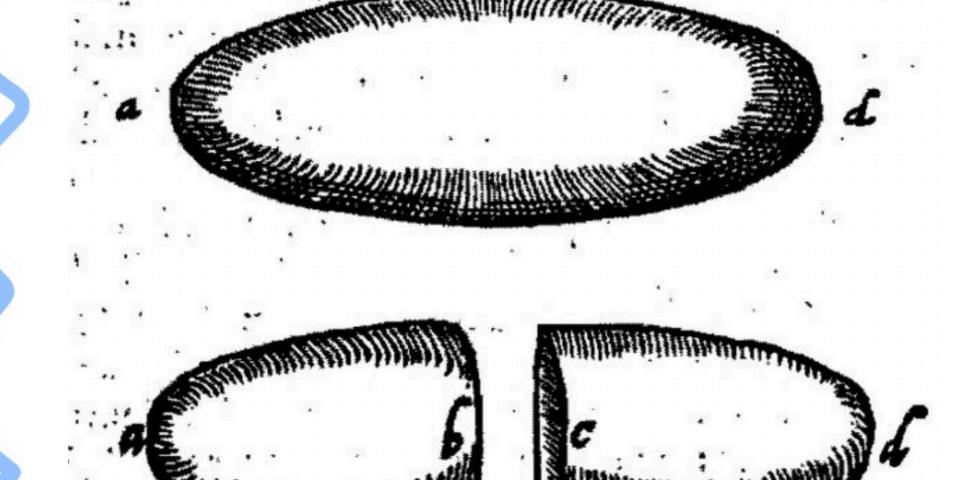
Phenomenology of Dark Magnetic Monopole

Hsing-Yi Lai

Outline

- Dark Magnetic Monopole
- Constructive Method
- Single photon production of dark monopole pair
- Total cross-section at LHC
- Summary

William Gilbert (1600)



Everyone predict it, no one seen it

Observed 1930, not recognized until 1970

No one asked for it, but it's there

Dark Magnetic Monopole!

What is Magnetic Charge?

$\vec{\nabla} \cdot \vec{E} = \rho_e$

$$\vec{\nabla} \cdot \vec{B} = \rho_m$$

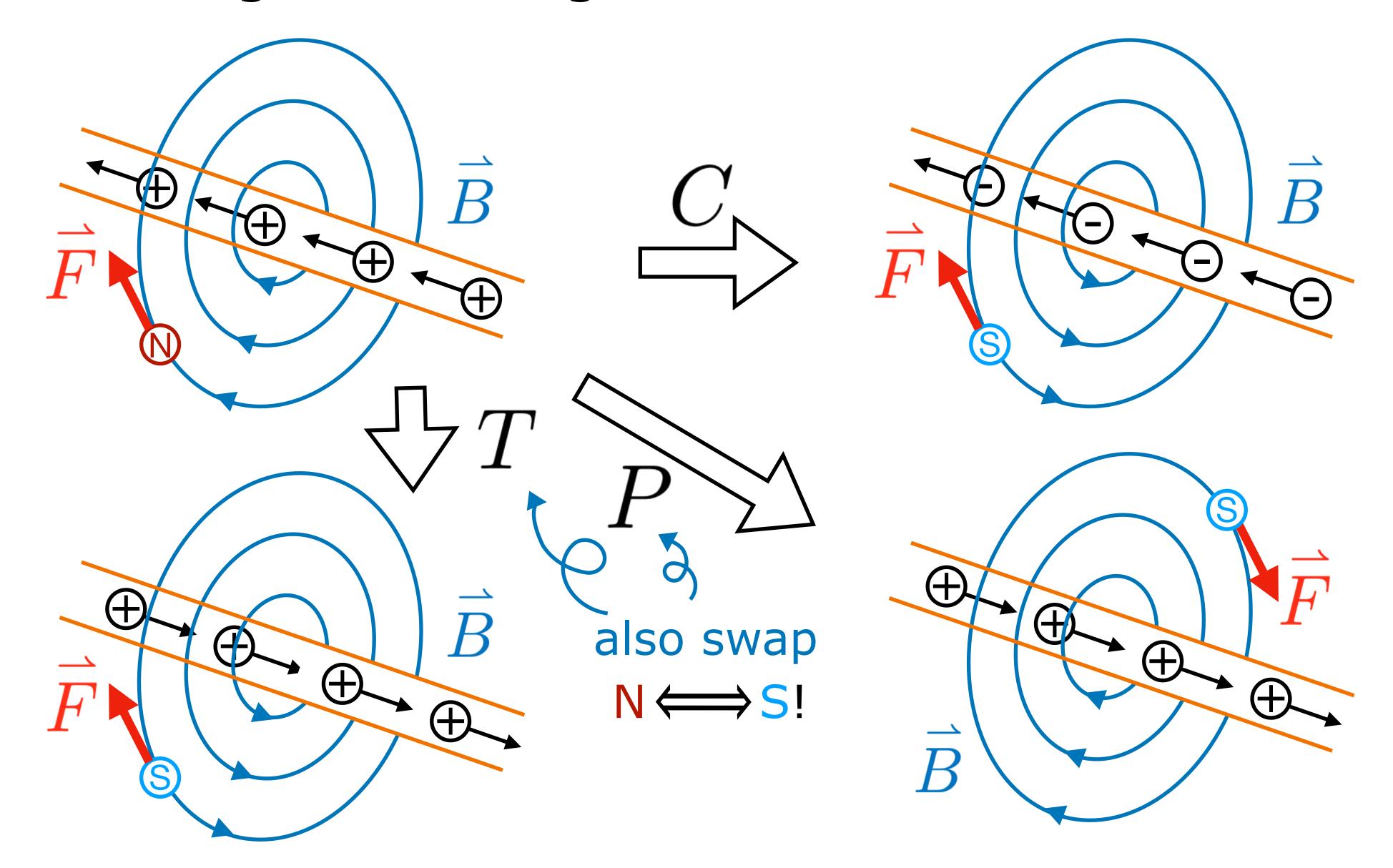
$$\vec{\nabla} \times \vec{E} = -\vec{K} - \frac{\partial B}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \vec{J} + \frac{\partial E}{\partial t}$$

magnetic current

$$\vec{F} = q_e(\vec{E} + \vec{v} \times \vec{B}) + q_m(\vec{B} - \vec{v} \times \vec{E})$$

What is Magnetic Charge?



What is Magnetic Charge?

Coupling to photon:

$$\mathcal{L}_{\text{int},e} = -A^{\mu}J_{\mu}$$

Under parity:

$$PJ_{\mu}P^{-1} = (-1)J_{\mu}$$

$$PA^{\mu}P^{-1} = (-1)A^{\mu}$$

$$A^{\mu} = A^{\mu}_{+} + A^{\mu}_{-}$$
photon helicity

$$\mathcal{L}_{\mathrm{int},m} = -B^{\mu} K_{\mu}$$
 swap of N \Longrightarrow S
$$PK_{\mu}P^{-1} = (-1)(-1)K_{\mu} = +K_{\mu}$$

$$PB^{\mu}P^{-1} = +B^{\mu}$$

$$B^{\mu} = i(A^{\mu}_{+} - A^{\mu}_{-})$$

magnetic charge has extra phase difference

Dark Magnetic Monopole

Dark matter that transforms like magnetic charge under C, P, TLagrangian involving magnetic charge (Zwanziger 1971):

$$\mathcal{L}_{\mathrm{vis}} = -\frac{n^{\alpha}}{2n^{2}} \left[n^{\mu} g^{\beta\nu} \left(F_{\alpha\beta}^{A} F_{\mu\nu}^{A} + F_{\alpha\beta}^{B} F_{\mu\nu}^{B} \right) - \frac{n_{\mu}}{2} \varepsilon^{\mu\nu\gamma\delta} \left(F_{\alpha\nu}^{B} F_{\gamma\delta}^{A} - F_{\alpha\nu}^{A} F_{\gamma\delta}^{B} \right) \right] \\ - e J_{\mu} A^{\mu} - \frac{4\pi}{e} K_{\mu} B^{\mu} \\ \mathcal{L} = \mathcal{L}_{\mathrm{vis}} + \mathcal{L}_{D} + \mathcal{L}_{\epsilon} \\ \mathcal{L}_{\epsilon} = \frac{\epsilon e e_{D}}{2} F_{\mu\nu} F_{D}^{\mu\nu} \qquad F^{\mu\nu} = \frac{n^{\alpha}}{n^{2}} (n_{\mu} F_{\alpha\nu}^{A} - n_{\nu} F_{\alpha\mu}^{A} - \varepsilon_{\mu\nu\alpha}^{\beta} n^{\gamma} F_{\gamma\beta}^{B}) \\ \text{dark photon}$$

Dark Magnetic Monopole

After diagonalizing $F^{\mu\nu}, F^{\mu\nu}_D$

$$\mathcal{L} \supset -A^{\mu}J_{\mu} - B^{\mu}(K_{\mu} - \epsilon e^{2}K_{D\mu}) - A_{D}^{\mu}(J_{D\mu} + \epsilon e^{2}J_{\mu}) - B_{D}^{\mu}K_{D\mu}$$

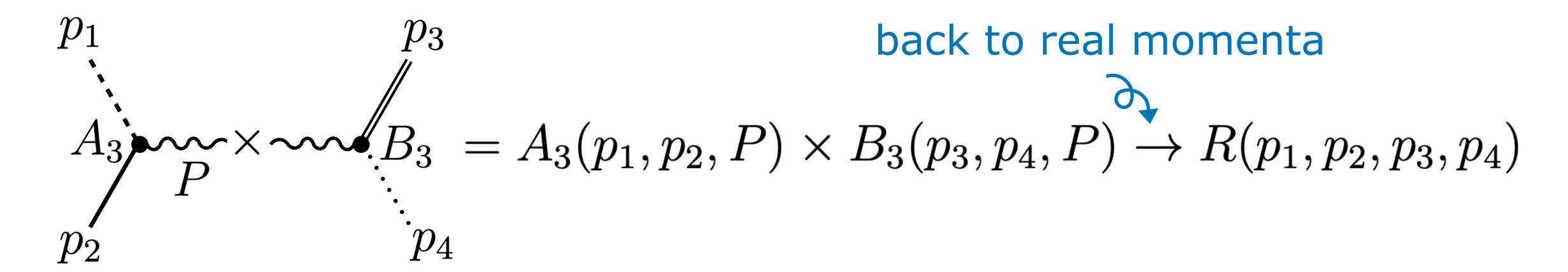
phase different between photon and dark photon!

Terning & Verhaaren hep-th/1809.05102

Still, the n^μ vector cause a lot of trouble. Terning & Verhaaren hep-th/2010.02232

Constructive Method

On-shell particles with complex momenta $P^2=m^2$, four-momentum conserved.



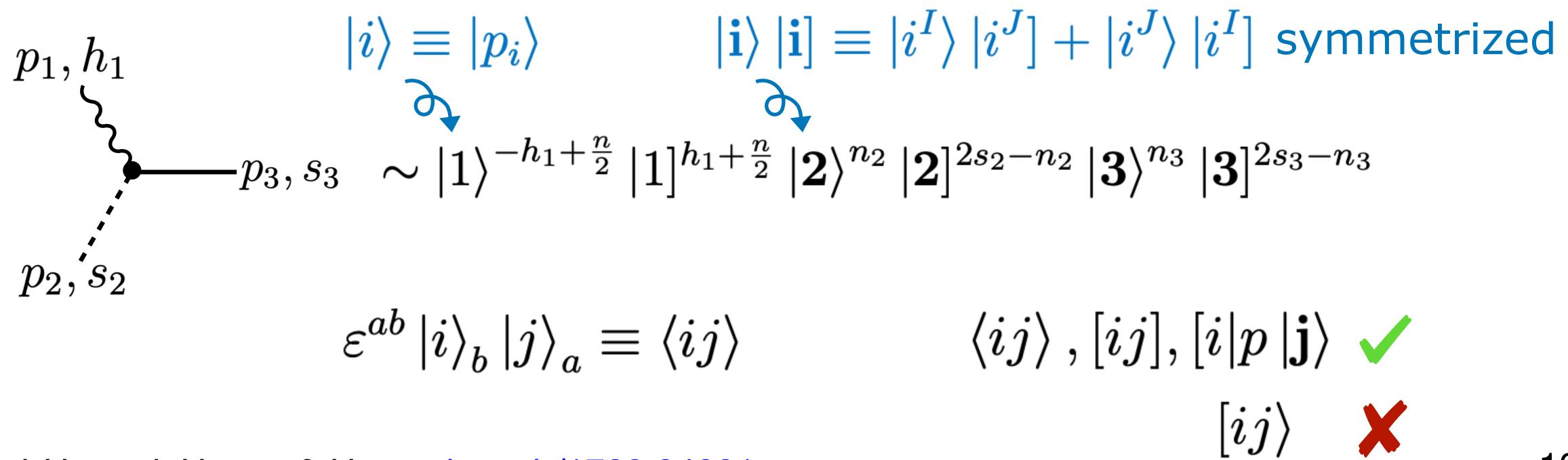
$$\mathcal{M}_4 = \mathcal{M}_{\cdot \cdot \cdot \cdot} = \frac{R(p_1,p_2,p_3,p_4)}{P^2-m^2}$$

$$\operatorname{real} P^2 \neq m^2$$

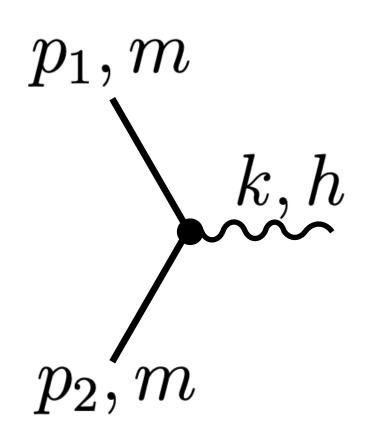
Use 3-point amplitudes as building blocks, bypass field theory.

Little Group Weight & Spinor-Helicity Variables

$$p^{\mu}(\sigma_{\mu})_{a\dot{a}} = |p^I\rangle_a \left[p_I|_{\dot{a}} = \varepsilon_{IJ} \,|p^I\rangle_a \left[p^J|_{\dot{a}} \qquad |p^I\rangle \left[p_I| = |p^I\rangle \,(U_I^{\dagger J})(U_J^K) [p_K| + |p^I\rangle \,(U_I^{\dagger J})(U_J^K) [p_K| + |p^I\rangle \,(D_I^{\dagger J})(D_I^K) [p_K| + |p^I\rangle \,(D_I^{\dagger J})(D_I^{\dagger J})(D_I^K) [p_K| + |p^I\rangle \,(D_I^{\dagger J})(D_I^{\dagger J})(D_I^{\dagger J}) [p_K| + |p^I\rangle \,(D_I^{\dagger J}) [p_K| + |p$$



Equal Mass, x-factor

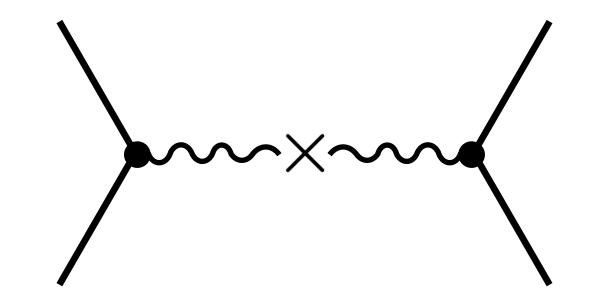


$$|k\rangle \propto p_2|k] = -p_1|k|$$
 are not independent

$$x_{12} \equiv \frac{\langle q | p_2 | k \rangle}{m \langle q k \rangle} = -\frac{\langle q | p_1 | k \rangle}{m \langle q k \rangle} \qquad \mathcal{M}_3 \sim x^h$$

$$\tilde{x}_{12} \equiv \frac{\left[\tilde{q}|p_2|k\right\rangle}{m[\tilde{q}k]} = \frac{1}{x_{12}}$$

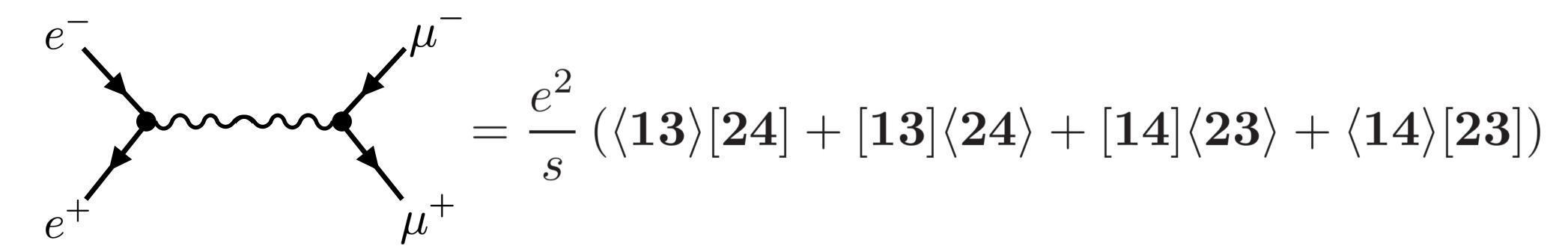
 $ilde{x}_{12}\equiv rac{| ilde{q}|p_2\,|k
angle}{m| ilde{q}k|}=rac{1}{x_{12}}$ arbitrary reference spinor, becomes n^μ in Zwanziger's Lagrangian



gluing requires removing \boldsymbol{q} and \boldsymbol{k} from the expression

Challenge with Internal Photon

Using Feynman Rule:



Constructive Method:

$$\sum_{h=\pm}^{e^{-}} h \times \frac{-h}{e^{+}} = \frac{e^{2}}{s} \left(x_{34} \tilde{x}_{12} [\mathbf{12}] \langle \mathbf{34} \rangle + x_{12} \tilde{x}_{34} \langle \mathbf{12} \rangle [\mathbf{34}] \right)$$

Challenge with Internal Photon

Christensen et al. hep-ph/2209.15018

$$= \frac{1}{2m_e m_\mu} \left[(u - t + 2m_e^2 + 2m_\mu^2) [\mathbf{12}] [\mathbf{34}] + 2([\mathbf{12}] [\mathbf{3}|p_2 p_1|\mathbf{4}] + [\mathbf{1}|p_4 p_3|\mathbf{2}] [\mathbf{34}]) \right]$$

Feynman Rule result

$$= \mathbf{[13]} \langle \mathbf{24} \rangle + \mathbf{[14]} \langle \mathbf{23} \rangle + \mathbf{[23]} \langle \mathbf{14} \rangle + \mathbf{[24]} \langle \mathbf{13} \rangle + \frac{s}{2m_e m_\mu} (\mathbf{[12]} \mathbf{[34]} - 2\mathbf{[14]} \mathbf{[23]})$$

with OFPT Lai, Liu & Terning hep-ph/2312.11621

On-shell
$$s=(p_1+p_2)^2=k^2=0$$
, should drop the $\mathcal{O}(s)$ term.

Constructive Method works!

Intrinsic quantum number of photon: $J^{PC} = 1^{--}$

Construct 3-point amplitudes with parity eigenstates of photon

$$P$$
-odd: $\left(\right)$ $+$ $+$ $\left(\right)$

$$P$$
-odd: $\left(\right)^{+} + \left(\right)^{-} \right)$ P -even: $i \left(\right)^{+} - \left(\right)^{-} \right)$

electric \rightarrow electric: P-odd \times P-odd

magnetic \rightarrow magnetic: P-even \times P-even

$$\left(\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \right) \times \left(\begin{array}{c} \\ \\ \end{array} \right) \times \left($$

only glue matching angular momentum

For two particle bound state:

$^d\!L_J$	Fermionic J^{PC}		$^d\!L_J$	${\rm Scalar}\ J^{PC}$		
	electric	magnetic		electric	magnetic	
$^{-1}\!S_0$	0-+	0-+	$-\frac{1}{S_0}$	0++	0++	
${}^{3}\!S_{1}$	1	1+-	$^1\!P_1$	1	1+-	
${}^{1}\!P_{1}$	1+-	1	$^1\!D_2$	2++	2^{++}	
${}^{3}\!P_{0}$	0++	0++		I		
${}^{3}\!P_{1}$	1++	1++	Only glue matching J^{PC}			
$^3\!P_2$	2++	2^{++}				
${}^{3}\!D_{1}$	1	1+-	For electric → magnetic, one side			
			must have fermionic singlet.			

electric \rightarrow magnetic: P-odd \times P-even

$$\left(\begin{array}{c} + \\ + \end{array} \right) \times i \left(\begin{array}{c} + \\ - \end{array} \right) = -i \left(\begin{array}{c} + \\ - \end{array} \right)$$

relative minus sign between different helicity, agrees with Weinberg!

For electric fermion singlet → magnetic scalar,

$$x_{12}\tilde{x}_{34}\langle \mathbf{12}\rangle - \tilde{x}_{12}x_{34}[\mathbf{12}]$$

$$=2i\varepsilon_{\mu\nu\alpha\beta}p_4^{\mu}q^{\nu}(\langle \mathbf{2}|\sigma^{\alpha}|\mathbf{1}]+\langle \mathbf{1}|\sigma^{\alpha}|\mathbf{2}])k^{\beta}$$

$$=2iarepsilon_{\mu
ulphaeta}p_4^\mu q^
u ar{u}_2\gamma^lpha v_1 k^eta$$
 agrees with Zwanziger's Lagrangian.

Terning & Verhaaren hep-th/2010.02232

$$\varepsilon_{IJ}(\langle 2^{J} | \sigma^{\mu} | 1^{I}] + \langle 1^{I} | \sigma^{\mu} | 2^{J}]) = \text{Tr}(|1_{I}| \langle 2^{I} | \sigma^{\mu} + |2_{I}| \langle 1^{I} | \sigma^{\mu})$$

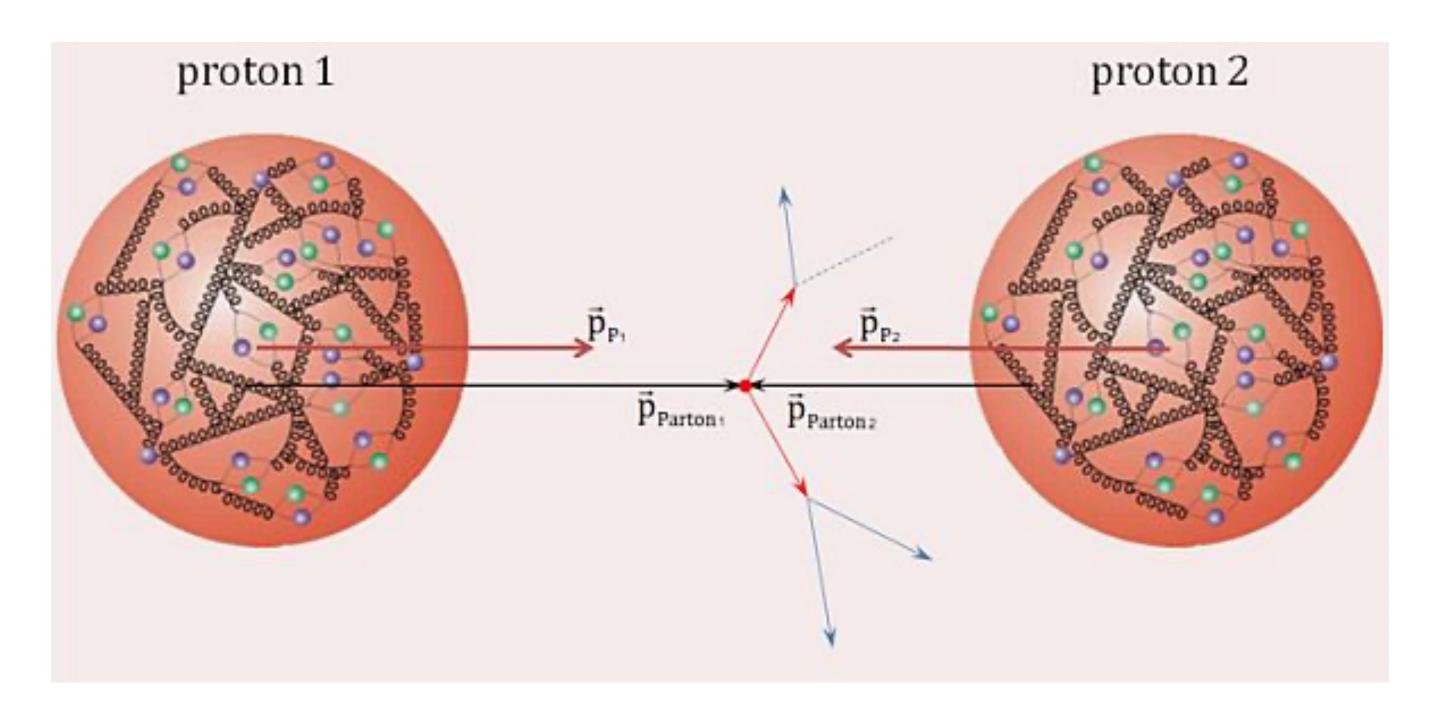
In the C.M. frame, only $k^0 \neq 0$

$$\operatorname{Tr}(|1_I| \langle 2^I | \overrightarrow{\sigma}) = \operatorname{Tr}(|2_I\rangle \langle 2^I | \overrightarrow{\sigma}) = m_2 \operatorname{Tr}(\mathbb{1}\overrightarrow{\sigma}) = 0$$

All single photon residue vanish!

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, Q^2) f_b(x_2, Q^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, Q^2)$$

parton distribution function (PDF)

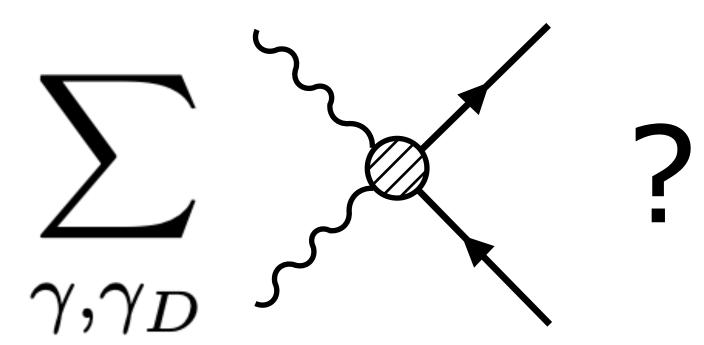


Photon PDF:

Manohar et al. hep-ph/1607.04266

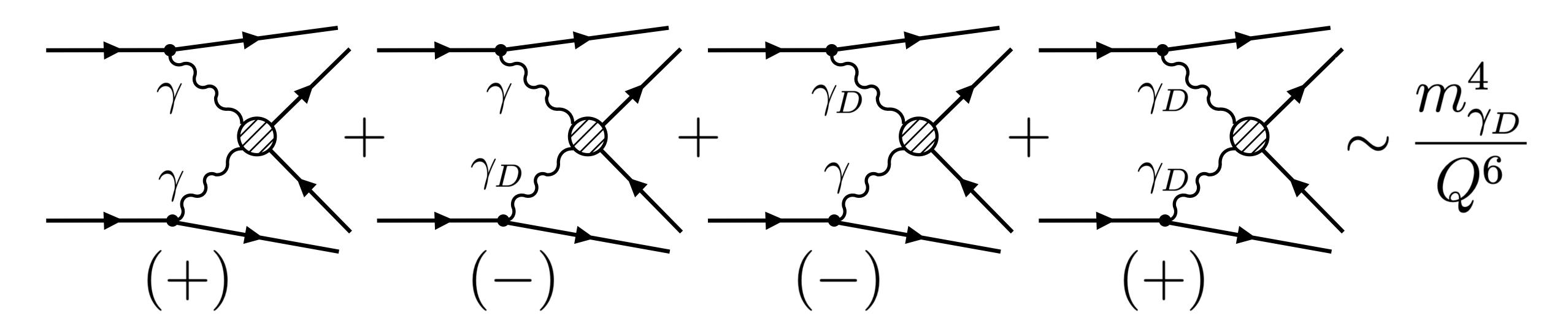
Dark Photon PDF:

McCullough, Moore & Ubiali hep-ph/2203.12628



$$\mathcal{L} \supset -A^{\mu}J_{\mu} - B^{\mu}(K_{\mu} - \epsilon e^{2}K_{D\mu}) - A_{D}^{\mu}(J_{D\mu} + \epsilon e^{2}J_{\mu}) - B_{D}^{\mu}K_{D\mu}$$

phase different between photon and dark photon!

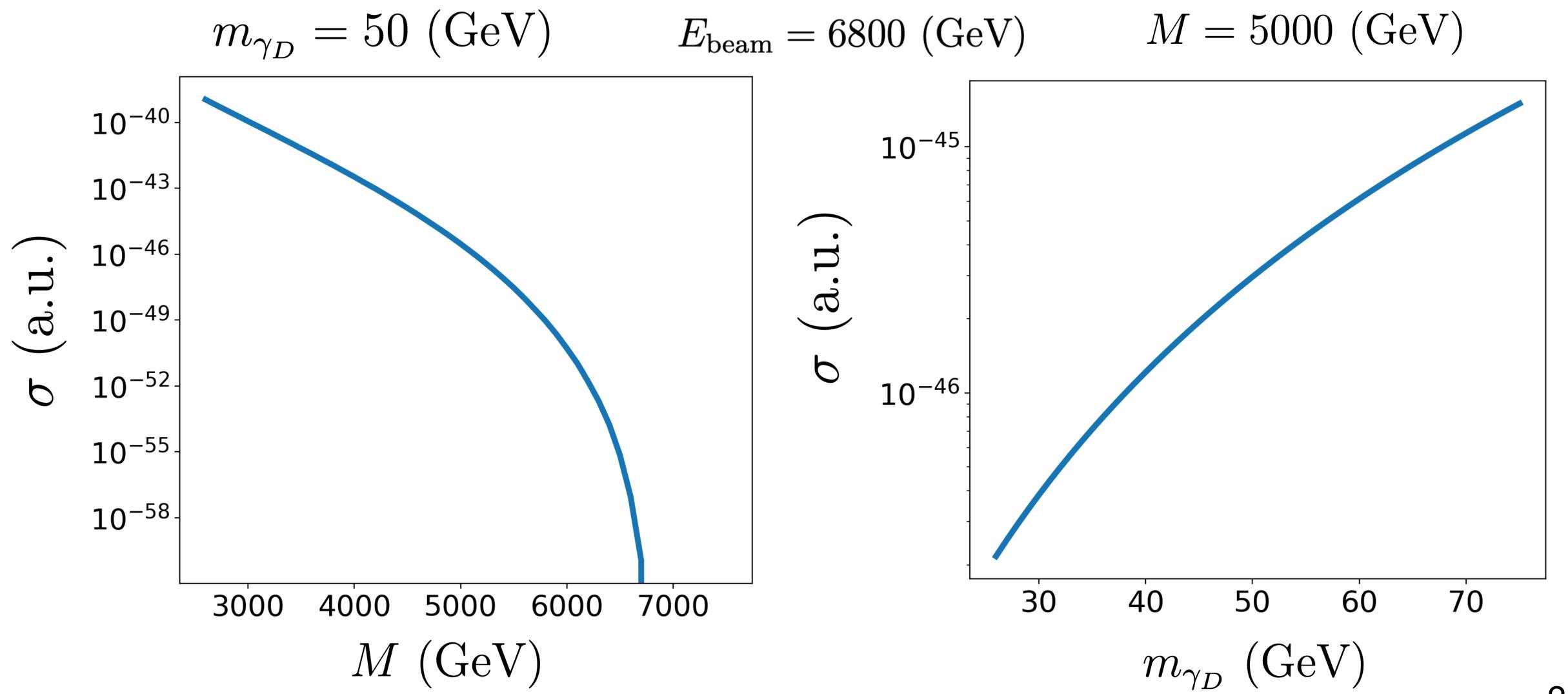


Interference between photon and dark photon matters, cannot just use photon and dark photon PDF.

$$\mathcal{M}_{\gamma\gamma_D} = -\mathcal{M}_{\gamma\gamma} igg(rac{k^2}{k^2 - m_{\gamma_D}^2}igg) pprox -\mathcal{M}_{\gamma\gamma} igg(1 + rac{m_{\gamma_D}^2}{Q^2}igg) \qquad ext{valid for} \quad M \gg m_{\gamma_D} \ |\mathcal{M}_{\gamma\gamma} + \mathcal{M}_{\gamma\gamma_D} + \mathcal{M}_{\gamma_D\gamma} + \mathcal{M}_{\gamma_D\gamma_D}|^2 pprox 4 igg(rac{m_{\gamma_D}}{Q}igg)^4 |\mathcal{M}_{\gamma\gamma}|^2 \qquad ext{DMM mass}$$

Only need photon PDF and four-point amplitude!

$$\sum_{\text{spin}} |\mathcal{M}|^2 = 16g^4 \frac{p^8 + 8M^2p^6 - 32M^4p^4 - 128M^2p^2(k \cdot q)^2 - 256(k \cdot q)^4}{\left[p^4 - 16(k \cdot q)^2\right]^2}$$



Summary

- Constructive method can give electric x magnetic amplitude.
- \bullet DMM pair production at LHC can be calculated using photon PDF for $M\gg m_{\gamma_D}$.
- There's still a lot more to be done for DMM phenomenology.

Old Fashioned Perturbation Theory

Particles on-shell, spatial momentum conserved, energy not conserved.

$$A_3 = A_3 = B_3$$

$$\langle f | S | i \rangle = \langle f | H_{\rm int} | i \rangle + \sum_n \frac{\langle f | H_{\rm int} | n \rangle \langle n | H_{\rm int} | i \rangle}{E_i - E_n} + \dots$$

$$P^2 - m^2 \text{ After summing over time-ordering}$$

Equivalent to Feynman Rule Dyson Phys. Rev. 75 (1949) 486

For QED in Coulomb gauge, $H_{\mathrm{int}} = H_T + H_{\mathrm{Coul}}$

$$H_T = -\int d^3\mathbf{x} \,\mathbf{J} \cdot \mathbf{A}$$
 $H_{\text{Coul}} = \frac{1}{2} \int d^3\mathbf{x} d^3\mathbf{y} \frac{J^0(\mathbf{x})J^0(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|}$

Does not contribute to residue when s=0

Old Fashioned Perturbation Theory

$$H_T \sim egin{array}{c} \mathbf{1} \\ \mathbf{k} \uparrow \geqslant h \end{array} = rac{e}{\sqrt{2\omega_{\mathbf{k}}}} ar{v}_2 \not \in_h u_1 \stackrel{s=0}{\longrightarrow} egin{cases} rac{e}{\sqrt{\omega_{\mathbf{k}}} \left\langle kq_+
ight
angle} \left(\left\langle \mathbf{2}q_+
ight
angle \left[k\mathbf{1}
ight] + \left[\mathbf{2}k
ight] \left\langle q_+ \mathbf{1}
ight
angle}
ight), \quad h = - egin{cases} \frac{e}{\sqrt{\omega_{\mathbf{k}}} \left[kq_-
ight]} \left(\left\langle \mathbf{2}k
ight
angle \left[q_- \mathbf{1}
ight] + \left[\mathbf{2}q_-
ight] \left\langle k\mathbf{1}
ight
angle}
ight), \quad h = - egin{cases} e & - c & - c & - c & - c \\ \hline \sqrt{\omega_{\mathbf{k}}} \left[kq_-
ight] \left(\left\langle \mathbf{2}k
ight
angle \left[q_- \mathbf{1}
ight] + \left[\mathbf{2}q_-
ight] \left\langle k\mathbf{1}
ight
angle}
ight), \quad h = - c & - c & - c \\ \hline \end{array}$$

Schouten identity
$$-\frac{\langle 2q\rangle \left[k\mathbf{1}\right] + \left[2k\right] \langle q\mathbf{1}\rangle}{\langle qk\rangle} + \frac{\langle 2q\rangle \langle \mathbf{1}| \ k|k|}{m_e \ \langle qk\rangle}$$

$$|i\rangle \ \langle jk\rangle + |j\rangle \ \langle ki\rangle = |k\rangle \ \langle ji\rangle = \left(\langle 2q\rangle \langle \mathbf{1}| + \langle q\mathbf{1}\rangle \langle \mathbf{2}|\right) \frac{p_2|k|}{m_e \ \langle qk\rangle}$$

$$= \frac{\langle q| \ p_2|k|}{m_e \ \langle qk\rangle} \ \langle \mathbf{12}\rangle = x_{12} \ \langle \mathbf{12}\rangle \ \text{Constructive}_{\text{Method Amplitude}}$$

Method Amplitude!

Old Fashioned Perturbation Theory

$$H_T \sim egin{array}{c} \mathbf{1} \\ \mathbf{k} \uparrow \geqslant h \end{array} = rac{e}{\sqrt{2\omega_{\mathbf{k}}}} ar{v}_2 \not \in_h u_1 \stackrel{s=0}{\longrightarrow} egin{cases} rac{e}{\sqrt{\omega_{\mathbf{k}}} \left\langle kq_+
ight
angle} \left(\left\langle \mathbf{2}q_+
ight
angle \left[k\mathbf{1}
ight] + \left[\mathbf{2}k
ight] \left\langle q_+ \mathbf{1}
ight
angle}
ight), \quad h = - egin{cases} \frac{e}{\sqrt{\omega_{\mathbf{k}}} \left[kq_-
ight]} \left(\left\langle \mathbf{2}k
ight
angle \left[q_- \mathbf{1}
ight] + \left[\mathbf{2}q_-
ight] \left\langle k\mathbf{1}
ight
angle}
ight), \quad h = - egin{cases} e & - c & - c & - c & - c \\ \hline \sqrt{\omega_{\mathbf{k}}} \left[kq_-
ight] \left(\left\langle \mathbf{2}k
ight
angle \left[q_- \mathbf{1}
ight] + \left[\mathbf{2}q_-
ight] \left\langle k\mathbf{1}
ight
angle}
ight), \quad h = - c & - c & - c \\ \hline \end{array}$$

Schouten identity
$$-\frac{\langle 2q\rangle \left[k\mathbf{1}\right] + \left[2k\right] \langle q\mathbf{1}\rangle}{\langle qk\rangle} + \frac{\langle 2q\rangle \langle \mathbf{1}| \ k|k|}{m_e \ \langle qk\rangle}$$

$$|i\rangle \ \langle jk\rangle + |j\rangle \ \langle ki\rangle = |k\rangle \ \langle ji\rangle = \left(\langle 2q\rangle \langle \mathbf{1}| + \langle q\mathbf{1}\rangle \langle \mathbf{2}|\right) \frac{p_2|k|}{m_e \ \langle qk\rangle}$$

$$= \frac{\langle q| \ p_2|k|}{m_e \ \langle qk\rangle} \ \langle \mathbf{12}\rangle = x_{12} \ \langle \mathbf{12}\rangle \ \text{Constructive}_{\text{Method Amplitude}}$$

Method Amplitude!