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Is there any correlation among modes?
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OUTLINE

Standard slow roll inflation predicts very small NG: NG < 10¢
NG as smoking gun for “non-standard” inflation

Models with detectable NG

— Local models

— Equilateral models

Different predictions for the “shape” of the 3-point function
Data analysis of 3 year WMAP data

No detection (sigh!). The tightest limits on NG.



Slow-roll = weak coupling

¢+3Ho+ V() =0
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Friction is dominant
gb To have ~ dS space the potential must be very flat:

e,n <1
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The inflaton is extremely weakly coupled. Leading NG from gravity.
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Completely model independent
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< 10 as it comes from gravity

Unobservable (7). To see any deviation you need > 10!? data. WMAP ~ 2 x 10°

Maldacena, JHEP 0305:013,2003, Acquaviva etal Nucl.Phys.B667:119-148,2003



Smoking gun for “new physics”

Any signal would be a clear signal of something non-minimal

* Any modification enhances NG

— Modify inflaton Lagrangian. Higher derivative terms, ghost inflation, DBI

inflation. ..
— Additional light fields during inflation. Curvaton, variable decay width...

* Potential wealth of information
_ 3 1. . L.
Translation invariance: <CE1 CEQ Cié'q) = (2m) 5(2 ki) F(k1, k2, ks)
Scale invariance: F(\ k1, A kg, A ]Zd) — )\_6F(E1, Ko, ]{3)

F contains information about the source of NG

Note. We are only considering primordial NGs. Neglect non-linear relation with observables.
Good until primordial NG > 10°.



Higher derivative terms

I i : . Creminelli JCAP 0310:003,2003
Change inflaton dynamics and thus density perturbations reminelli J

Potential terms are strongly constrained by slow-roll.
Impose shift symmetry: ¢ — ¢ + const

Most relevant operator: 81’\1 (Vo) 2 (Vo) 2

0 0 .
3 point function: <C;‘51 CEQCEJ N ¢ H
T (Gt A VeMp
0

In EFT regime NG < 10°®
Difficult to observe

We get big NG only if h. d. terms are important also for the classical dynamics

)2
DBI inflation: L= ¢ \/ 1— )\@ Speed limit in AdS

Alishahiha, Silverstein and Tong, Phys.Rev.D70:123505,2004



Arkani-Hamed, Creminelli, Mukoyama and Zaldarriaga,

. . JCAP 0404:001,2004
GhO St lnﬂatlon Leonardo Senatore
Phys. Rev. D71:043512,2005
Ghost condensation: — (6@6)2 27 (8(;‘))4
WRONG SIGN

*  Spontaneous breaking of Lorentz symmetry: (¢) = M z

Consistent derivative expansion: ¢ = Mt + 7

| o? b
S:/d4$ §ﬂ2—m(vzﬂ)2 2]\12 (V’?T) + .

Non Lorentz-invariant action, standard spatial kinetic term NOT allowed



Big non-Gaussianities
Use the “ghost” field as the inflaton. It triggers the end of dS.

R
* Non Lorentz-invariant scaling e
a
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* The leading non-linear operator:
3 ,
— L #(Vn has dimensi
W ( ) as dimension 1/4
7\ /4
NG ~ (M) ~10° Quite big. Close to exp. bound.

Derivative interactions are enhanced wrt standard case by NR relativistic scaling



General approach

X. Chen, M.x.Huang, S.Kachru and G.Shiu, hep-th/0605045
P. Creminelli, C. Chung L. Fitzpatrick, J.Kaplan, L.Senatore, in progr.

1
We want to calculate (C7,Cz,Cz,) for a generic: £ =P(X,¢) X = —59" 0u90, ¢

Let us rephrase the calculation in a way which emphasis symmetries: EFT around FRW

EFT around a given FRW background a(t) ,#(f) . Focus on the perturbation

Yo () = Y (t+ m(x)) — () Goldstone of broken time-translation

* This mode can be reabsorbed in the metric going to unitary gauge

* In this gauge, only gravity with time-dependent spatial diff. : «" — a' + &' (Z,t)
*ADM variables are useful: N =1 /\/ﬁ Ni = goi Jij

*The Goldstone 77 can be reintroduced with Stuckelberg trick

* Most generic action invariant under spatial diff. + reintroduce the Goldstone

1 1 ) )
m _ gUU — — 2(9050 . ((9“50)2

At 0" order in derivative I have only: N2

Tadpole terms to make the given a(t) a solution: 0N =N —1, A

1

Coefficients can be time dependent: Smatter = / d'z /=g [C(t)m - A(t)]



1
NE

Bg thisisall fora g _ /(m\/—g[%(ao)gv(@)] /fﬁx\/—g[ &~ V(o(t))

standard scalar field:

Fix the coefficients from the background:

1

Sma.tt.er — /d4$ v — g [J[l%lﬂﬁ — Jfl:%l(gH2 -+ H) + - :|

Reintroducing 70

Smatter — Sr = /d4$ V4 (J[E%IH)(E?WF

At O derivative level 1
4 4 00 2, 4 00 3
up to 3order in pert: +/d V=Y LM (t)(g™ ="+ Q (1) (g™ - 1) ]

Only two operators are allowed by symmetries: 2 contributions (up to slow-roll)

The first operator changes the speed of sound

o_  MpH]
 MZE|H|+ M*

M*> 0 to avoid superluminality

1 D .
Contribution to NGs: fNL ~ (2 — 1) See P.Creminelli., M.Luty, A.Nicolis, L.Senatore,
Cy hep-th/0606090



NG 1n variable decay scenario (~curvaton)
Dvali, Gruzinov and Zaldarriaga Phys.Rev.D69:023505,20

*  Fluctuation of the decay width of the inflaton gives &p /p

' =m;¢°K(o)

Final RD metric:  ds? = —dt* + ¢*(I'(x))t dz?
*  Many sources of NG:

*  Parallel Universes:

oo — o' — (

2
Every step gives non-gaussianity. E.g. 5% > op — (5%) is big
P

* In general: NG > 10, but model dependent.



The shape of non-Gaussianities

“ g ad = — . . . . : , )
<Cf'§1 C% C;}}) — (Qﬂ)d(s(z ki) F (v, ko, k3) Babich, Creminelli, Zaldarriaga, JCAP 0408:009,200

* LOCAL DISTRIBUTION  {(z) = {g(z) — ngL(Cg(ﬁﬁ)z —(¢2))

6 1 1 1
F(ki, ko, ks) = — R3¢ ZAZ. [ — T T
( 1, 2, 5) NL 5 ¢ (k%kg + k%kﬁ + k%kﬁ)
Typical for NG produced outside the horizon

* EQUILATERAL DISTRIBUTIONS

Derivative interactions irrelevant after crossing.
Correlation among modes of comparable A.

F is quite complicated in the various models. But in general

kal_l for k1 — 0

Quite similar in different models



Shape comparison

Higher derivative shape
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The NG signal is concentrated on different
configurations.

* They can be easily distinguished (once NG is detected!)

* They need a dedicated analysis



Consistency relation for 3-p.f.

J. Maldacena, JHEP 0305:013,2003
P. Creminelli. + M. Zaldarriaga, JCAP 0410:006, 2004

Under the usual “adiabatic” assumption (a single field is relevant),
INDEPENDENTLY of the inflaton Lagrangian

B 3
llm <Ck1CkZCk > (27?)353(2 ki)PklpkB [dlog(kngg) + O(ﬁ)

d log kg kg
ds? = —dt? + X @ a2(t)dw;dz’ The long wavelength moc.le 1s a fr(?zen baclfground
| t for the other two: it redefines spatial coordinates.

ng —1 <K< 1  Inthe squeezed limit the 3pf is small and probably undetectable

* Models with a second field have a large 3pf in this limit.

Violation of this relation is a clear, model independent evidence for a second field
(same implications as detecting isocurvature).

* This is experimentally achievable if NG is detected.



Analysis of WMAP st year data

Creminelli, Nicolis, Senatore and Zaldarriaga,

JCAP 0605:004,2006
WMAP alone gives almost all we know about NG. Large data sample + simple.
Not completely straightforward!

£ = l _ 2 : <allm1 alzmzal:;mz) a; aj aj
N Cl Cl C[ 113 2MM2 313
1-laVia

lim;
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Lim 0
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/ 2k3dky 2k3dky 2k3dks

It scales like N . 2~ 10'for WMAP!!! Too much...

pixels

But if F is “factorizable” the computation time scales as N . 32~ 10°. Doable!

pixels

Use a fact. shape with equilateral properties

1 1 1 2 1

e — e — e — + :
kiks Rtk kiks o KPRGRS  Kak3ky

F(ky, ko, k3) = 1%%“11‘-6,&%-( + 5 perm.)



Real space VS Fourier space

CMB signal diagonal in Fourier space (without NG!!). Foreground and noise in real space.

Non-diagonal error matrix + linear term in the estimator

Minimum variance estimator:

1 | | |
_ E : 1 1 1
51111(@) a N (<a{1m1a£2m?a£3m3>l Ofl‘ml:34?‘?14032?‘?12:35”15033m3:36m6a'34m4a'35m5a'35m6

Eimi

—1 —1
=3 <allm1a’!2m2a’33m3>l lima,lama 53m3:l4m4al4m4)

It saturates Cramers-Rao inequality. Reduces variance wrt WMAP coll. analysis.



Correction for anisotropic noise

N_obs varies across the sky.
Smaller power in more observed
regions.

On a given realization it looks like a NG
signal. Bigger variance.

Linear term of the estimator. Subtracts this
effect. Reduces variance.




The Optimal Estimator for JNL

Creminelli, Senatore and Zaldarriaga,
astro-ph/0606001

* Specialize to Local case (in flat sky, with unit transfer function)

by = fl95) = 97+ fu (9% — 0?)

- 53 Cihous

~ Ll

* Find the Log-Likelihood:

Z Cr,lr,z (I) (f_l((I)))ig — Trin (J)

1133
L = EZ 1 (21— 2fxevid s+ g Cax—i + 4% ) )
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The Optimal Estimator for J/NL

* Our estimator is ~equivalent to the full Likelihood:

* (With a slight modification in case of detection), it saturates to the Cramer Rao

bound {' 8%’[: ~}_—1
9 fr% . j
*While the error on f NL from the Likelihood. on a given realization:
L DL *
R R TN

* Other methods can not help on /NL .
*4-point function
*Minkowski functionals
*Wavelets

*etc



Let us do it!

* Close to WMAP collaboration analysis to cross check.

* Fix best fit cosmological parameters and produce MonteCarlos with HEALpix.

* Smooth maps with 8 different beams corresponding to Q1, Q2, V1, V2, W1, W2, W3,
W4

* Add independent noise realization (each pixel).

* Combine maps and mask the (would be) Galaxy (kpO mask: 76.8% sky).

* Calculate the estimator on each realization for both shapes: f;'° and f;*®" . It needs an

integral over the distance to LSS. Hundreds of FFTs.
* Every MonteCarlo 100 minutes on a 2 GHz, 2 GB Opteron processor.
* You need tens of machines (thanks to Sauron cluster at CfA).

* Apply the very same procedure on the real data (foreground subtraction applied).



Differences wrt 1yr Analysis

* Introduction of the tilt in the shapes
* Improved Combination of the Maps (I-dependent)
*Varnation of the Cosmological Parameters
* Reionization: from 7 = 0.17 to 7 = 0092 worse limits ~8%
equil.

*Red tilt: better limits on fii™ ~8%; worse forfxr  ~5%

*Higher number of signal dominates multipoles: better ~20%



Error Bars
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* For the local shape the linear piece helps at high 1I’s (irrelevant for equil. shape)
* In both cases we are not far from the theoretical limit (~20%)
* Full inversion of the covariance matrix

o local equil.
*Limits: Improve on/NL ~ ~10%; on /NL  ~3%



~  No detection ~

WMAP data (after foreground template corrections) are compatible with Gaussianity

We have the best limits on NG for the two shapes

-36 < 1< 100 at 95% C.L.

1256 < f, i < 336 at 95% C.L.

* Slight (20%) improvement wrt to WMAP analysis for the local shape.

* Limits on equil. shape are not weaker: different normalization.



Conclusions

Non-Gaussianities as probe of something non-minimal going on
Two classes of models
1) Non minimal inflaton Lagrangian
2) Additional light fields during inflation
Equilateral shape VS local shape
WMAP data analysis for the two shapes
1) Factorizable equil. shape
2) Linear piece in the estimator
No detection! Tightest limit on NG parameters
-36 < f;*'< 100 at 95% C.L.

2256 < f, i< 332 at 95% C.L.

Future
WMAP 8 yrs: 20% improvement

PLANCK: factor of 4 (additional factor 1.6 from polarization)

Non-minimal models will be strongly constained



