

CMS SUSY Program

Disclaimer:

Opinions expressed herein are those of the author, and not necessarily the CMS collaboration.

Frank Würthwein UCSD

Overview

- Status of inclusive SUSY searches
- Status of SMS motivated SUSY searches
- Planning for the future

Throughout I will try to point out issues where we need help from pheno community

Inclusive Signatures	Searches optimized for topologies	Searches optimized for holes in sensitivity
-------------------------	---	---

cMSSM

SMS

Full Models

This is (roughly) the progression both experiments are on.

Status of 8TeV Results for Inclusive Searches in CMS

	Without b-tags	With b-tags
0-leptons		20/fb
1-lepton		20/fb 🗲
2 leptons OS		
2 leptons SS		11/fb
>= 3 leptons	9/fb	9/fb
1 photon	4/fb	
2 photons	4/fb	

Discuss these

We are still very far away from complete coverage !!!

H_T vs MET vs b-tag fit

H_T vs MET vs b-tag fit

CMS Preliminary, $L_{int} = 19.4 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$ Unbiased fit -- Data $N_{b-jet} = 2, MET4$ $N_{b\text{-jet}} \ge 3, \text{MET2}$ $N_{b-jet} \ge 3, MET3$ $N_{b-jet} \ge 3, MET4$ 400 50 20 Events / bin 320 300 Events / bin Events / bin Events / bin 45 18 40 16 80 35 14 250 30 12 60 200 25 10 20 8 150 40 15 6 100 10 4 20 50 5 2 0 0 0 0 HT3 HT4 HT2 HT3 HT3 HT1 HT3 HT4 HT4 HT2 HT4 HT2 Ē HT2 ΗŢ HT1

H_T vs MET vs b-tag Interpretation

CMS Preliminary, 19.4 fb⁻¹, $\sqrt{s} = 8 \text{ TeV}$

$\frac{1}{1000}$ Large H_T,MET, jets, 1-lepton

- \geq 6 jets out of which \geq 2 are b-tagged - pT > 40GeV, H_T > 500GeV
- 1 isolated e or μ w. p_T > 20GeV
- Two Analyses:
 - "Lepton Spectrum" Method:
 - MET > 250GeV
 - Use lepton spectrum to predict bkg MET spectrum
 - "S_T^{lep} vs $\Delta \phi$ (W,lep)" Method:
 - Bin in $S_T^{lep} = pT_{lep} + MET \text{ for } \Delta\phi(W, lep) > 1$
 - Use $\Delta \phi(W, \text{lep}) < 1$ to predict bkg

Results for "S_T^{lep}" Method

		S ^{lep} _T [GeV]	control reg. data	prediction	observation
$N_{btag}=2$	Muons	[250,350]	141	$6.00 \pm 2.23 \pm 2.40$	9
		[350,450]	24	$1.37 \pm 1.12 \pm 1.19$	2
		>450	9	$0.0 \pm 0.66 \pm 0.66$	0
	tr.	[250,350]	112	$3.83 \pm 1.75 \pm 1.84$	9
	Elec	[350,450]	28	$2.74 \pm 1.86 \pm 2.02$	2
		>450	9	$0.0 \pm 0.42 \pm 0.42$	0
N _{btag} ≥3 Electr. Muons	ns	[250,350]	28	$1.92 \pm 0.84 \pm 0.95$	0
	on	[350,450]	13	$0.57 \pm 0.52 \pm 0.58$	0
	Σ	>450	2	$0.0 \pm 0.22 \pm 0.22$	0
	Electr.	[250,350]	45	$1.89 \pm 0.94 \pm 1.03$	4
		[350,450]	7	$0.85 \pm 0.70 \pm 0.80$	0
		>450	0	$0.0 \pm 0.08 \pm 0.08$	0

No excess => setting limits !!!

- Lower MET && larger Njet
- Fewer or no b-tags
- Lower H_T && fewer b-tags
- Lower MET && Lower H_T

Basically, analyses targeting stop, RPV, compressed spectra, SUSY without b-quarks

Even where we have 20/fb results, there is lot's left to do.

Gluinos	(almost) ok
Squark	Ok
Stop	Incomplete
Sbottom	Ok
X+, X ⁰	Incomplete
Sleptons	Incomplete

We have a good starting point, but are far from complete.

For overview of CMS@7TeV SMS results: 1301.2175

Modeling hete Brochetetio

Close to diagonal we trigger & select because of ISR jet production.

http://arxiv.orrg/pdf/1207.1613.pdf

15

More details see M.Pierini at DESY workshop.

Two Examples to explain problems with SMS strategy

- SUSY with RPV
- Direct Stop production in RPC

- Three trilinear Yukawa couplings.
- Can result in a near infinitely diverse set of experimental observables.
- We pick illustrative examples rather than attempting completeness.

RPV Stop Decays

"Standard" stop to top X⁰, followed by RPV X⁰ decay

Searched for in \geq 3 leptons with \leq 1 hadronic tau.

≥3 leptons Analysis

- 20/10 pT ee/eµ/µµ dilepton trigger
- Additional e/µ (tau) with pT>10 (20)GeV
- At most one hadronic tau out of 3(4) leptons
- All leptons are prompt and isolated
- Distinguish 3 (4) leptons with/without tau
- Bin in $S_T = MET + H_T + p_T$ of leptons
- Distinguish Z to dilepton events
- Distinguish \geq 1 b-tag events

CMS Simulation 8 TeV

≥3 leptons Results

Choose S_T binning to measures mass of stop irrespective of decay details.

X⁰ masses 100 vs 1300GeV for blue dashed vs solid for stop mass 700 vs 1200GeV

N_ℓ	N_{τ}	0 <	$< S_T < 300$	300	$< S_T < 600$	600 <	$S_T < 1000$	1000	$0 < S_T < 1500$,	$S_T > 1500$
		obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
4	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
4	1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
3	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
3	1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
N_ℓ	N_{τ}	600 <	$< S_T < 1000$	1000	$< S_T < 1500$	C	$S_T > 1500$)		^	
		obs	exp	obs	exp	obs	s exp		Zvot	_ O O	h tog
4	0	5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0	0.056		Jaa	b-lag
4	1	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0	0.033			
3	0	165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0).99] ← !(Z v	veto	&& b-taa)
3	1	276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0	0.83]		
	. 4/	23/13				·			-		20

No Excess anywhere => Setting limits

≥3 leptons Results

Complicated BR x eff. => Complicated exclusion

From 1209.0764

RPV stop decay final states that we (at the time) did not cover well in either ATLAS or CMS.

		CMS					
Final state	<i>b</i> -jets	Scenario(s)					
$(\tau^+ j)(\tau^- j)$	0	LQD332					
(jj)(jj)	0, 2	UDD312/323					
8 <i>j</i>	4, 6	UDD312/323 with \tilde{H} decaying via \tilde{t} ; UDD213 with $\tilde{H}^{\pm} \to \tilde{H}^0$					
$\ell^+\ell^- + 6i$	2, 4, 6	LQD232/233 with \tilde{H}/\tilde{W} (unless decays via \tilde{b}_L or \tilde{b}_R)					
i i - i = 0j		LQD221/123 with \tilde{W}					
$\pi^+\pi^- + 6i$	2, 4, 6	LQD332/333 with \tilde{H}/\tilde{W} (unless decays via \tilde{b}_L or \tilde{b}_R)					
$1 1 \pm 0 $		LQD321/323 with \tilde{H} - $\tilde{\nu}_{\tau}/\tilde{\tau}_L$ or \tilde{W} (with or without $\tilde{\chi}^{\pm} \to \tilde{\chi}^0$)					
$\tau^{\pm}\tau^{\pm} + 6j$	2, 4	LQD321/323 with $\tilde{H} - \tilde{\nu}_{\tau} / \tilde{\tau}_L$ or \tilde{W} , with $\tilde{\chi}^{\pm} \to \tilde{\chi}^0$					
$t\bar{t} + 6j$	2, 4	UDD212/213 with \tilde{g}/\tilde{B} ; UDD213 with \tilde{H}					
		LQD321/323 with \tilde{g}/\tilde{B}					
$t\overline{t} + 4i + MFT$	216	LQD323/233/333 with \tilde{H} decaying via \tilde{b}_R					
u + 4j + MET	2, 4, 0	LQD232/233/332/333 with \tilde{H}/\tilde{W} decaying via \tilde{b}_L					
		LQD232/233/332/333 with \tilde{B} (unless decays via \tilde{t})					
$(tt \text{ or } t\bar{t}) + 6j$	4, 6	UDD312/323 with $\tilde{H}^{\pm} \to \tilde{H}^0$					
$t\bar{t} + 2\tau + 4j$	2 1	LOD321/323 with \tilde{a}/\tilde{B} : LOD323 with $\tilde{H}_{-}\tilde{h}_{\pi}$					
$t\overline{t} + \tau + 4j + \text{MET}$	2,4	EQD321/325 with g/D , EQD325 with $H^{-0}R$					
$\tau^+\tau^-W^+W^-+2j$							
$\tau + W^+W^- + 2j + \text{MET}$	0	LQD323 with \tilde{b}_R					
$W^+W^- + 2j + \text{MET}$	$\vdash MET$						
4 tops + 4j	4, 6	UDD312/323 with \tilde{B}					
	2.4	LQD221/123/321/323 with \tilde{W}					
6j + MET		LQD321/323 with $\tilde{W}^{\pm} \rightarrow \tilde{W}^{0}$					
	2,1	LQD232/332 with $\tilde{W}^{\pm} \to \tilde{W}^0$ (unless decays via \tilde{t})					
		LQD323 with $\tilde{H}^{\pm} \to \tilde{H}^0 \to \tilde{b}_R$					
$\ell + 6j + \text{MET}$	2,4	LQD221/123 with \tilde{W}					
$\tau \pm 6i \pm \text{MET}$	24	LQD321/323 with \tilde{W} (with or without $\tilde{W}^{\pm} \to \tilde{W}^0$)					
$i \pm 0 j \pm 0$	4,4	LQD323 with $\tilde{H}^{\pm} \to \tilde{H}^0 \to \tilde{b}_R$					
$\tau^+\tau^- + 2b + \text{MET}$	2	LLE123/233 with heavy \tilde{W}					
$W^+W^- + 4j$	0	UDD213 with \tilde{b}_R 23					

Aside on Relationship between Pheno Community and Experiments

- Doing interpretations is a major effort for the experiments given their culture.
- What should the experiments do to enable interpretations by others?
- Is there a guiding principle towards what interpretations should be done inside versus outside the experiments?

Status of RPC Stop SMS

- Presently, ATLAS and CMS use:
 - "T2tt" = stop to top X⁰ only for real top
 - "T2bw" = stop to b X^+ followed by X^+ to W X^0
 - Half a dozen different variants, all of which are essentially arbitrary and close to impossible to defend with a straight face.
- At the same time, the most serious low mass stop limit still comes from CDF.
 - Plus several phenomenology papers estimating the ATLAS and CMS exclusion:
 - 1211.2997, 1211.4981, 1212.6847, ...

Example: 1211.2997

Reinterpreting ATLAS & CMS Monojet results assuming stop to c X⁰ has BR = 100%

The only curve done by an experiment in this plot is CDF

Example from 1206.5800

Is there a limit to the usefulness of SMS?

If this is what a "typical" spectrum looks like, what's the point of an SMS ?

Options for Full Models

- cMSSM
 - Is this still worth doing?
- pMSSM
 - Plus: large "coverage"
 - Cons: not very efficient in providing models that
 - Satisfy naturalness criteria
 - Are consistent with higgs
 - Are consistent with dark matter abundance
 - Motivate anything other than all hadronic searches
- "Natural SUSY" subspace of pMSSM ?
- NMSSM ?

Looking Ahead

What is the HL-LHC physics objective? What matters to CMS? How can pheno help?

A personal perspective

Defining the "Future"

4/22/13

Big Picture

- If we don't see any new colored particles in 300/fb @ 14TeV then we won't see any in 3000/fb either.
- Whatever limit the LHC can place on dark matter production sets the minimum energy scale worthwhile for the ILC.

To me this means there are 2 Questions worth asking.

- If we discover an excess in MET+Jets+btags (+lepton(s)) in 50/fb @ 13TeV, what phase 2 detector do we need to build to study this excess to understand what we have discovered?
- What is the discovery reach for pp → nothing?

We need help with the first question!

The help we need (I)

- First, let's pick a "typical" natural susy spectrum that satisfies the constraints:
 - Higgs mass and other SM constraints
 - Dark Matter Abundance
 - Feature richness to motivate a wide range of detector upgrade studies.

The help we need (II)

- What can we learn about the underlying physics of such a spectrum from measurements of the characteristics of the excess yield?
 - 2,4,6 b-quarks ?
 - E.g. 2b + MET final state vs 4W + 2b + MET as indication of sbottom branching fractions?
 - Z's vs Higgs vs γ in the cascades ?
 - + E.g. as indication of the nature of the neutralinos ? $\mbox{tan}\beta$?
 - 1,2,3,4 and more leptons ?
 - E.g. presence or absence of low/high pT leptons as indication of mass splittings between particles that decay into each other by emitting a W?
 - Muons (electrons) down to 5 (10)GeV
 - Same-flavor dileptons below the Z mass as signature of mass differences?
 - Boosted hadronic decays of W's or top's as signature of large mass splittings?
 - Can we distinguish $\tan\beta \sim O(1)$, O(10), O(100), or even better ?
 - Anything else you can think of !!!

- Anybody who tells you the LHC is done with its 8TeV searches is just plain wrong. We got lot's of work left to do !!!
- What part of the interpretations program should we leave for the pheno community?
- We need help with charting the course for the future !!!