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Mainly based on 0205182, 0211134, 0312064, 0503155, 0510010, 0612236, 0701055

Bastianelli, Benincasa, OC, Giombi, Latini, Pisani, Zirotti
1. Introduction

2. Worldline formalism in flat space
# the case of scalar QED
— 1D path integral in flat space
3. Worldline formalism in curved space

o 1-loop effective action for a scalar field
— 1D path integral in curved space

o UV regularization of the path integral
# |R aspects: zero modes on the circle S!
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. Worldline formalism with local SUSY’s

Outline of the talk

» Spinning particle w/ N=1 = spin-3 field

# Spinning particle w/ N=2 = spin-1 field
— coupling to gravity OK

. SO(N)

» One

Spinning particle w/ N>2 = spin-4- field

-loop gzn in flat space

# Dof’s from orthogonal polynomials method VD, N

. Manifo

o Met

. Outloo

ds with boundary
nod of the “image charge”
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Introduction

Worldline method
QFT results from QM path integrals

= No need to compute momentum integrals
and Dirac traces

# Alternative way to compute correlation functions
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Introduction

Worldline method
QFT results from QM path integrals

= No need to compute momentum integrals
and Dirac traces

# Alternative way to compute correlation functions

o Effective actions of quantum fields coupled to external
fields (gravity, vector), chiral and conformal anomalies
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Worldline formalism in flat space

o N

o Case of scalar contribution to QED at 1-loop
# Classical action:

Si6.6%,4) = [ P (10, + ieA,)of + m?lof )
#® The corresponding 1-loop effective action is

/D¢D¢* —S10:0% Al = Det ™1 (= VE 4+ m?)
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Worldline formalism in flat space

o N

® Thus

T'[A] = Tr log (—=V4 +m?)

_ /OO ar Ty o~ (- Vat+m*)T
0

T

/OO d1’ / —fOT dT(%a’32+ieAu(x)x'“+m2)
= — —| | Dx e
o I PBC

—

guantum mechanical path integrals
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Worldline formalism in flat space

® Expand in powers of 4, (sum of plane waves)

N
_ . ip@--x
A, = g Eip €
i=1
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® Expand in powers of 4, (sum of plane waves)

N
Ay = Z Eipe’
1=1
# get averages of “photon vertex operators”

<51,u1 P ()P ey WN(TN)@WN'“”(TN)>
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Worldline formalism in flat space

o N

® Expand in powers of 4, (sum of plane waves)

N
Ay = Z Eipe’
1=1
# get averages of “photon vertex operators”

<51,u1 P ()P ey WN(TN)@WN'“”(TN)>

® and obtain the “Bern-Kosower master formula”
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Bern-Kosower master formula

o N

€3, P3
€2, P2
F[p1,513---5pN75N] — : €1, D1
EN, PN
EN-1,PN-1
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Bern-Kosower master formula

| -
Lpi,ei;...;pn,en] = —(—ie)™ (2m) 76" ( Zm)

1=1
1 1 ..
GXPZ [5 Aijpi-p; — 1 Aei-pj+ 5 Ajjei - 53}
ij=1 line;

o |

Worldline Path Integral Formalismnew results and applications — p.8/48



Bern-Kosower master formula

o N

lin £
integral over the modulus of the circle

Lone-loop determinant for the free path integral J
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#® A real scalar field coupled to gravity
1
Siowg) = [ dP/G (6" 0,006 + i + ER?)

» produces an effective action (¢7"9 = [ D¢ e=5199))

1
I'lg] = §Tr log(—V? +m?* + £R) =
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Worldline formalism in curved space

o N

#® which can be represented as

1 [ dT "
I'lg] = ——/ — | Dz e
2 0 T S1

with
S|zt = /01 dT (ﬁgw/(%)iﬂiy +T(m? + §R(5’3)))

# 1d non-linear sigma model
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1
[lg] = §Tr log(—V? +m? + ¢R)

can be obtained directly from 15t gzn.

# start from the relativistic point-particle action
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Worldline formalism in curved space

o N

® The effective action

1
[lg] = §Tr log(—V? +m? + ¢R)

can be obtained directly from 15t gzn.

# start from the relativistic point-particle action

Sle, x| = /0 dT%[e_lgW(x):t“ab” +e(m* 4 ER(x))]

#® gauge fix the diffeomorphisms e = 2T

# divide out the length of the circle
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Worldline formalism in curved space

f 1. UV regularization of the non-linear ¢ model T
3 regularization schemes have been studied

® Mode Regularization (Bastianelli, OC, Schalm, van Niuewenhuizen)
® Time SIiCing (de Boer, Peeters, Skenderis, van Niuewenhuizen)

® Dimensional Regularization (Bastianelli, OC, van Nieuwenhuizen)
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Worldline formalism in curved space

o N

1. UV regularization of the non-linear ¢ model
3 regularization schemes have been studied

® Mode Regularization (Bastianelli, OC, Schalm, van Niuewenhuizen)
® Time SIiCing (de Boer, Peeters, Skenderis, van Niuewenhuizen)

® Dimensional Regularization (Bastianelli, OC, van Nieuwenhuizen)
DR allows for covariant counterterms

h
VC’T — —gR

2. Factorization of zero modes
® non-covariant total derivatives
L ® treated with BRST methods J
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Effective action from DR worldline

o N

1 [>dT
I'lg] = ——/ d—/DxDanDc e
2 ), T

with

1 _

1
S = / dr (ng(:i:”j:” + ata” + bc”) + T(m?* + §R)>
0

where ¢ = ¢ —  includes the DR counterterm.
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Effective action from DR worldline

o N

1 [>dT
I'lg] = ——/ d—/DxDanDc e
2 ), T

with

1 1
> = / i (@w(w +ata” + b'e”) + T(m® + §R>>
0

where ¢ = ¢ —  includes the DR counterterm.

#® Dbosonic ghosts a and fermionic ghosts b, ¢ provide the
non-trivial path integral measure
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Effective action from DR worldline

-

Expand in h,, = g,, — d,.,, substitute the 1" term with

and pick terms linear in ¢ =

N-graviton amplitude in momentum space ') .

e Get quantum mechanical correlators of the form

> \ . 7
~" N

-1 - V1 w1 vi M1 V1\,tP1°X1 ., . (+MN VN MN VN KN VN, IPN TN
<E$1 1" +ajta;t +b7cit)e (T +ay ay F0 en e >

graviton vertex operator graviton vertex operator
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Explicit computation

E.g. Two-graviton amplitude WOM +§Q
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Explicit computation

E.g. Two-graviton amplitude w@»«w +Q

Case { =0 (i.e. £ =1).
Quadratic partin h,,

~ 1 [dT 1
e / _e—sz _ /dDSEO

_ q 2
1 ! 1 TS, v v
’ <§ /odT 7 P (9797 + aa” + 1'¢”)) >

lin €1,€e2

where h,, = eﬁlgeipl'm + 6&2,/)87;]?2'36 T =Ty +Y
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Explicit computation

-

Use Wick contractions and get

R T T /AN
F(219 i10) ) D / 14D € !
! 8 (4m)2 Jo T2

X (riIy + roly 4 2Tp" (1315 + r4dy) + ATp r515)

where r; = e\ R*? efﬁ) and

Ry = §g RyY = ghagvl 4 ghosve

ro 1 UV rvo UV _ 14 (8%
RE" = ];(5“ p'p’ + 6V ptp? + 6"7p"p® + 6P ptp®)

148% 1 UV _ X (8 14 ro 1 UV _
Ry = = ("p™p® + 6*0prp”), R = — prp¥pp”

- ’ ' B
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Explicit computation

do ("D + Agn)|r (A + Agy)|, €774

do (0A02 . Azh) 8—2Tp2A0

do (A + Agy)|, (A%)? 21720
do (0A)2 (A0)2 6—2Tp2A0

|
0 0
|
0 0
1 1 ;
/dT/ do °A°A® A® ¢=2TP" 20
0 0
|
0 0
|
0 0

|
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Use (WL) dimensional regularization when necessary

Explicit computation

Translation invariance can be used to fix o = 0

1
[ tr et
0

1 1 1
“Tp? —2 4] Io = = — 1—1
T + 1y 3= 3 2Tp2( 1)
1 1 3
1—1 I — _ 1—1
2Tp2( 1) T ’Tp2 4T2p4( 1)
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Explicit computation

-

Proper time integral can be carried out at complex D

(4m)E T, = 3 F( - lj) [Wﬁ(& Ry

where

1
(P?)* = / dr (m?* + p*(t — 7%))*, S, transverse
0
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Explicit computation

Additional term for the case £ # 0 (i.e. £ # 1)
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.

Explicit computation

Additional term for the case £ # 0 (i.e. £ # 1)

(477)%Ar(p,—p) — _g I (1 - l;) p’ [(m2)12)_1(231 + 52)

- 4(P2)5151]

2 D D
B %F (2 B 2> p'(P?)7 725,

Ward Identity from general coordinate invariance

oT'g] .

vl 1 _
Y V() 0guw () o
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Extensions

o N

Effective action for spin 1/2 coupled to gravity

#® Obtained by considering N=1 supersymmetric extension
of previous path integral.
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Extensions
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#® Obtained by considering N=1 supersymmetric extension
of previous path integral.

® The supersymmetric partners y* = e#,y* of the
coordinates z* generate the gamma matrices. One can
use either y* or y*.

#® Using ¢* there is no need of introducing the vielbein e#,:
one can work directly with the metric g,,,.
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Extensions

o N

Effective action for spin 1/2 coupled to gravity

#® Obtained by considering N=1 supersymmetric extension
of previous path integral.

® The supersymmetric partners y* = e#,y* of the
coordinates z* generate the gamma matrices. One can
use either y* or y*.

#® Using ¢* there is no need of introducing the vielbein e#,:
one can work directly with the metric g,,,.

#® Dimensional regularization can be extended to this model
as well: DR is a supersymmetric regularization.

o |
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Extensions

# Path integral with * has additional bosonic ghosts a*

> dT
[lg.| == DxDaDbDc
H 2 0

T PBC
with

AT

ABC

1
1
S = / AT — | g (x) (2" 2" + a*a” + bV'c”)
0

+ G () (WW + ara”) —

MgVA( WW

-

Dy Da e™®

Mo Tm?

|

Worldline Path Integral Formalismnew results and applications — p.21/48



Extensions

-

# Path integral with * has additional bosonic ghosts a*

dT
[[guw] = = / DxzDaDbDc ¢ DyDa e
2 0 T PBC ABC
with

1

1

S = / AT — | g (x) (2" 2" + a*a” + bV'c”)
AT

+ G (2) (WY + P a¥) = Bugoa ()P Vit | + Tm?

# Linearin g, (only vertices with a single graviton

L emission)!

Worldline Path Integral Formalismnew results and applications

-

|
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Extensions

o N

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, 05)

#® Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

o |
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-

Extensions

Effective action for spin 1 (Bastianelli, Benincasa, Giombi, 05)

o

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint
Can introduce a Chern Simons coupling ¢ [, dra

It projects-in p—forms, withp = 2 — ¢ — 1

D=4 ¢g=0 = p=1vector field
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Effective action for spin 1 (Bastianelli, Benincasa, Giombi, 05)

o

Extensions

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint
Can introduce a Chern Simons coupling ¢ [, dra

It projects-in p—forms, withp = 2 — ¢ — 1

D=4 ¢g=0 = p=1vector field

Coupling to ext gravity /
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Effective action for spin 1 (Bastianelli, Benincasa, Giombi, 05)

o

Extensions

-

Obtained by considering N=2 locally supersymmetric
extension of previous path integral.

SO(2) gauge symmetry: yields a new constraint
Can introduce a Chern Simons coupling ¢ [, dra

It projects-in p—forms, withp = 2 — ¢ — 1

D=4 ¢g=0 = p=1vector field
Coupling to ext gravity /

Massive spin 1 by KK reduction

|

Worldline Path Integral Formalismnew results and applications — p.22/48



Higher spin fields

o N

#® Obtained by considering N>2 locally supersymmetric
extension of previous models
SO(N) spinning particle models
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#® Obtained by considering N>2 locally supersymmetric
extension of previous models
SO(N) spinning particle models

#® SO(N) gauge symmetry —> new constraints
Bargmann-Wigner EoM’s

» In 4D projects-in a spin-3 field
N = 4in 4D — graviton
N = 3in 4D — gravitino
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Higher spin fields

Obtained by considering N>2 locally supersymmetric
extension of previous models
SO(N) spinning particle models

SO(N) gauge symmetry —> new constraints
Bargmann-Wigner EoM’s

In 4D projects-in a spin-3 field

N = 4in 4D — graviton

N = 3in 4D — gravitino

In generic D, massless rep.’s of the conformal group
SO(D 2) (Siegel)

|
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Higher spin fields

# Starting point

1

SIX] = / it (WM e — 2

)



Higher spin fields
-

# Starting point

S[X] /dt (p,uﬂ?'u + % MW H— ; p,upl/>

#® Symmetry algebra

1

SO(N) generators

o |
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Higher spin fields

-

# Starting point

#® Symmetry algebra
|
H = 55 DuPy

SO(N) generators

# |t can be gauged: add gauge fields G =

.

Qi

=p- Y

. 1 .. € v
L =p,a" + i%,uW’“ — 55” PuDv

1
2 pupy

Jij = i - ;

Worldline Path Integral Formalismnew results and applications

(67 Xis az’j)

—xq;p-wi—aijwi-wj

—p.24/48



Higher spin fields

o N

# Canonical gZN (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)

Vi s W"”] — (5}5[ set of N Clifford albegras

o |
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Higher spin fields

o N

# Canonical gZN (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)
Vi s W”’] — (5%5/ set of N Clifford albegras

# wave function is a multispinor ¥, ... (¥)
# Hamiltonian constraint — K-G equation

® SUSY constraints — N Diracegn’s 9, %WV 4 (z)=0
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Higher spin fields
-

Canonical gZN (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)
Vi s W”’] — (5%5/ set of N Clifford albegras

wave function is a multispinor ¥, ..., ()
Hamiltonian constraint — K-G equation
SUSY constraints — N Dirac eqn’s 0,V 4. (z) =0

vector constraints select propagating DoF’s

Vit & = ("), (V). YV aa, () =0
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Higher spin fields
-

Canonical gZN (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)
Vi s W”’] — (5%5/ set of N Clifford albegras

wave function is a multispinor ¥, ..., ()
Hamiltonian constraint — K-G equation
SUSY constraints — N Dirac eqn’s 0,V 4. (z) =0

vector constraints select propagating DoF’s

(VITA) Wy, (2) =0, T €{C,C, Cvp, ...}
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Higher spin fields
-

# Canonical gZN (Brink, Di Vecchia, Howe, Penati, Pernici, Townsend,...)
Vi s W”’] — (5%5/ set of N Clifford albegras

wave function is a multispinor ¥, ..., ()
Hamiltonian constraint — K-G equation

SUSY constraints — N Dirac eqn’s 0,V 4. (z) =0

© o o o

vector constraints select propagating DoF’s

(VITA) Wy, (2) =0, T €{C,C, Cvp, ...}
D

D
VZF(n)’YH ~ (n — E)F(”) = n = Bl acts trivially

o |
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Higher spin fields

® E.g. D=4, N = 3, trivial constraint 4/ T'2)y#

\IJCHCVQCV — (FHV)a1a2 X,uua

= Xuva = —Xvpa
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Higher spin fields

® E.g. D=4, N = 3, trivial constraint 4/ T'2)y#

\IJOQOZQOZ — (FHV)a1a2 X,W/Oé

= Xuva = —Xvpa

® non-trivial constraints

/

a”?(pwoz — a[ax,uu]?z =0 s Xprva — /,L¢I/Oé — ay¢,uoz
aozax,ul/& — (7“)04 OéX'Ll,I/a{ — O \ aﬂ¢ — @¢M = O
3

Rarita — Schwinger eq. = spin—§ field

|
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Higher spin fields

® E.g. D=4, N = 3, trivial constraint 4/ T'2)y#

\IJOQOZQOZ — (FHV)a1a2 X,W/Oé

= Xuva = —Xvpa

® non-trivial constraints

/

a”?(pwoz — a[ax,uu]?z =0 s Xprva — /,L¢I/Oé — ay¢,uoz
aozax,ul/& — (7“)04 OéX'Ll,I/a{ — O \ aﬂ¢ — @¢M = O
3

Rarita — Schwinger eq. = spin—§ field

o Similarly D =4, N = 4 = spin-2 field

|
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Higher spin fields

o N

Goal: path integral qzn.
o Start from free fields
# Configuration space action

S1X, G| = /1 dr Fel(;i:“— -w“)2+1¢“(5~8 — a;i ). ]
I A 9 Xi¥W; o Wi\t — dij )V

o |
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Higher spin fields

o N

Goal: path integral qzn.
o Start from free fields
# Configuration space action

S1X, G| = /1 dr Fel(;i:“— -w“)2+1¢“(5~8 — a;i ). ]
I A 9 Xi¥W; o Wi\t — dij )V

# Need to find the correct integration measure

o |
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Higher spin fields

o N

Goal: path integral qzn.
o Start from free fields
# Configuration space action

S1X, G| = /1 dr Fel(j;u_ -w“)2+1¢“(5~8 — a;i ). ]
I A 9 Xi¥W; o Wi\t — dij )V

# Need to find the correct integration measure
# Gauge transf. on sugra multiplet

e = f+ 2Xi€ OXi = € — Ajj€5 + QjjX;j

5&@' — dij -+ AimAmy -+ A imim

o |
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Higher spin fields
-

#® One-loop partition function on S;

o DXDG  _gix
1 Vol (Gauge)

PBC (ABC) for bosonic (fermionic) fields

o |
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Higher spin fields
-

#® One-loop partition function on S;

- DXDG  _gix
1 Vol (Gauge)

PBC (ABC) for bosonic (fermionic) fields

#® gauge fix local symmetries

e = (, modulus of the circle

Xi = 0, mnozero—modefore; b/c ABC
Qi; = &Z](é’k), kzl,...,r:rankofSO(N)

o |
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Higher spin fields
-

#® One-loop partition function on S;

- DXDG  _gix
1 Vol (Gauge)

PBC (ABC) for bosonic (fermionic) fields

#® gauge fix local symmetries

e = (, modulus of the circle

xi = 0, mnozero—modefore; b/c ABC
Qi; = &Z](é’k), kzl,...,r:rankofSO(N)

® Obtain the correct measure via FP trick

o |
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Higher spin fields
- -

7= dﬁ/zw? [ /%ka]

D
2

X (Det ((97- — &”Uec)ABC> Det (87' a’ad])pBC
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Higher spin fields
- -

77T /iw/zwz [H/%M]

D
2

X (Det (87- — &vec)ABc> Pet (87' o aad])PBg

N

\ . J/
N

/

one-loop fermionic determinant + susy ghosts

L gauge symmetry ghosts J
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Higher spin fields
- -

S / dﬁ/%ﬁ? [E/o%i—ff]

3—1
X (Det (87' T a”UeC)ABc> Det/ (87' - é\I’CLdj)PBC’

Dof(D,N) = KN[H/%CM’“]

?—1
X (Det (5)7' T &’UGC)AB(;'> Det/ (87' - &adj)PBC

LComputes the # of degrees of freedom. Dof(D,0) =1 J
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Higher spin fields
-

® N =2r,r = rank of the group

[0 6 0 0 0 0\

91 0 0 0 0 0

0 0 0 6 0 0

aij=| 0 0 —63 0 0 0
o 0o 0 0 . 0 6
\ o o 0o o . -6 o )

o |
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Higher spin fields
-

® N =2r,r = rank of the group

[0 6 0 0 0 0\

91 0 0 0 0 0

0 0 0 6 0 0

aij=| 0 0 —63 0 0 0
o 0o 0 0 . 0 6
\ o o o0 o . -6 0 )

#® ('s are angles: large gauge transf's = 6, = 6, + 2mn

o |
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Higher spin fields
f 1 2"r! T

o = , # copies of fundamental domain
Ko, 2

different regions identified up to constant gauge transt.'s
s 7!, permutation of r #’s
e 2", Zs-symmetry on O(N)

o |
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Higher spin fields
f 1 2"r! T

o = ——, # copies of fundamental domain
Ko, 2

different regions identified up to constant gauge transt.'s
s 7!, permutation of r #’s
e 2", Zs-symmetry on O(N)

Det (07 — Gvec) ppe = H Det (0; + 10,) Det (0; — i6;)

= ﬁ (2008 %)2

k=1

o |
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Higher spin fields
- -

Det’ (0r — Gadj) ppe = H Det’ (9;)
k=1
x| [ Det (0- +i(6x + 6:)) Det (8, — (6 + 6,))

x| [ Det (0 +i(6), — 6;)) Det (9 — (6 — 6))

-TI (zsm ‘9’“;9[)2(231]@ ekgel)2
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Higher spin fields
-

Dof(D,N) = 27~2T! lklill/ozﬂcéff (2(;08 (92_7“)172]
X H(ZSinekgel)z(QSinek;HZ)Q

k<l

Sl e3)”
% H [(2(:08 %)2 — (2(:08 %)2]2

Dof(2d+1,N) = 0




Higher spin fields
- y -

k

» Change of variables xj, = sin” =

92(d—1)r+(r—1)(2r—1)
Dof(2d,2r) =

7"l

ropl
X H /0 dxy, :13,;1/2(1 — )43/ H(azl — 1)?
k=1

k<l

o |
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.

Higher spin fields

2 Ok

» Change of variables xj, = sin” =

92(d—1)r+(r—1)(2r—1)

Dof(2d,2r) =

"]

X H/ da:ka:kl/zl—x d3/2

(Van der I\/Ionde determinant)?

k<l

a:l — 73)?

- matrix models

Worldline Path Integral Formalismnew results and application

—p.33/48



Higher spin fields
- .y -

» Change of variables zj, = sin” %

92(d—1)r+(r—1)(2r—1)

Dof(2d,2r) = o
- ! 1/2
X H / dilj‘k w,; / (1 — gjk)d_?’/Q H(xl _ xk)2
k=170 k<l
/ po(CIZl) pr—l(fvl) \ ( po(gjl) pO(iBT) \
A%(z;) = det polwz) -+ Proa(e2) pi(z1) - pi(ar)

\po(.wr) p?“—l-($7">/ \2%«-1-(961) p?“—l-($7">)

L = det K(z;,x), pr(x)= ok ak_lxk_l SR VCMJ
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Higher spin fields
y N

» Change of variables zj, = sin” %

92(d—1)r+(r—1)(2r—1)
Dof(2d,2r) =

7"l

Tl
X H /0 dxy, wlzl/z(l — xk)d_3/2 H(azl — 1)?
k=1

k<l

1
K (2:,2;) Zpk v)pe(z;) /0 4 w(2)pn()pm(x) = hn G

w(x) =x %(1 —z)4" 2 Jacobi polynomials

|
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Higher spin fields
. - y .

» Change of variables zj, = sin” %

22(d—1)r—|—(r—1)(2r—1)

Dof(2d,2r) = —
7rr!
r 1
—1/2 _
X H/ dxy, T / (1—xk)d 3/21—[(37[_37]@)2
k=1"" k<l
1 /! 1
7“' OdZUr ( )./Odajlwxl Hhk

- N

Worldline Path Integral Formalismnew results and applications — p.33/48



Final results

o N

® Even dimension

- (2k — 1)! (2k + 2d — 3)!
,2H

D 22:2”“1
of (2d, 2r) 2k +d—2)! (2k+d—1)!

o |
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Final results

o N

® Even dimension

- (2k — 1)! (2k + 2d — 3)!
,2H

D 22:2”“1
of (2d, 2r) 2k +d—2)! (2k+d—1)!

® Similarly Dof(2d,2r + 1)

o |
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Final results

o N

® Even dimension

- (2k — 1)! (2k + 2d — 3)!
Dof(2d,2 :2”
of (2d, 2r) '2 H 2k +d—2)! (2k+d—1)!
® Similarly Dof(2d,2r + 1)

Few interesting special cases
® Dof(2,N)=1, VN /
® Dof(4,N)=2, VN /

o |
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Final results

o N

# Obtained correct path integral measure for SO(NV)
spinning ptc, for generic N and D

o |
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Final results

o N

# Obtained correct path integral measure for SO(NV)
spinning ptc, for generic N and D

# In 4d, higher spin fields propagate into the loop

o |
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Final results

-

# Obtained correct path integral measure for SO(NV)
spinning ptc, for generic N and D

# In 4d, higher spin fields propagate into the loop
o Couple it to maximally symmetric backgrounds

o |
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Final results

o N

# Obtained correct path integral measure for SO(NV)
spinning ptc, for generic N and D

# In 4d, higher spin fields propagate into the loop
o Couple it to maximally symmetric backgrounds
#® More general couplings?

o |
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Final results

-

# Obtained correct path integral measure for SO(NV)
spinning ptc, for generic N and D

# In 4d, higher spin fields propagate into the loop
o Couple it to maximally symmetric backgrounds

#® More general couplings?

s covariantization for N > 2 problematic for a generic
background; algebra doesn’'t seem to close

|
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Final results

-

Obtained correct path integral measure for SO(N)
spinning ptc, for generic N and D

In 4d, higher spin fields propagate into the loop
Couple it to maximally symmetric backgrounds

More general couplings?

s covariantization for N > 2 problematic for a generic
background; algebra doesn’'t seem to close

More general Symmetry group (Hallowell, Waldron "07)

|
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Manifolds with boundary
-

# Given the differential operator

1
H, = —§v§ +V(z)
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Manifolds with boundary
-

# Given the differential operator
1 2
#® Heat kernel is the solution of the heat equation

(Schroedinger eqg. in euclidean time)

0

with b.c/s K(z,7;0) = 0°(x —y)

o |
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Manifolds with boundary
-

# Given the differential operator
1 2
#® Heat kernel is the solution of the heat equation

(Schroedinger eqg. in euclidean time)

0

with b.c/s K(z,7;0) = 0°(x —y)

® it can be perturbatively solved via DeWitt ansatz

o |
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Manifolds with boundary
-

e DeWitt ansatz

K(z,y;0) = (QW;)g el 02,y ),
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Manifolds with boundary
-

e DeWitt ansatz

K(z,y;0) = (QW;)% el 02,y ),

©.@)

Qz,y;8) ~ > an(z,y)p"

n=0

Feynman measure
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Manifolds with boundary
-

e DeWitt ansatz

K(z,y; 3) = —

Feynman measure

Action for the classical configuration z(7)

o |
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Manifolds with boundary
-

e DeWitt ansatz

K(z,y; 3) = —

Feynman measure

Action for the classical configuration z(7)

Seeley-DeWitt coefficients

o |
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Manifolds with boundary
-

e DeWitt ansatz

K(z,y; 3) = —

Feynman measure

Action for the classical configuration z(7)

Seeley-DeWitt coefficients

It's a short-time perturbative expansion

o |

Worldline Path Integral Formalismnew results and applications — p.37/48



Manifolds with boundary
-

e Path integral representation of the Heat kernel
z(8)=y

K(z,y: 5) = / L D = (e
x(0)=x

o |
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Manifolds with boundary
-

e Path integral representation of the Heat kernel

z(8)=y . 4
K(e.0) = [ L D = (e
x(0)==x

Slx] = Splx| + Sine|x]

Sola] = % /0 ir %%,@W, Sinlt] = % /0 dr RV ()

o |
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Manifolds with boundary
-

e Path integral representation of the Heat kernel

z(B8)=y )
Koy = [ Daeskl = gle
z(0)=x
S[QZ’] ‘|‘ Sznt[ ]

% . _l 1 2
5/ dT— T Sip|x] = 5/0 dr 3V (x)

Flat target- space metric

o |
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Manifolds with boundary
-

e Path integral representation of the Heat kernel
z(8)=y

K(z,y: 8) = / L D = (e
0

S[QZ’] _|_ Smt[ ]

% . _l 1 2
5/ dT =0,,3"%",  Silx| = 5/0 dr 3V (x)

Flat target- space metric

# Path integral for generic V' not known

#® Treat V as perturbation — vertices from Taylor expanding
about initial/final point

o |
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Manifolds with boundary
-

e Path integral representation of the Heat kernel

z(8)=y

K(z,y: 8) = / L D = (e
0

S[QZ’] _|_ Smt[ ]

5/ dT — Ww“w

Flat target- space metric

1 /! ,
wle] = 3 / dr B2V (2)

#® Path integral for generic V' not known

#® Treat V as perturbation — vertices from Taylor expanding
about initial/final point

o |
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Manifolds with boundary
-

e Boundaryless flat space
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Manifolds with boundary
-

e Boundaryless flat space

® Split x(7) =z(7) + q(7)
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Manifolds with boundary
-

e Boundaryless flat space
® Split x(7) =z(7) + q(7)

® Measure
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Manifolds with boundary
-

e Boundaryless flat space
® Split x(7) =z(7) + q(7)

® Measure

# Pictorially

q(l)

\— q(0)
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Manifolds with boundary
-

e Boundaryless flat space

® Split x(7) =z(7) + q(7)

#® Measure
Dx= ][ d°q(r), ¢"(0)=q¢"(1)=0 q"(r)€R” V7
0<r<1
- (%51)17/2 . Semiclassical (one-loop) contribution

o |
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Manifolds with boundary
-

e Boundaryless flat space

® Split x(7) =z(7) + q(7)

#® Measure
Dx= ][ d°q(r), ¢"(0)=q¢"(1)=0 q"(r)€R” V7
0<r<1
- (%ﬁl)D/Q . Semiclassical (one-loop) contribution

® a,(x,y;08) — (n+ 1)—loop contribution in the worldline
path-integral via Wick’s theorem

o |
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Manifolds with boundary

o N

e Flat 1D space with boundary: particle on the half line
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Manifolds with boundary

o N

e Flat 1D space with boundary: particle on the half line
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Manifolds with boundary

o N

e Flat 1D space with boundary: particle on the half line

® Dirichlet - Neumann b.cs
K(x,x9:0) =0, 0,K(x,29;0) =0 forx € OM

o |
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Manifolds with boundary
B -

e Flat 1D space with boundary: particle on the half line

® Dirichlet - Neumann b.cs
K(x,x9:0) =0, 0,K(x,29;0) =0 forx € OM

# TJwo classical paths (straight lines) of S, now
X2

— X(l)

- x(0) |
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Manifolds with boundary
B -

e Flat 1D space with boundary: particle on the half line

® Dirichlet - Neumann b.cs
K(x,x9:0) =0, 0,K(x,29;0) =0 forx € OM

® Write the ansatz as McAvity-Osborn 91
1
(27)>
+ry e~ %0l2] 92(5’7175’3256))7 v =—1/+1

K(zy,29;8) = (6_50[331] Qy (21, 22; B)

o |
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Manifolds with boundary

o N

e Flat 1D space with boundary: particle on the half line

® Dirichlet - Neumann b.cs
K(x,x9:0) =0, 0,K(x,29;0) =0 forx € OM

® Write the ansatz as McAvity-Osborn 91
1
(273)2
+ry e~ %0l 92(5’7175’3256))7 v =—1/+1

K(x1,29;0) = (6_50[331] Qy (21, 22; B)

# How to implement it in the path integral?

o |
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Manifolds with boundary

o N

e Flat 1D space with boundary: particle on the half line
® M=R, oM ={0}
# Dirichlet - Neumann b.c.’s
K(x,x9:0) =0, 0,K(x,29;0) =0 forx € OM
#® Write the ansatz as Mcavity-Osborn "9

K(xb L2, 6) — (27:5); (6—50[9?1] Ql(xh To 6)

+y e~ S0l Qg(xl,xg;ﬁ)), v=-1/+1

# How to implement it in the path integral? i.e. How to
L implement the constraint =(7) > 0 in the path integral? J

Worldline Path Integral Formalismnew results and applications — p.40/48
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1. paths bounded to the interior of M



Manifolds with boundary
-

#® Two classes of paths
1. paths bounded to the interior of M
2. paths that hit the boundary

o |
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Manifolds with boundary
B -

#® Two classes of paths

1. paths bounded to the interior of M
2. paths that hit the boundary

#® |mage charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

o |
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Manifolds with boundary
B -

#® Two classes of paths
1. paths bounded to the interior of M
2. paths that hit the boundary

#® |mage charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

i 3 x(1)

2 x(0)

o |
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Manifolds with boundary
B -

#® Two classes of paths

1. paths bounded to the interior of M
2. paths that hit the boundary

#® |mage charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

1. Extend the potential to the whole R as an even function

V(x(r)) — V(x(r)) = 0(z(n))V(x(r)) + 0(=a(r))V(~2(r))

o |
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Manifolds with boundary
B -

#® Two classes of paths

1. paths bounded to the interior of M
2. paths that hit the boundary

#® |mage charge method: paths that bounce at the boundary
are equivalent to paths that are reflected off the boundary

1. Extend the potential to the whole R as an even function
V(x(r)) — V(x(1)) = 0(z(m))V (x(7)) + 0(—2(7))V (—z(7))
2. For Dirichlet/Neumann bc’s write the kernel as
Ky (x1, 225 B) = Kr(x1, 22; 8) F Kr(21, —22;8) x12€ M

o |
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Manifolds with boundary

o N

#® For Dbc the heuristics Is quite clear: the second term
Kg(x1,—x9;8) = ) paths that hit the boundary

o |
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Manifolds with boundary

o N

#® For Dbc the heuristics Is quite clear: the second term
Kg(x1,—x9;8) = ) paths that hit the boundary

= Ky(x1,29; 8) = > paths that do NOT hit the boundary

Ky (21,0;8) =0

o |
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Manifolds with boundary
-

f #® For Dbc the heuristics Is quite clear: the second term
Kg(x1,—x9;8) = ) paths that hit the boundary

= Ky(x1,29; 8) = > paths that do NOT hit the boundary
#® For Nbc: by direct inspection

82KM<$17035) =0

o |
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Manifolds with boundary
-

For Dbc the heuristics is quite clear: the second term
Kg(x1,—x9;8) = ) paths that hit the boundary

= Ky(x1,29; 8) = > paths that do NOT hit the boundary
Ky (x1,0;8) =0
For Nbc: by direct inspection
0o K pr(21,0;8) =0

Left w/ computation of whole-line path integrals w/ V/

|
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Manifolds with boundary
-

For Dbc the heuristics is quite clear: the second term
Kg(x1,—x9;8) = ) paths that hit the boundary

= Ky(x1,29; 8) = > paths that do NOT hit the boundary
Ky (x1,0;8) =0
For Nbc: by direct inspection
0o K pr(21,0;8) =0

Left w/ computation of whole-line path integrals w/ V/

Not yet straightforward: naive perturbation theory w/
0(x(7)) is problematic J
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Manifolds with boundary
-

#® Task: computation of
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Manifolds with boundary

o N

#® Task: computation of

(1)=0 )
(29, Blz1,0)R = e 0lzcl] ’ Dq o521l p=B [ dr V(za(r)+q(T))

q(0)=0

o |
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Manifolds with boundary

o N

#® Task: computation of

(1)=0
<.CU2, 6‘3}'17 O>R — e_SO[mcl] ! Dq e—SQ[C] ﬁde V accl( )—I—q(T))
q(0)=0
1 o q(l):O 1 ~
— e_%(mz—m) DC] 6—52[(1] (1 _ 6/ dr V(ZCCZ(T) 4 Q(T))
q(0)=0 0

/dﬁ/ﬁﬁ (ra(r) + a(r)V (za(rs) + a(72)) + -+

o |
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Manifolds with boundary

o N

#® Task: computation of

q(1)=0
—So[zei] Dq o524l =8 [ dr V(za(r)+q(7))

q(0)=0

(@2, B, 0} = &
#® Single—V insertion: extract the worldline integral out
[o] Dy =4 [0(0uf) + o)V (ralo) + 4(0)
+0(2a(0) ~ a(a)V (~zalo) ~ a(a)

o |
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Manifolds with boundary

o N

#® Task: computation of

(1)=0
<.CE2, 6‘3}'17 O>R — e_SO[mcl] ! Dq 6—52 ﬁde V accl( )—I—q(T))

q(0)=0

# Single—V insertion: extract the worldline integral out
¢(1)=0
/ do / Dy e [ (2a(0) + (0))V(2a(0) + 4(0))
10(—2a(0) — g(0))V (~2alo) — q<a>>]

# For fixed o constraints act only on ¢(o)

o |
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Manifolds with boundary

o N

#® Task: computation of

(1)=0 )
(29, Blz1,0)R = e 0lzcl] ’ Dq o521l p=B [ dr V(za(r)+q(T))

q(0)=0

# Single—V insertion: extract the worldline integral out

1 q(1)=0
/0 do Dq e—52ld! [9(:1:01(0) +q(0))V(xa(o) + q(o))

q(0)=0
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Manifolds with boundary

0
f # Pictorially (Q\ - q(1)
: q(c)

= q(0)

~x,(©)



Manifolds with boundary
- : -

= (1)

# Pictorially Q\
( q(c)

1 i = q(0)
_xcl (G) 0

# Split the integral in two pieces |0, o], |0, 1]; then, for fixed o

o |
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Manifolds with boundary
-

= (1)

# Pictorially

q(c)

1 i = q(0)
_xcl (G) 0

# Split the integral in two pieces |0, o], |0, 1]; then, for fixed o

q(1)=0
o D1 0a(0) + gDV (zalo) +a(0)

00 q(o)=y q(1)=0
B / dy [ Dge 9 [ Dqe >V (zy(o)+y)

L zci(0) /q(0)=0 q(o)=y J
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Manifolds with boundary
-

= (1)

# Pictorially

q(c)

= q(0)

q(1)=0

(0):1())q e 21G(xa(0) +G(0)V (9a(0) + (o))

00 q(o)=y q(1)=0
B / dy [ Dge9 [ Dge >V (zy(o)+y)

L ze1 (o) Jq(0)=0 q(o)=y J
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Manifolds with boundary
-

# Pictorially - q(1)

q(c)

1 i = q(0)
_xcl (G) 0

# Split the integral in two pieces |0, o], |0, 1]; then, for fixed o

o0 1 1 2
dy e 20o0=2Y V(xy(o) +y)
/—wcz(a) 27Tﬂ\/0(1 — J)

o |
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Manifolds with boundary
-

= (1)

# Pictorially

q(c)

1 i = q(0)
_xcl (G) 0

# Split the integral in two pieces |0, o], |0, 1]; then, for fixed o

o0 1 1 2
dy e 20o0=2Y V(xy(o) +y)
/—wcz(a) 27Tﬂ\/0(1 — J)

. . _mcl(a) 1 1 2
# Similarly / d "2 V(—zy(o) —
— 00 yQWﬁ\/O'(l—O')e ( l(a) )
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Results
-

# Single-V whole-line heat kernel

—i(mg—ml)Q
e 26

1 +00
- / dol, / y TS Vizg(o) +y)
0

oo

— OO

" / dol, / "y et [vccd(a) +y) = V(~za0) - y>]>

o |
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Results
| -

» Even potential V (= V = V): third line vanishes

—%(wg—wl)Q - ) > B 5 -

2810, = g |18V — gV (1= T ) o)
| Y (x2 4+ x1)? 3y

* (2mB3)1/2 _1_6‘/_2,3!‘/ <1_ 3 )—I—O(,@ )_

o |
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Results
| -

» Even potential V (= V = V): third line vanishes

_%(a%_wl)2 - ) > B 5 -

2810, = g |18V — gV (1= T ) o)
e_%(wQ‘le)Q _ ¥ B2 - (z2 + x1)? 3 -

* (2mB3)1/2 _1_6‘/_2,3!‘/ <1_ 3 )—I—O(,@ )_

# McAvity-Osborn ansatz, w/ €2.s integer power series in
and ’ZCQ — 1131’ \/

o |
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Results
| -

» Even potential V (= V = V): third line vanishes

e—ﬁ(ﬂﬁz—ﬂcl)2 i

—z1)2 |
1— g7 - V”(l—(‘” 1) >+O(ﬁ3)

<$2,B|$1,O>R+ — (27.‘./8)1/2 2.3 6
e-%(wz-l—ﬂm)Q i ~ 52 _ (z2 —|—5131)2 3 ]
BTN _1_5‘/_2-3!‘/ <1_ B )+O(ﬁ )_

# McAvity-Osborn ansatz, w/ €2.s integer power series in
and ’ZCQ — 1131’ \/

# Result coincides w/ conventional expansion (Wick’s
theorem): no ¢’s involved / J

.
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Results

o N

#® (Generic potential: additional boundary contributions

o |
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Results

o N

#® (Generic potential: additional boundary contributions

» Can obtain the perturbative expansion (in 5) of the
partition function Trg, e~

Trr., e BH  _ /OOO dz (z, Blz, 0)r,
B 1 00 B N 5 l 2 _i as
= G [/O dx (1 BV (z) + (2‘/ (z) — 5V )))

T @(1 — BV (0) 4 8 GVQ(O) - %V”(O)))

2
- S —1)V(0) + 0(5%)
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Results

o N

#® (Generic potential: additional boundary contributions

» Can obtain the perturbative expansion (in 5) of the
partition function Trg, e~

Trr., e BH  _ /OOO dz (z, Blz, 0)r,
B 1 o0 B N 5 l 2. _i (g
= o [/O dz (1 BV (x) + (21/ (&) = 5V )))

T @(1 — BV (0) 4 8 GVQ(O) - %V”(O)))

52
- 2 —1V(0) + O(8)

# |t's the needed object in anomaly computations and

L worldline formalism J
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Outlook

o N

® Developed worldline path integral method in (flat)
manifolds with boundary

o |
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Outlook
-

® Developed worldline path integral method in (flat)
manifolds with boundary

. . 7
# Carried on expansion up to order 32
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Outlook
L -

® Developed worldline path integral method in (flat)
manifolds with boundary

. . 7
# Carried on expansion up to order 32

#® Higher-order increasingly difficult

o |

Worldline Path Integral Formalismnew results and applications — p.48/48



Outlook
-

Developed worldline path integral method in (flat)
manifolds with boundary

. . 7
Carried on expansion up to order (3

Higher-order increasingly difficult

Simplify the implementation of the constraints into the
path integral

|
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Outlook
-

Developed worldline path integral method in (flat)
manifolds with boundary

. . 7
Carried on expansion up to order (3

Higher-order increasingly difficult

Simplify the implementation of the constraints into the
path integral

Mixed (Robin) boundary conditions: need to add
o—function potential

|
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	Outline of the talk
	Outline of the talk
	Introduction
	Worldline formalism in flat space
	Worldline formalism in flat space
	Worldline formalism in flat space
	Bern-Kosower master formula
	Worldline formalism in curved space
	Worldline formalism in curved space
	Worldline formalism in curved space
	Worldline formalism in curved space
	Effective action from DR worldline
	Effective action from DR worldline
	Explicit computation
	Explicit computation
	Explicit computation
	Explicit computation
	Explicit computation
	Extensions
	Extensions
	Extensions
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Higher spin fields
	Final results
	Final results
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Manifolds with boundary
	Results
	Results
	Results
	Outlook

