )2 +

1

2
ψµi (δij∂τ −aij)ψjµ

]

Need to find the correct integration measure

Gauge transf. on sugra multiplet

δe = ξ̇ + 2χiεi δχi = ε̇i − aijεj + αijχj

δaij = α̇ij + αimamj + αjmaim

Worldline Path Integral Formalismnew results and applications – p.27/48



Higher spin fields

Goal: path integral qzn.

Start from free fields

Configuration space action

S[X,G] =

∫ 1

0
dτ

[
1

2
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Higher spin fields

One-loop partition function on S1

Z ∼
∫

T 1

DXDG
Vol (Gauge)

e−S[X,G]

PBC (ABC) for bosonic (fermionic) fields

gauge fix local symmetries

e = β , modulus of the circle

χi = 0 , no zero−mode for εi b/c ABC

aij = âij(θk) , k = 1, ..., r = rank of SO(N)

Obtain the correct measure via FP trick
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Higher spin fields

Z = −1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)
D
2

KN

[ r∏

k=1

∫ 2π

0

dθk
2π

]

×
(

Det (∂τ − âvec)ABC
)D

2
−1

Det′ (∂τ − âadj)PBC
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Higher spin fields

Z = −1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)
D
2

KN

[ r∏

k=1

∫ 2π

0

dθk
2π

]

×
(

Det (∂τ − âvec)ABC
)D

2
−1

︸ ︷︷ ︸
Det′ (∂τ − âadj)PBC︸ ︷︷ ︸

one-loop fermionic determinant + susy ghosts

gauge symmetry ghosts
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Higher spin fields

Z = −1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)
D
2

KN

[ r∏

k=1

∫ 2π

0

dθk
2π

]

×
(

Det (∂τ − âvec)ABC
)D

2
−1

Det′ (∂τ − âadj)PBC

Dof(D,N) = KN

[ r∏

k=1

∫ 2π

0

dθk
2π

]

×
(

Det (∂τ − âvec)ABC
)D

2
−1

Det′ (∂τ − âadj)PBC

Computes the # of degrees of freedom. Dof(D, 0) = 1
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Higher spin fields

N = 2r, r = rank of the group

âij =

0
BBBBBBBBBBBBB@

0 θ1 0 0 . 0 0

−θ1 0 0 0 . 0 0

0 0 0 θ2 . 0 0

0 0 −θ2 0 . 0 0

. . . . . . .

0 0 0 0 . 0 θr

0 0 0 0 . −θr 0

1
CCCCCCCCCCCCCA

θ’s are angles: large gauge transf.’s⇒ θi ∼= θi + 2πn
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−θ1 0 0 0 . 0 0

0 0 0 θ2 . 0 0

0 0 −θ2 0 . 0 0

. . . . . . .
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1
CCCCCCCCCCCCCA

θ’s are angles: large gauge transf.’s⇒ θi ∼= θi + 2πn
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Higher spin fields

1

K2r
=

2rr!

2
, # copies of fundamental domain

different regions identified up to constant gauge transf.’s
r!, permutation of r θ’s
2r, Z2-symmetry on O(N)
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Higher spin fields

1

K2r
=

2rr!

2
, # copies of fundamental domain

different regions identified up to constant gauge transf.’s
r!, permutation of r θ’s
2r, Z2-symmetry on O(N)

Det (∂τ − âvec)PBC =
r∏

k=1

Det (∂τ + iθr) Det (∂τ − iθr)

=
r∏

k=1

(
2 cos

θk
2

)2
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Higher spin fields

Det′ (∂τ − âadj)PBC =

r∏

k=1

Det′ (∂τ )

×
∏

k<l

Det (∂τ + i(θk + θl)) Det (∂τ − i(θk + θl))

×
∏

k<l

Det (∂τ + i(θk − θl)) Det (∂τ − i(θk − θl))

=
∏

k<l

(
2 sin

θk + θl
2

)2(
2 sin

θk − θl
2

)2
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Higher spin fields

Dof(D,N) =
2

2rr!

[ r∏

k=1

∫ 2π

0

dθk
2π

(
2 cos

θk
2

)D−2
]

×
∏

k<l

(
2 sin

θk + θl
2

)2(
2 sin

θk − θl
2

)2

=
2

2rr!

r∏

k=1

∫ 2π

0

dθk
2π

(
2 cos

θk
2

)D−2

×
∏

k<l

[(
2 cos

θk
2

)2
−
(

2 cos
θl
2

)2
]2

Dof(2d+ 1, N) = 0

Worldline Path Integral Formalismnew results and applications – p.32/48



Higher spin fields

Change of variables xk = sin2 θk
2

Dof(2d, 2r) =
22(d−1)r+(r−1)(2r−1)

πrr!

×
r∏

k=1

∫ 1

0
dxk x

−1/2
k (1− xk)d−3/2

∏

k<l

(xl − xk)2
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Higher spin fields

Change of variables xk = sin2 θk
2

Dof(2d, 2r) =
22(d−1)r+(r−1)(2r−1)

πrr!

×
r∏

k=1

∫ 1

0
dxk x

−1/2
k (1− xk)d−3/2

∏

k<l

(xl − xk)2

(Van der Monde determinant)2: matrix models
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Higher spin fields

Change of variables xk = sin2 θk
2

Dof(2d, 2r) =
22(d−1)r+(r−1)(2r−1)

πrr!

×
r∏

k=1

∫ 1

0
dxk x

−1/2
k (1− xk)d−3/2

∏

k<l

(xl − xk)2

∆2(xi) = det




p0(x1) · · · pr−1(x1)

p0(x2) · · · pr−1(x2)

: :· ·
p0(xr) · · · pr−1(xr)







p0(x1) · · · p0(xr)

p1(x1) · · · p1(xr)

: :· ·
pr−1(x1) · · · pr−1(xr)




= detK(xi, xj) , pk(x) = xk + ak−1x
k−1 + · · · , ∀ai
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Higher spin fields

Change of variables xk = sin2 θk
2

Dof(2d, 2r) =
22(d−1)r+(r−1)(2r−1)

πrr!

×
r∏

k=1

∫ 1

0
dxk x

−1/2
k (1− xk)d−3/2

∏

k<l

(xl − xk)2

K(xi, xj) =
r−1∑

k=0

pk(xi)pk(xj)

∫ 1

0
dx w(x)pn(x)pm(x) = hn δnm

w(x) = x−
1
2 (1− x)d−

3
2 Jacobi polynomials
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Higher spin fields

Change of variables xk = sin2 θk
2

Dof(2d, 2r) =
22(d−1)r+(r−1)(2r−1)

πrr!

×
r∏

k=1

∫ 1

0
dxk x

−1/2
k (1− xk)d−3/2

∏

k<l

(xl − xk)2

1

r!

∫ 1

0
dxr w(xr) · · ·

∫ 1

0
dx1 w(x1) ∆2(xi) =

r−1∏

k=0

hk
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Final results

Even dimension

Dof(2d, 2r) = 2r−1 (2d− 2)!

[(d− 1)!]2

r−1∏

k=1

k (2k − 1)! (2k + 2d− 3)!

(2k + d− 2)! (2k + d− 1)!
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Final results

Even dimension

Dof(2d, 2r) = 2r−1 (2d− 2)!

[(d− 1)!]2

r−1∏

k=1

k (2k − 1)! (2k + 2d− 3)!

(2k + d− 2)! (2k + d− 1)!

Similarly Dof(2d, 2r + 1)
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Final results

Even dimension

Dof(2d, 2r) = 2r−1 (2d− 2)!

[(d− 1)!]2

r−1∏

k=1

k (2k − 1)! (2k + 2d− 3)!

(2k + d− 2)! (2k + d− 1)!

Similarly Dof(2d, 2r + 1)

Few interesting special cases

Dof(2, N) = 1, ∀N √

Dof(4, N) = 2, ∀N √
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Final results

Obtained correct path integral measure for SO(N)
spinning ptc, for generic N and D

In 4d, higher spin fields propagate into the loop

Couple it to maximally symmetric backgrounds

More general couplings?
covariantization for N > 2 problematic for a generic
background; algebra doesn’t seem to close

More general symmetry group (Hallowell, Waldron ’07)
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Final results

Obtained correct path integral measure for SO(N)
spinning ptc, for generic N and D

In 4d, higher spin fields propagate into the loop

Couple it to maximally symmetric backgrounds

More general couplings?
covariantization for N > 2 problematic for a generic
background; algebra doesn’t seem to close

More general symmetry group (Hallowell, Waldron ’07)
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Manifolds with boundary

Given the differential operator

Hx = −1

2
∇2
x + V (x)

Heat kernel is the solution of the heat equation
(Schroedinger eq. in euclidean time)

− ∂

∂β
K(x, y;β) = HxK(x, y;β)

with b.c.′s K(x, y; 0) = δD(x− y)

it can be perturbatively solved via DeWitt ansatz
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Given the differential operator

Hx = −1
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∇2
x + V (x)

Heat kernel is the solution of the heat equation
(Schroedinger eq. in euclidean time)

− ∂
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Manifolds with boundary

• DeWitt ansatz

K(x, y;β) = 1

(2πβ)
D
2
e−S0[x̄] Ω(x, y;β),

Ω(x, y;β) ∼
∞∑

n=0

an(x, y)βn
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Manifolds with boundary

• DeWitt ansatz

K(x, y;β) = 1

(2πβ)
D
2
e−S0[x̄] Ω(x, y;β),

Ω(x, y;β) ∼
∞∑

n=0

an(x, y)βn

Feynman measure
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• DeWitt ansatz

K(x, y;β) = 1

(2πβ)
D
2
e−S0[x̄] Ω(x, y;β),

Ω(x, y;β) ∼
∞∑

n=0

an(x, y)βn

Feynman measure

Action for the classical configuration x̄(τ)
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Manifolds with boundary

• DeWitt ansatz

K(x, y;β) = 1

(2πβ)
D
2
e−S0[x̄] Ω(x, y;β),

Ω(x, y;β) ∼
∞∑

n=0

an(x, y)βn

Feynman measure

Action for the classical configuration x̄(τ)

Seeley-DeWitt coefficients
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Manifolds with boundary

• DeWitt ansatz

K(x, y;β) = 1

(2πβ)
D
2
e−S0[x̄] Ω(x, y;β),

Ω(x, y;β) ∼
∞∑

n=0

an(x, y)βn

Feynman measure

Action for the classical configuration x̄(τ)

Seeley-DeWitt coefficients

It’s a short-time perturbative expansion

Worldline Path Integral Formalismnew results and applications – p.37/48



Manifolds with boundary

• Path integral representation of the Heat kernel

K(x, y;β) =

∫ x(β)=y

x(0)=x

Dxe−S[x] = 〈y|e−βĤ |x〉
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Manifolds with boundary

• Path integral representation of the Heat kernel

K(x, y;β) =

∫ x(β)=y

x(0)=x

Dxe−S[x] = 〈y|e−βĤ |x〉

S[x] = S0[x] + Sint[x]

S0[x] =
1

β

∫ 1

0

dτ
1

2
δµνẋ

µẋν , Sint[x] =
1

β

∫ 1

0

dτ β2V (x)
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Manifolds with boundary

• Path integral representation of the Heat kernel
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∫ x(β)=y
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1

β

∫ 1

0

dτ
1

2
δµνẋ

µẋν , Sint[x] =
1

β

∫ 1

0

dτ β2V (x)

Flat target-space metric
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Manifolds with boundary

• Path integral representation of the Heat kernel

K(x, y;β) =

∫ x(β)=y

x(0)=x

Dxe−S[x] = 〈y|e−βĤ |x〉

S[x] = S0[x] + Sint[x]

S0[x] =
1

β

∫ 1

0

dτ
1

2
δµνẋ

µẋν , Sint[x] =
1

β

∫ 1

0

dτ β2V (x)

Flat target-space metric

Path integral for generic V not known

Treat V as perturbation→ vertices from Taylor expanding
about initial/final point
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β
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Manifolds with boundary

• Boundaryless flat space
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Manifolds with boundary

• Boundaryless flat space

Split x(τ) = x̄(τ) + q(τ)
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Manifolds with boundary

• Boundaryless flat space

Split x(τ) = x̄(τ) + q(τ)

Measure

Dx =
∏

0<τ<1

dDq(τ), qµ(0) = qµ(1) = 0 qµ(τ) ∈ RD ∀τ
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Manifolds with boundary

• Boundaryless flat space

Split x(τ) = x̄(τ) + q(τ)

Measure

Dx =
∏

0<τ<1

dDq(τ), qµ(0) = qµ(1) = 0 qµ(τ) ∈ RD ∀τ

Pictorially

q(  )τ

q(1)

q(0)
0

0
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Manifolds with boundary

• Boundaryless flat space

Split x(τ) = x̄(τ) + q(τ)

Measure

Dx =
∏

0<τ<1

dDq(τ), qµ(0) = qµ(1) = 0 qµ(τ) ∈ RD ∀τ

1
(2πβ)D/2

−→ Semiclassical (one-loop) contribution
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Manifolds with boundary

• Boundaryless flat space

Split x(τ) = x̄(τ) + q(τ)

Measure

Dx =
∏

0<τ<1

dDq(τ), qµ(0) = qµ(1) = 0 qµ(τ) ∈ RD ∀τ

1
(2πβ)D/2

−→ Semiclassical (one-loop) contribution

an(x, y;β) −→ (n+ 1)−loop contribution in the worldline
path-integral via Wick’s theorem
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Manifolds with boundary

• Flat 1D space with boundary: particle on the half line
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• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}

Worldline Path Integral Formalismnew results and applications – p.40/48



Manifolds with boundary

• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}
Dirichlet - Neumann b.c.’s
K(x, x2;β) = 0, ∂nK(x, x2;β) = 0 for x ∈ ∂M
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Manifolds with boundary

• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}
Dirichlet - Neumann b.c.’s
K(x, x2;β) = 0, ∂nK(x, x2;β) = 0 for x ∈ ∂M
Two classical paths (straight lines) of S0 now

x1

x2

x ( )τ1
−

x ( )τ2
−

x(0) 

x(1)

0
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Manifolds with boundary

• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}
Dirichlet - Neumann b.c.’s
K(x, x2;β) = 0, ∂nK(x, x2;β) = 0 for x ∈ ∂M
Write the ansatz as McAvity-Osborn ’91

K(x1, x2;β) =
1

(2πβ)
1
2

(
e−S0[x̄1] Ω1(x1, x2;β)

+γ e−S0[x̄2] Ω2(x1, x2;β)
)
, γ = −1/+1
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Manifolds with boundary

• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}
Dirichlet - Neumann b.c.’s
K(x, x2;β) = 0, ∂nK(x, x2;β) = 0 for x ∈ ∂M
Write the ansatz as McAvity-Osborn ’91

K(x1, x2;β) =
1

(2πβ)
1
2

(
e−S0[x̄1] Ω1(x1, x2;β)

+γ e−S0[x̄2] Ω2(x1, x2;β)
)
, γ = −1/+1

How to implement it in the path integral?
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Manifolds with boundary

• Flat 1D space with boundary: particle on the half line

M = R+ ∂M = {0}
Dirichlet - Neumann b.c.’s
K(x, x2;β) = 0, ∂nK(x, x2;β) = 0 for x ∈ ∂M
Write the ansatz as McAvity-Osborn ’91

K(x1, x2;β) =
1

(2πβ)
1
2

(
e−S0[x̄1] Ω1(x1, x2;β)

+γ e−S0[x̄2] Ω2(x1, x2;β)
)
, γ = −1/+1

How to implement it in the path integral? i.e. How to
implement the constraint x(τ) ≥ 0 in the path integral?
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Manifolds with boundary

Two classes of paths

1. paths bounded to the interior of M

2. paths that hit the boundary

Image charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary
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Manifolds with boundary

Two classes of paths

1. paths bounded to the interior of M

2. paths that hit the boundary

Image charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

x1

x2x2
~

x(0) 

x(1)

0
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Manifolds with boundary

Two classes of paths

1. paths bounded to the interior of M

2. paths that hit the boundary

Image charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

1. Extend the potential to the whole R as an even function

V (x(τ)) −→ Ṽ (x(τ)) = θ(x(τ))V (x(τ)) + θ(−x(τ))V (−x(τ))
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Manifolds with boundary

Two classes of paths

1. paths bounded to the interior of M

2. paths that hit the boundary

Image charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

1. Extend the potential to the whole R as an even function
V (x(τ)) −→ Ṽ (x(τ)) = θ(x(τ))V (x(τ)) + θ(−x(τ))V (−x(τ))

2. For Dirichlet/Neumann bc’s write the kernel as

KM(x1, x2;β) = KR(x1, x2;β)∓KR(x1,−x2;β) x1,2 ∈M
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Manifolds with boundary

For Dbc the heuristics is quite clear: the second term
KR(x1,−x2;β) =

∑
paths that hit the boundary
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Manifolds with boundary

For Dbc the heuristics is quite clear: the second term
KR(x1,−x2;β) =

∑
paths that hit the boundary

⇒ KM(x1, x2;β) =
∑

paths that do NOT hit the boundary

KM(x1, 0;β) = 0
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Manifolds with boundary

For Dbc the heuristics is quite clear: the second term
KR(x1,−x2;β) =

∑
paths that hit the boundary

⇒ KM(x1, x2;β) =
∑

paths that do NOT hit the boundary

KM(x1, 0;β) = 0

For Nbc: by direct inspection

∂2KM(x1, 0;β) = 0
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Manifolds with boundary

For Dbc the heuristics is quite clear: the second term
KR(x1,−x2;β) =

∑
paths that hit the boundary

⇒ KM(x1, x2;β) =
∑

paths that do NOT hit the boundary

KM(x1, 0;β) = 0

For Nbc: by direct inspection

∂2KM(x1, 0;β) = 0

Left w/ computation of whole-line path integrals w/ Ṽ
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Manifolds with boundary

For Dbc the heuristics is quite clear: the second term
KR(x1,−x2;β) =

∑
paths that hit the boundary

⇒ KM(x1, x2;β) =
∑

paths that do NOT hit the boundary

KM(x1, 0;β) = 0

For Nbc: by direct inspection

∂2KM(x1, 0;β) = 0

Left w/ computation of whole-line path integrals w/ Ṽ

Not yet straightforward: naive perturbation theory w/
θ(x(τ)) is problematic
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Manifolds with boundary

Task: computation of
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Manifolds with boundary

Task: computation of

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0

Dq e−S2[q]e−β
R
dτ Ṽ (xcl(τ)+q(τ))
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Manifolds with boundary

Task: computation of

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0

Dq e−S2[q]e−β
R
dτ Ṽ (xcl(τ)+q(τ))

= e−
1

2β
(x2−x1)2

∫ q(1)=0

q(0)=0

Dq e−S2[q]

(
1− β

∫ 1

0

dτ Ṽ (xcl(τ) + q(τ))

+
β2

2!

∫ 1

0

dτ1

∫ 1

0

dτ2 Ṽ (xcl(τ1) + q(τ1))Ṽ (xcl(τ2) + q(τ2)) + · · ·
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Manifolds with boundary

Task: computation of

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0

Dq e−S2[q]e−β
R
dτ Ṽ (xcl(τ)+q(τ))

Single−V insertion: extract the worldline integral out
∫ 1

0

dσ

∫ q(1)=0

q(0)=0

Dq e−S2[q]

[
θ(xcl(σ) + q(σ))V (xcl(σ) + q(σ))

+θ(−xcl(σ)− q(σ))V (−xcl(σ)− q(σ))

]
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Manifolds with boundary

Task: computation of

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0

Dq e−S2[q]e−β
R
dτ Ṽ (xcl(τ)+q(τ))

Single−V insertion: extract the worldline integral out
∫ 1

0

dσ

∫ q(1)=0

q(0)=0

Dq e−S2[q]

[
θ(xcl(σ) + q(σ))V (xcl(σ) + q(σ))

+θ(−xcl(σ)− q(σ))V (−xcl(σ)− q(σ))

]

For fixed σ constraints act only on q(σ)
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Manifolds with boundary

Task: computation of

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0

Dq e−S2[q]e−β
R
dτ Ṽ (xcl(τ)+q(τ))

Single−V insertion: extract the worldline integral out
∫ 1

0

dσ

∫ q(1)=0

q(0)=0

Dq e−S2[q]

[
θ(xcl(σ) + q(σ))V (xcl(σ) + q(σ))

+θ(−xcl(σ)− q(σ))V (−xcl(σ)− q(σ))

]

q(σ) ≥ −xcl(σ)
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Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Worldline Path Integral Formalismnew results and applications – p.44/48



Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Split the integral in two pieces [0, σ], [σ, 1]; then, for fixed σ
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Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Split the integral in two pieces [0, σ], [σ, 1]; then, for fixed σ
∫ q(1)=0

q(0)=0

Dq e−S2[q]θ(xcl(σ) + q(σ))V (xcl(σ) + q(σ))

=

∫ ∞

−xcl(σ)

dy

∫ q(σ)=y

q(0)=0

Dq e−S2[q]

∫ q(1)=0

q(σ)=y

Dq e−S2[q] V (xcl(σ) + y)
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Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Split the integral in two pieces [0, σ], [σ, 1]; then, for fixed σ
∫ q(1)=0

q(0)=0

Dq e−S2[q]θ(xcl(σ) + q(σ))V (xcl(σ) + q(σ))

=

∫ ∞

−xcl(σ)

dy

∫ q(σ)=y

q(0)=0

Dq e−S2[q]

∫ q(1)=0

q(σ)=y

Dq e−S2[q] V (xcl(σ) + y)
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Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Split the integral in two pieces [0, σ], [σ, 1]; then, for fixed σ
∫ ∞

−xcl(σ)

dy
1

2πβ
√
σ(1− σ)

e−
1

2βσ(1−σ)
y2

V (xcl(σ) + y)
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Manifolds with boundary

Pictorially

cl σ
q(0)

q(1)

σq(  )

0

0

τ

−x  (  )

q(  )

Split the integral in two pieces [0, σ], [σ, 1]; then, for fixed σ
∫ ∞

−xcl(σ)

dy
1

2πβ
√
σ(1− σ)

e−
1

2βσ(1−σ)
y2

V (xcl(σ) + y)

Similarly
∫ −xcl(σ)

−∞
dy

1

2πβ
√
σ(1− σ)

e−
1

2βσ(1−σ)
y2

V (−xcl(σ)− y)
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Results

Single-V whole-line heat kernel

〈x2, β|x1, 0〉R =
e−

1
2β

(x2−x1)2

(2πβ)1/2

(
1

−
∫ 1

0

dσ lσ

∫ +∞

−∞
dy e−

y2

2βσ(1−σ) V (xcl(σ) + y)

+

∫ 1

0

dσ lσ

∫ −xcl(σ)

−∞
dy e−

y2

2βσ(1−σ)

[
V (xcl(σ) + y)− V (−xcl(σ)− y)

])
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Results

Even potential V (⇒ Ṽ = V ): third line vanishes

〈x2, β|x1, 0〉R+
=

e
− 1

2β
(x2−x1)2

(2πβ)1/2

"
1− βV̄ − β2

2 · 3!
V̄ ′′
„

1− (x2 − x1)2

β

«
+O(β3)

#

+
e
− 1

2β
(x2+x1)2

(2πβ)1/2

"
1− βV̄ − β2

2 · 3!
V̄ ′′
„

1− (x2 + x1)2

β

«
+O(β3)

#
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1− βV̄ − β2

2 · 3!
V̄ ′′
„

1− (x2 + x1)2

β

«
+O(β3)

#

McAvity-Osborn ansatz, w/ Ω′is integer power series in β
and |x2 − x1|

√
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+
e
− 1

2β
(x2+x1)2

(2πβ)1/2

"
1− βV̄ − β2

2 · 3!
V̄ ′′
„

1− (x2 + x1)2

β

«
+O(β3)

#

McAvity-Osborn ansatz, w/ Ω′is integer power series in β
and |x2 − x1|

√

Result coincides w/ conventional expansion (Wick’s
theorem): no θ’s involved

√
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Results

Generic potential: additional boundary contributions

Can obtain the perturbative expansion (in β) of the
partition function TrR+e

−βĤ

It’s the needed object in anomaly computations and
worldline formalism
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Results

Generic potential: additional boundary contributions
Can obtain the perturbative expansion (in β) of the
partition function TrR+e

−βĤ

TrR+
e−βĤ =

Z ∞

0
dx 〈x, β|x, 0〉R+

=
1

(2πβ)1/2

"Z ∞

0
dx

 
1− βV (x) + β2

„
1

2
V 2(x)− 1

12
V ′′(x)

«!

∓
r
πβ

8

 
1− βV (0) + β2

„
1

2
V 2(0)− 1

8
V ′′(0)

«!

− β2

6
(2+,−1−)V ′(0) +O(β3)

#

It’s the needed object in anomaly computations and
worldline formalism
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Outlook

Developed worldline path integral method in (flat)
manifolds with boundary

Carried on expansion up to order β
7
2

Higher-order increasingly difficult

Simplify the implementation of the constraints into the
path integral

Mixed (Robin) boundary conditions: need to add
δ−function potential

Generalization to curved spaces and fields with spin
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