NMSSM in the low mA region and

 Type II 2HDM雨
Shufang Su - U. of Arizona

Davis HEFTI Higgs Workshop, April 23

In collaboration with
N. Christensen, T. Han, Zhen Liu, 1303.2113
B. Coleppa, F. Kling, SS, 1304.xxxx

NMSSM in the low ma_{A} recion and

 Type II 2HDMDavis HEFTI Higgs Workshop, April 23

In collaboration with
N. Christensen, T. Han, Zhen Liu, 1303.2113
B. Coleppa, F. Kling, SS, 1304.xxxx

Outline

© Introduction: Higgs searches @ LHC (skip)
© A little bit on MSSM...
© NMSSM Higgs sector

- general discussion
- H1 126 GeV
- H2 126 GeV
© LHC phenomenology
© Type II 2HDM Higgs sector
- general discussion
- $h^{0} 126 \mathrm{GeV}$
- $\mathrm{H}^{0} 126 \mathrm{GeV}$

Outline

※ Introduction: Higgs searches @ LHC (skip)
© A little bit on MSSM...
※ NMSSM Higgs sector

- general discussion
- H1 126 GeV
- H2 126 GeV
\% LHC phenomenology
© Type II 2HDM Higgs sector
- general discussion
- $h^{0} 126 \mathrm{GeV}$
- $\mathrm{H}^{0} 126 \mathrm{GeV}$

ATLAS + CMS Higgs Results

- SM-like Higgs excluded @ 95\% CL in m_{H} 110.0-122.5, 128-700 GeV surviving mass window: 122.5-128 GeV
- Excess of events above SM bg in YY and ZZ final states $\sim 126 \mathrm{GeV}$ with $\sim 7 \sigma$ @ ATLAS and CMS
- excess in WW, tr, bb

ATLAS + CMS Higgs Results

- SM-like Higgs excluded @ 95\% CL in m_{H} 110.0-122.5, 128-700 GeV surviving mass window: 122.5-128 GeV
- Excess of events above SM bg in YY and ZZ final states
$\sim 126 \mathrm{GeV}$ with $\sim 7 \sigma$ @ ATLAS and CMS
- excess in WW, tr, bb

Study consequence of the above finding on the Higgs sector of NMSSM (low m_{A} region)

Strategy

- Focus on the Higgs sector (and stop sector)
- Only consider Higgs search results flavor? g-2? DM? ...

Study the consequence of
(I) current Higgs search limit of $95 \% \mathrm{CL}$ limit on $\sigma \mathrm{XBr}$
(II) H_{i} in the mass range of 124-128 GeV
(III) $\sigma X B r\left(g g \rightarrow H_{i} \rightarrow Y Y\right)_{\text {NMSSM }}>80 \%(\sigma X B r)_{\text {sm }}$ $\sigma X B r\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow W W / Z Z\right)_{\mathrm{Nmssm}}>40 \%(\sigma X B r)_{\text {sm }}$

MSSM Higgs Sector

- Type II Two Higgs Doublet Model

$$
\begin{aligned}
& H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} \longrightarrow v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \longrightarrow v_{d} / \sqrt{2} \\
& v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \quad \tan \beta=v_{u} / v_{d}
\end{aligned}
$$

after EWSB
5 physical Higgses CP-even Higgses: $\mathbf{h}^{0}, \mathbf{H}^{0}$ CP-odd Higgs: A ${ }^{0}$ Charged Higgses: $\mathrm{H}^{ \pm}$

- tree level masses determined by $\mathrm{m}_{\mathrm{A}}, \tan \beta$

$$
\begin{aligned}
& m_{h^{0}, H^{0}}^{2}=\frac{1}{2}\left(\left(m_{A}^{2}+m_{Z}^{2}\right) \mp \sqrt{\left(m_{A}^{2}-m_{Z}^{2}\right)^{2}+4 m_{A}^{2} m_{Z}^{2} \sin ^{2} 2 \beta}\right) \\
& m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}, \quad \cos ^{2}(\beta-\alpha)=\frac{m_{h^{0}}^{2}\left(m_{Z}^{2}-m_{h^{0}}^{2}\right)}{m_{A}^{2}\left(m_{H^{0}}^{2}-m_{h^{0}}^{2}\right)}
\end{aligned}
$$

Higgs Masses

- large radiative corrections from stop sector: large Yukawa coupling

$$
\begin{aligned}
& \Delta m_{h^{0}}^{2} \approx \frac{3}{4 \pi^{2}} \frac{m_{t}^{4}}{v^{2}}\left[\ln \left(\frac{M_{S}^{2}}{m_{t}^{2}}\right)+\frac{\tilde{A}_{t}^{2}}{M_{S}^{2}}\left(1-\frac{\tilde{A}_{t}^{2}}{12 M_{S}^{2}}\right)\right]+\ldots, \\
& \tilde{A}_{t}=A_{t}-\mu \cot \beta
\end{aligned}
$$

- $\left(\mathrm{m}_{\mathrm{h}}{ }^{\text {min }}\right)$ scenario: $\tilde{\mathrm{A}}_{\mathrm{t}}=0$ $\mathrm{m}_{\mathrm{h} 0}<117 \mathrm{GeV}$ for $\mathrm{Ms}<2 \mathrm{TeV}$
- $\left(m_{h}{ }^{\text {max }}\right)$ scenario: $\quad \tilde{A}_{t}=\sqrt{ } 6 M_{s}$ $\mathrm{m}_{\mathrm{h} 0}<127 \mathrm{GeV}$ for $\mathrm{M}_{\mathrm{s}}<2 \mathrm{TeV}$
- To obtain relative large correction to m_{h}
- relatively large stop masses (at least one)
- large stop LR mixing

Stop Masses

- $M_{3 S Q}$ vs A_{t}

Heavy stops and/or large LR mixing.
○ $\mathbf{m}_{\mathbf{s t} 1}$ Vs $\mathbf{m}_{\mathbf{s t} 2}-\mathbf{m}_{\mathbf{s t} 1}$

purple: pass exp
black dots: $123<\mathrm{m}_{\mathrm{h} 0}$ or $\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}$
S. Su
blue dots: $\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right) \mathrm{mssm}>80 \%(\sigma \mathrm{XBr})$ sm

non-decoupling vs. decoupling region

S. Su
black dots: $123<m_{\mathrm{h} 0}$ or $\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}$
blue dots: $\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right) \mathrm{mssm}>80 \%(\sigma \mathrm{XBr}) \mathrm{sm}$

non-decoupling vs. decoupling region

- decoupling limit

$$
\begin{aligned}
& m_{A} \gg m_{Z} \\
& \sin (\beta-\alpha) \sim 1, \cos (\beta-\alpha) \sim 0
\end{aligned}
$$

- \mathbf{h}^{0} light, $S M$ like,
- $\mathrm{H}^{0}, \mathrm{~A}^{0}, \mathrm{H}^{ \pm}$heavy, nearly degenerate
- $\mathrm{H}^{0} \mathbf{W W}, \mathrm{H}^{0} \mathrm{ZZ}$ coupling suppressed
$\sim \cos (\beta-\alpha)$

decoupling region

non-decoupling vs. decoupling region

- decoupling limit

non-decoupling region

decoupling region

$$
m_{A} \gg m_{Z}
$$

$\sin (\beta-\alpha) \sim 1, \cos (\beta-\alpha) \sim 0$

- h^{0} light, $S M$ like,
- $\mathrm{H}^{0}, \mathrm{~A}^{0}, \mathrm{H}^{ \pm}$heavy, nearly degenerate
- $\mathrm{H}^{0} \mathbf{W W}, \mathrm{H}^{0} \mathrm{ZZ}$ coupling suppressed
$\sim \cos (\beta-\alpha)$
(0 non-decoupling limit
$m_{A} \sim m_{Z}$
$\sin (\beta-\alpha) \sim 0, \cos (\beta-\alpha) \sim 1$
- all Higgses light
- H^{0} SM like

- h^{0} WW, $h^{0} Z Z$ coupling suppressed

non-decoupling vs. decoupling region

- h^{0} SM-like: large $\mathrm{mA} \geq 300 \mathrm{GeV}$
o small ma mz: H^{0} SM-like
Not always true in NMSSM!

non-decoupling region

NMSSM Higgs Sector

- Type II Two Higgs Doublet Model plus singlet S

$$
\begin{gathered}
W_{\mathrm{NMSSM}}=Y_{u} \hat{u}^{c} \hat{H}_{u} \hat{Q}+Y_{d} \hat{d}^{c} \hat{H}_{d} \hat{Q}+Y_{e} \hat{e}^{c} \hat{H}_{d} \hat{L}+\lambda \hat{\xi} \hat{H}_{u} \hat{H}_{d}+\frac{1}{3} \kappa \hat{\xi}^{3} \\
V_{H, S o f t}=m_{H_{u}}^{2} H_{u}^{\dagger} H_{u}+m_{H_{d}}^{2} H_{d}^{\dagger} H_{d}+M_{S}^{2}|\mathcal{S}|^{2}+\left(\lambda A_{\lambda}\left(H_{t}^{T} \epsilon H_{d}\right) \mathcal{S}+\frac{1}{3} \kappa A_{\kappa} \xi^{3}+c . c .\right)
\end{gathered}
$$

- SSB

$$
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \longrightarrow v_{d} / \sqrt{2} \quad \begin{gathered}
S \rightarrow v_{s} / \sqrt{2} \\
\left(\mu=\lambda v_{s} / \sqrt{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
$$

after EWSB, 7 physical Higgses CP-even Higgses: $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ CP-odd Higgs: $\mathrm{A}_{1}, \mathrm{~A}_{2}$ Charged Higgses: $\mathrm{H}^{ \pm}$

NMSSM: Masses for Higgses

- CP-odd Higgses

$$
\binom{A_{v}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{S}=\sqrt{2} \operatorname{Im} S
$$

$$
\frac{1}{2}\left(A_{v}, A_{S}\right)\left(\begin{array}{c}
m_{A}^{2} \\
*
\end{array} \quad\right)\binom{A_{v}}{A_{S}}
$$

$$
m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)=\frac{2 b_{e f f}}{\sin 2 \beta}
$$

NMSSM: Masses for Higgses

- CP-odd Higgses

$$
\binom{A_{v}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{S}=\sqrt{2} \operatorname{Im} S
$$

$$
\frac{1}{2}\left(A_{v}, A_{S}\right)\left(\begin{array}{cc}
m_{A}^{2} & \frac{1}{2}\left(m_{A}^{2} \sin 2 \beta-3 \lambda \kappa v_{s}^{2}\right) \frac{v}{v_{s}} \\
* & \frac{1}{4}\left(m_{A}^{2} \sin 2 \beta+3 \lambda \kappa v_{s}^{2} \frac{v^{2}}{v_{s}^{2}} \sin 2 \beta-\frac{3}{\sqrt{2}} \kappa v_{s} A_{\kappa}\right.
\end{array}\right)\binom{A_{v}}{A_{S}}
$$

$$
m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)=\frac{2 b_{e f f}}{\sin 2 \beta}
$$

mA as in MSSM

NMSSM: Masses for Higgses

- CP-odd Higgses

$$
\binom{A_{v}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{S}=\sqrt{2} \operatorname{Im} S
$$

$$
\frac{1}{2}\left(A_{v}, A_{S}\right)\left(\begin{array}{cc}
m_{A}^{2} & \frac{1}{2}\left(m_{A}^{2} \sin 2 \beta-3 \lambda \kappa v_{s}^{2}\right) \frac{v}{v_{s}} \\
* & \frac{1}{4}\left(m_{A}^{2} \sin 2 \beta+3 \lambda \kappa v_{s}^{2} \frac{v^{2}}{v_{s}^{2}} \sin 2 \beta-\frac{3}{\sqrt{2}} \kappa v_{s} A_{\kappa}\right.
\end{array}\right)\binom{A_{v}}{A_{S}}
$$

$$
m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)=\frac{2 b_{e f f}}{\sin 2 \beta}
$$

mA as in MSSM

CP-odd Higgs mass eigenstates: $\mathrm{A}_{1}, \mathrm{~A}_{2}$

NMSSM: Masses for Higgses

- Charged Higgs

$$
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
$$

$$
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}
$$

NMSSM: Masses for Higgses

- Charged Higgs

$$
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
$$

$$
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}-\frac{1}{2}(\lambda v)^{2}
$$

NMSSM: Masses for Higgses

- Charged Higgs

$$
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
$$

$$
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}-\frac{1}{2}(\lambda v)^{2}
$$

$$
m_{H^{ \pm}}^{2} \geq 0 \quad \rightarrow \quad \lambda \leq \frac{\sqrt{2}}{v} \sqrt{m_{A}^{2}+m_{W}^{2}}
$$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)
$$

NMSSM: Masses for Higgses

- CP-even Higgses couples exactly the same as the SM Higgs

$$
\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)
$$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\binom{h}{H_{v}}=\binom{-\sin \beta \cos \beta}{\cos \beta \sin \beta}\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{ReS}-v_{s}\right)
$$

NOT couple to W/Z, couple to up (down) as $\tan \beta^{-1}(\tan \beta)$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)
$$

$$
\frac{1}{2}\left(H_{v}, h_{v}, S\right)\left(\begin{array}{ccc}
m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\
-\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & & * \\
* & m_{Z}^{2} \cos ^{2} 2 \beta & \\
* & * & \\
\\
\\
h_{v} \\
\\
& &
\end{array}\right)
$$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)
$$

$$
\frac{1}{2}\left(H_{v}, h_{v}, S\right)\left(\begin{array}{ccc}
\begin{array}{cc}
m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * \\
\underbrace{-\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta} & \\
* & m_{Z}^{2} \cos ^{2} 2 \beta
\end{array} & * \\
* & * & * \\
* \frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta \\
* & &
\end{array}\right)
$$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\underbrace{\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)}
$$

$$
\frac{1}{2}\left(H_{v}, h_{v}, S\right)\left(\begin{array}{ccc}
m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\
-\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & & \\
* & m_{Z}^{2} \cos ^{2} 2 \beta & * \\
* & +\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & \\
& * & \begin{array}{c}
\frac{1}{4} m_{A}^{2} \sin ^{2} 2 \beta \frac{v^{2}}{v_{s}^{2}}+2 \kappa^{2} v_{s}^{2} \\
+\frac{1}{\sqrt{2}} \kappa v_{s} A_{\kappa}-\frac{1}{4} \lambda \kappa v^{2} \sin 2 \beta
\end{array}
\end{array}\right)\left(\begin{array}{l}
H_{v} \\
\\
h_{v} \\
\\
\end{array}\right)
$$

NMSSM: Masses for Higgses

- CP-even Higgses

$$
\binom{h_{v}}{H_{v}}=\left(\begin{array}{cc}
-\sin \beta & \cos \beta \\
\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{Re} S-v_{s}\right)
$$

$\frac{1}{2}\left(H_{v}, h_{v}, S\right)$	$\left(\begin{array}{lll} m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\ -\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & & \end{array}\right)$	$\left(H_{v}\right)$
	$\begin{gathered} m_{Z}^{2} \cos ^{2} 2 \beta \\ +\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta \end{gathered}$	h_{v}
	* $*\left(\begin{array}{c}\frac{1}{4} m_{A}^{2} \sin ^{2} 2 \beta \frac{v^{2}}{v_{s}^{2}}+2 \kappa^{2} v_{s}^{2} \\ +\frac{1}{\sqrt{2}} \kappa v_{s} A_{\kappa}-\frac{1}{4} \lambda \kappa v^{2} \sin 2 \beta\end{array}\right.$	(S)

NMSSM: Masses for Higgses

- Effects of singlet
- lift $\left(\boldsymbol{m}_{\text {hv }}\right)_{\text {tree }}$, small $\tan \beta$, large $\left.\boldsymbol{\lambda}\left(m_{h_{v}}^{2}\right)_{\text {tree }}=m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta\right)$
- mixing with singlet: change $H_{i} W W / Z Z, H_{i} b b, H_{i g g}, H_{i Y Y}$
- Lots of work on (125 GeV) Higgs in NMSSM framework ...

Gunion et. al, 1201.0982
Ellwanger 1112.3548
King et. al., 1201.2671
Cao et. al., 1202.5821
EllWanger et. al., 1203.5048
Benbrik et. al., 1207.1096
Gunion et. al., 1207.1545
Gunion et. al., 1208.1817
Cheng et. al., 1207.6392
Belanger et. al., 1208.4952
Agashe et. al., 1209.2115
Belanger et. al., 1210.1976

Heng, 1210.3751
Choi et. al., 1211.0875
King et. al., 1211.5074
Dreiner et. al., 1211.6987
Das et. al., 1301.7548
... many other Jack's, Ellwanger's paper ...
(incomplete list)

- H3 heavy, mA large
- H1 126 or H2 126
- h_{v} / S mixing

NMSSM: Masses for Higgses

- CP-even Higgses
$\frac{1}{2}\left(H_{v}, h_{v}, S\right)\left(\begin{array}{ccc}m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\ -\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & & * \\ * & \begin{array}{cc}m_{Z}^{2} \cos ^{2} 2 \beta & \\ +\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta & \\ * & \\ * & \frac{1}{4} m_{A}^{2} \sin ^{2} 2 \beta \frac{v^{2}}{v_{s}^{2}}+2 \kappa^{2} v_{s}^{2} \\ +\frac{1}{\sqrt{2}} \kappa v_{s} A_{\kappa}-\frac{1}{4} \lambda \kappa v^{2} \sin 2 \beta\end{array}\end{array}\right)\left(\begin{array}{c}H_{v} \\ \\ \\ h_{v} \\ \\ \\ \end{array}\right)$

S. Su
- mass splitting: off-diag comparing to average of diag o state mixing: off-diag comparing to difference of diag

NMSSM: ma decouple case

- push down: $\mathrm{m}_{\mathrm{hv}}<\mathrm{ms}_{\mathrm{s}}$

- H_{1} (SM-like) still heavy enough $\geq 124 \mathrm{GeV}$
\Rightarrow not too large mass mixing
(to push down $\mathrm{m}_{\mathrm{H} 1}$ too low)
- push up: $\mathrm{m}_{\mathrm{hv}}>\mathrm{ms}^{\mathrm{s}}$

- H_{1} (singlet-like) not ruled out by LEP
\Rightarrow not too large state mixing
(to have too much $\mathrm{H}_{1} \mathrm{ZZ}$ coupling)

Agashe et. al., 1209.2115

NMSSM: ma decouple case

- push down: $\mathrm{m}_{\mathrm{hv}}<\mathrm{ms}_{\mathrm{s}}$

- H_{1} (SM-like) still heavy enough $\geq 124 \mathrm{GeV}$
\Rightarrow not too large mass mixing
(to push down $\mathrm{m}_{\mathrm{H} 1}$ too low)
- push up: $\mathrm{m}_{\mathrm{hv}}>\mathrm{m}_{\mathrm{s}}$

- H_{1} (singlet-like) not ruled out by LEP
\Rightarrow not too large state mixing
(to have too much $H_{1} Z Z$ coupling)

NMSSM: Masses for Higgses

Our work: Focus on the NMSSM low m_{A} region: $m_{A} \leq 2 m_{z}$

All Higgses light

- could have large mixing effects
- can be probed experimentally

$$
\left.\left(m_{h_{v}}^{2}\right)_{\text {tree }}=m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta\right)
$$

- ignore singlet for now...

MSSM

$-m_{A}{ }^{2} \geq m^{2}(\cos 4 \beta): H_{1} S M$-like
$-m_{A}{ }^{2} \leq m z^{2}(\cos 4 \beta): H_{2} S M$-like
S. Su

$$
\left(m_{H_{v}}^{2}\right)_{\text {tree }}=m_{A}^{2}+\left(m_{Z}^{2}-\frac{1}{2}(\lambda v)^{2}\right) \sin ^{2} 2 \beta
$$

NMSSM (small ma)

- H_{1} or H_{2} SM-like, depending on $\mathrm{m}_{\mathrm{A}}, \lambda, \tan \beta$
- small m_{A}, large λ, small $\tan \beta, \mathrm{H}_{2}$ SM-like

NMSSM: Masses for Higgses

S.s

NMSSM: Masses for Higgses

S.s

NMSSM: Masses for Higgses

S.s

NMSSM: Masses for Higgses

NMSSM: Masses for Higgses

NMSSM non-decoupling cases

NMSSM non-decoupling cases

S. Su

NMSSM non-decoupling cases

S. Su

NMSSM non-decoupling cases

\section*{H_{1}-126
 | S |
| :---: |
| H_{v} |
 $\xrightarrow{\mathbf{h}_{\mathrm{V}}}$}

S. Su

NMSSM non-decoupling cases

\section*{| $\begin{array}{c}H_{1-126} \\ S\end{array}$ |
| :---: |
| H_{v} |
| h_{v} |}

S. Su

NMSSM non-decoupling cases

\section*{| H_{1-126} |
| :---: |
| H_{V} |
| |
| h_{v} |}

S. Su

NMSSM non-decoupling cases

\section*{| $\begin{array}{c}H_{1-126} \\ S\end{array}$ |
| :---: |
| H_{V} |
| h_{v} |}

$$
\begin{gathered}
H_{1-126} \\
H_{V} \\
\hline \frac{S}{h_{v}} \\
\hline
\end{gathered}
$$

S. Su

NMSSM non-decoupling cases

$\mathrm{H}_{3}-126$
$\mathrm{~h}_{\mathrm{V}}$
H_{V}
S

S. Su

NMSSM Higgs Couplings

- Wave function overlap

$$
H_{i}=\sum_{\alpha} \xi_{H_{i}}^{H_{\alpha}} H_{\alpha}, \quad \text { for } i=1,2,3, H_{\alpha}=\left(h_{v}, H_{v}, S\right),
$$

$$
\left|\xi_{H_{1}}^{H_{\alpha}}\right|^{2}+\left|\xi_{H_{2}}^{H_{\alpha}}\right|^{2}+\left|\xi_{H_{3}}^{H_{\alpha}}\right|^{2}=1, \quad\left|\xi_{H_{i}}^{h_{v}}\right|^{2}+\left|\xi_{H_{i}}^{H_{v}}\right|^{2}+\left|\xi_{H_{i}}^{S}\right|^{2}=1
$$

$$
A_{i}=\sum_{\alpha} \xi_{A_{i}}^{A_{\alpha}} A_{\alpha} \quad \quad\left|\xi_{A_{1}}^{A_{v}}\right|^{2}=\left|\xi_{A_{2}}^{A_{s}}\right|^{2}=1-\left|\xi_{A_{1}}^{A_{s}}\right|^{2}=1-\left|\xi_{A_{2}}^{A_{v}}\right|^{2}
$$

- Wave function overlap

NMSSM parameters

parameters

\bigcirc MSSM
$m_{A}, \tan \beta, \mu,(v)$
$M 3 S Q, M 3 S U, A_{t}$

- NMSSM
$\lambda, k, A_{\lambda}, A_{k}, \tan \beta, v_{s},(v)$
M3SQ, M3SU, At
- NMSSM
$\lambda,{ }_{\mathrm{K}}, \mathrm{m}_{\mathrm{A}}, \mathrm{A}_{\mathrm{K}}, \tan \beta, \mu,(\mathrm{v})$
M3SQ, M3SU, At

Parameter Scan

$1<\tan \beta<10$

$$
\begin{gathered}
0 \mathrm{GeV}<\mathrm{m}_{\mathrm{A}}<200 \mathrm{GeV} \\
100 \mathrm{GeV}<\mu<1000 \mathrm{GeV} \\
0.01<\lambda<1 \\
0.01<\kappa<1 \\
-1200 \mathrm{GeV}<\mathrm{A}_{\mathrm{K}}<200 \mathrm{GeV} \\
100 \mathrm{GeV}<\mathrm{M}_{3 \mathrm{SU}}, \mathrm{M}_{3 \mathrm{SQ}}<3000 \mathrm{GeV} \\
-4000 \mathrm{GeV}<\mathrm{A}_{\mathrm{t}}<4000 \mathrm{GeV}
\end{gathered}
$$

decoupling other parameters (3 TeV)

Signal Regions

Study the consequence of
(I) current Higgs search limit of 95% CL limit on $\sigma \mathrm{XBr}$
(II) H_{i} in the mass range of $124-128 \mathrm{GeV}$
(III) $\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{YY}\right)$ nмssm $>80 \%(\sigma X B r)$ sm $\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathbf{W W} / Z Z\right)_{\text {nмssm }}>40 \%(\sigma \mathrm{XBr})_{\text {sm }}$

○ $\mathrm{H}_{1} 126 \mathrm{GeV}$

- $\mathrm{H}_{2} 126 \mathrm{GeV}$
- $\mathrm{H}_{3} 126 \mathrm{GeV}$

Signal Regions

Study the consequence of
(I) current Higgs search limit of 95% CL limit on $\sigma \mathrm{XBr}$
(II) H_{i} in the mass range of $124-128 \mathrm{GeV}$
(III) $\sigma X B r\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{YY}\right) \mathrm{nmssm}>80 \%(\sigma X B r)$ sm $\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathbf{W W} / Z Z\right)_{\text {nмssm }}>40 \%(\sigma \mathrm{XBr})_{\text {sm }}$

- $\mathrm{H}_{1} 126 \mathrm{GeV}$
- $\mathrm{H}_{2} 126 \mathrm{GeV}$
-OHS126-GeV

$H_{1} 126 \mathrm{GeV}$: mass region

$H_{1}-126$
S
H_{v}
h_{v}

$\mathrm{H}_{1}-126$
H_{v}
S
h_{v}

- $\mathbf{M}_{\mathbf{H i}}$ VS $\mathbf{m}_{H p m}$

$H_{1} 126 \mathrm{GeV}$: mass region

$H_{1}-126$
S
H_{v}
h_{v}

$\mathrm{H}_{1}-126$
H_{v}
S
h_{v}

○ $\mathbf{M}_{\mathbf{H i}}$ Vs $\mathbf{m}_{\mathbf{H p m}}$

$H_{1} 126 \mathrm{GeV}$: mass region

© $\mathbf{M}_{\mathbf{H i}}$ Vs $\mathrm{m}_{\mathrm{Hpm}}$

$\mathrm{H}_{1} 126 \mathrm{GeV}$: mass region

© $\mathbf{M H i}_{\text {Vs }} \mathbf{m}_{\mathrm{Hpm}}$

$\mathrm{H}_{1} 126 \mathrm{GeV}$: mass region

© $\mathbf{M H i}_{\mathbf{~ V s}} \mathbf{m}_{\mathrm{Hpm}}$

$\mathrm{H}_{2} 126 \mathrm{GeV}$: mass region

○ $\mathbf{M}_{\mathbf{H i}}$ Vs $\mathbf{m}_{\mathbf{H p m}}$

$\mathrm{H}_{2} 126 \mathrm{GeV}$: mass region

O $\mathbf{M}_{\mathbf{H i}}$ VS $\mathrm{m}_{\mathrm{Hpm}}$

$\mathrm{H}_{2} 126 \mathrm{GeV}$: mass region

© $\mathbf{M}_{\mathbf{H i}}$ VS $\mathbf{m}_{\mathbf{H p m}}$

$\mathrm{H}_{3} 126 \mathrm{GeV}$: mass region

© $\mathbf{M}_{\mathbf{H i}}$ VS $\mathbf{m}_{\mathbf{H p m}}$

$\mathrm{H}_{3} 126 \mathrm{GeV}$: mass region

- $\mathbf{M}_{\mathbf{H i}}$ Vs $\mathbf{m}_{\mathrm{Hpm}}$

H_{3}-126	H_{3}-126
h_{V}	h_{v}
$\mathrm{S}^{\text {S }}$	
	${ }_{\text {H }}^{\text {H }}$

$\mathrm{H}_{3} 126 \mathrm{GeV}$: mass region

○ $\mathbf{M}_{\mathbf{H i}}$ Vs $\mathbf{m}_{\mathbf{H p m}}$

H1 126 GeV , SM-like

H_{1} as 126 GeV SM-like Higgs

- grey: pass exp
- pink: $124<\mathrm{mH}_{\mathrm{H}}<128 \mathrm{GeV}$
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{1} region $I A, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}>0.7$
- H_{1} region $I B, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{h v}\right|^{2}<0.7$
- H_{1} region II, $m_{A 1}<m_{H 1} / 2, H_{1} \rightarrow A_{1} A_{1}$
- black: perturbativity till mat

$H_{1} 126 \mathrm{GeV}: \mathrm{m}_{\mathrm{H} 1}$ vs. para.

- grey: pass exp
- pink: $124<m \mathrm{mil}<128 \mathrm{GeV}$
- green, black: satisfy $\sigma X B r(y Y, W W)$ - black: perturbativity till maut

$H_{1} 126 \mathrm{GeV}: \mathrm{m}_{\mathrm{H} 1}$ vs. para.

```
- grey: pass exp
```

- pink: $124<m_{\mathrm{H} 1}<128 \mathrm{GeV}$
- green, black: satisfy $\sigma X B r(y y, W W)$ - black: perturbativity till mgut

Impose CS requirement does NOT shrink the parameter regions.

S
(c)

(d)

H1 126 GeV : para regions

$\tan \beta$	1 to 3.5	1.5 to 2.5	1 to 3.5
$\mathrm{~m}_{\mathrm{A}}$	0 to 200 GeV	150 to 200 GeV	100 to 200 GeV
λ	≥ 0.55	0.55 to 0.65	≥ 0.55
K	≥ 0.3	0.3 to 0.5	≥ 0.5

H1 126 GeV : para regions

$\tan \beta$	1 to 3.5	1.5 to 2.5	1 to 3.5
$\mathrm{~m}_{\mathrm{A}}$	0 to 200 GeV	150 to 200 GeV	100 to 200 GeV
λ	≥ 0.55	0.55 to 0.65	≥ 0.55
K	≥ 0.3	0.3 to 0.5	≥ 0.5

$H_{1} 126 \mathrm{GeV}$: stops

- grey: pass exp
- pink: 124 < mil < 128 GeV
- green, red, purple, black: satisfy $\sigma \mathrm{XBr}(\mathrm{yY}, \mathrm{WW})$
- H_{1} region $\left|A, \mathrm{~m}_{\mathrm{A} 1}>\mathrm{m}_{\mathrm{H}} / 2,\left|\xi_{\mathrm{H}_{1}}{ }^{\mathrm{hv}}\right|^{2}>0.7\right.$
- H_{1} region IB, $\mathrm{m}_{\mathrm{A} 1}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}<0.7$

$H_{1} 126 \mathrm{GeV}$: stops

- grey: pass exp
- pink: $124<\mathrm{mH}_{\mathrm{H}}<128 \mathrm{GeV}$
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{1} region $\left|A, m_{A 1}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hv }}\right|^{2}>0.7\right.$

$H_{1} 126 \mathrm{GeV}$: stops

- grey: pass exp
- pink: 124 < min < 128 GeV
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{1} region $I A, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}>0.7$

Parameter regions

	$H_{1} 126$	perturbativity	$m_{A 1}<m_{H 1} / 2$
$\tan \beta$	1 to 3.5	1.5 to 2.5	1 to 3.5
m_{A}	0 to 200 GeV	150 to 200 GeV	100 to 200 GeV
μ	$\mu \leq 500 \mathrm{GeV}$	100 to 150 GeV	100 to 200 GeV
λ	≥ 0.55	0.55 to 0.6 .5	≥ 0.55
K	≥ 0.3	0.3 to 0.5	≥ 0.5
A_{K}	-1200 to 200 GeV	$\mathbf{- 1 5 0}$ to 100 GeV	-50 to 30 GeV
A_{Λ}	-650 to 300 GeV	$\mathbf{- 3 0}$ to 230 GeV	-150 to 150 GeV
$\left\|A_{t}\right\|$		$\geq 1200 \mathrm{GeV}$	

$H_{1} 126 \mathrm{GeV}$: cross sections

- $\sigma_{Y Y}$ VS $\sigma_{W w}$

- Brww vs $\mathrm{Br}_{\mathrm{bb}}$

- grey: pass exp
- pink: 124 < $\mathrm{m}_{\mathrm{ml}}<128 \mathrm{GeV}$
- green, red, purple, black: satisfy $\sigma \mathrm{XBr}(\mathrm{yy}, \mathrm{WW})$
- H_{1} region $\left|A, m_{A_{1}}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{H 1}{ }^{\text {hy }}\right|^{2}>0.7\right.$

- H_{1} region II, $\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{\mathrm{H}} / 2, H_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}}$

$H_{1} 126$ GeV: hve, Hv-, S- fraction


```
- grey: pass exp
- pink: 124 < m+1 < 128 GeV
- green, red, purple, black: satisfy \sigmaXBr(yy, WW)
- \(\mathrm{H}_{1}\) region \(\left|A, m_{A_{1}}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hv }}\right|^{2}>0.7\right.\)
```



```
- \(\mathrm{H}_{1}\) region II, \(\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{\mathrm{H}} / 2, \mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}}\)
- black: perturbativity till maut
```


$H_{1} 126$ GeV: hve, Hv-, S- fraction


```
- grey: pass exp
- pink: 124 < m+1 < 128 GeV
- green, red, purple, black: satisfy \sigmaXBr(yy, WW)
- \(\mathrm{H}_{1}\) region \(I A, m_{\mathrm{A}_{1}}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hv }}\right|^{2}>0.7\)
```



```
- \(\mathrm{H}_{1}\) region II, \(\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{\mathrm{H}} / 2, \mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}}\)
- black: perturbativity till maut
```


$H_{1} 126$ GeV: hve, Hv-, S- fraction


```
- grey: pass exp
- pink: 124< m+1 < }128\textrm{GeV
- green, red, purple, black: satisfy \sigmaXBr(yy, WW)
- \(\mathrm{H}_{1}\) region \(I A, m_{\mathrm{A}_{1}}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hvv }}\right|^{2}>0.7\)
```



```
- \(\mathrm{H}_{1}\) region II, \(\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{\mathrm{H} 1} / 2, \mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}, ~}^{\text {l }}\)
- black: perturbativity till maut
```


$H_{1} 126$ GeV: hv-, Hv-, S- fraction

S. Su

- grey: pass exp
- pink: 124 < $\mathrm{m}_{\mathrm{m}}<128 \mathrm{GeV}$
- green, red, purple, black: satisfy $\sigma \mathrm{XBr}(\mathrm{yY}, \mathrm{WW})$
- H_{1} region $\left|A, m_{A_{1}}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hv }}\right|^{2}>0.7\right.$
- H_{1} region IB, $\mathrm{m}_{\mathrm{A}_{1}>\mathrm{m}_{\mathrm{H} 1} / 2,\left|\xi_{\mathrm{H} 1}{ }^{\text {hv }}\right|^{2}<0.7}$
- H_{1} region II, $\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{\mathrm{H} 1} / 2, \mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}}$
- black: perturbativity till maut

$H_{1} 126$ GeV: hv-, Hv-, S- fraction

S. Su

- grey: pass exp

- pink: 124 < mit < 128 GeV
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{1} region $I A, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}>0.7$
- H_{1} region $I B, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}<0.7$
- H_{1} region II, $m_{A 1}<m_{H 1} / 2, H_{1} \rightarrow A_{1} A_{1}$
- black: perturbativity till mgut

$H_{1} 126$ GeV: hv-, Hv-, S- fraction

S. Su

- grey: pass exp
- pink: 124 < mmı < 128 GeV
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{1} region $I A, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1}{ }^{\text {hv }}\right|^{2}>0.7$
- H_{1} region $I B, m_{A 1}>m_{H 1} / 2,\left|\xi_{H 1} 1^{h v}\right|^{2}<0.7$
- H_{1} region II, $\mathrm{m}_{\mathrm{A}_{1}<\mathrm{m}_{H 1} / 2, \mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}}$
- black: perturbativity till mgut

$H_{1} 126$ GeV: hv-, Hv-, S- fraction

$H_{1} 126$ GeV: hv-, Hv-, S- fraction

$H_{1} 126$ GeV: hv-, Hv-, S- fraction

$\mathrm{H}_{2} 126 \mathrm{GeV}$, SM-like

H_{2} as 126 GeV SM-like Higgs

- grey: pass exp
- pink: $124<m_{\mathrm{H}}$ < 128 GeV
- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{2} region $\left|A, m_{H_{1}}>\mathrm{m}_{\mathrm{H} 2} / 2,\left|\xi_{\mathrm{H} 2}{ }^{\mathrm{hv}}\right|^{2}>0.5\right.$
- H_{2} region $I B, m_{H 1}>m_{H 2} / 2,\left|\xi_{H 2}{ }^{\text {hv }}\right|^{2}<0.5$
- H_{2} region II, $\mathrm{m}_{\mathrm{H} 1}<\mathrm{m}_{\mathrm{H} 2} / 2, \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}$
- black: perturbativity till mat

Parameter regions

	$m_{H 2} \sim 126$	$H_{2} 126$	perturbativity	$m_{H 1}<m_{H 2} / 2$
$\tan \beta$	>1	1 to 3.25	1.5 to 2.5	1.25 to 2.5
m_{A}	0 to 200	100 to 200 GeV	170 to 200 GeV	125 to 200 GeV
μ	100 to 300	100 to 200 GeV	100 to 130 GeV	100 to 150 GeV
λ	0 to 0.75	0.4 to 0.75	0.5 to 0.7	0.5 to 0.75
K	0 to 1	≥ 0.05	0.05 to 0.6	≥ 0.3
A_{K}	-1200 to 50	-1200 to 50 GeV	-300 to 50 GeV	-500 to -250 GeV
A_{λ}	-600 to 300	-300 to 300 GeV	0 to 300 GeV	0 to 200 GeV

S. Su

Parameter regions

	$m_{H_{2}} \sim 126$	$H_{2} 126$	perturbativity	$m_{H 1}<m_{H 2} / 2$
$\tan \beta$	>1	1 to 3.25	1.5 to 2.5	1.25 to 2.5
m_{A}	0 to 200	100 to 200 GeV	170 to 200 GeV	125 to 200 GeV
μ	100 to 300	100 to 200 GeV	100 to 130 GeV	100 to 150 GeV
λ	0 to 0.75	0.4 to 0.75	0.5 to 0.7	0.5 to 0.75
K	0 to 1	≥ 0.05	0.05 to 0.6	≥ 0.3
A_{K}	-1200 to 50	-1200 to 50 GeV	-300 to 50 GeV	-500 to -250 GeV
A_{λ}	-600 to 300	-300 to 300 GeV	0 to 300 GeV	0 to 200 GeV

S. Su

$\mathrm{H}_{2} 126 \mathrm{GeV}$: cross sections

© $\sigma_{Y Y}$ VS $\sigma_{W W}$

- $\mathrm{Br}_{\mathrm{ww}}$ vs $\mathrm{Br}_{\mathrm{bb}}$

- grey: pass exp
- pink: $124<$ mнг $^{2} 128 \mathrm{GeV}$
- green, red, purple, black: satisfy $\sigma \mathrm{XBr}(\mathrm{yY}, \mathrm{WW})$
- H_{2} region $\mid \mathrm{IA}, \mathrm{m}_{\mathrm{H}_{1}>\mathrm{m}_{\mathrm{H}} / 2,\left|\xi_{\mathrm{H}_{2}}{ }^{\mathrm{hv}}\right|^{2}>0.5}$
- H_{2} region IB, $\mathrm{m}_{\mathrm{H}_{1}>\mathrm{m}_{\mathrm{H}} / 2,\left|\xi_{\mathrm{H}_{2}}{ }^{\text {hv }}\right|^{2}<0.5}$
- H_{2} region II, $\mathrm{m}_{\mathrm{H}_{1}<\mathrm{m}_{\mathrm{H}} / 2, \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}}$

- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$

- H_{2} region IB, $\mathrm{m}_{\mathrm{H}_{1}>\mathrm{m}_{\mathrm{H}} / 2,\left|\xi_{\mathrm{H} 2}{ }^{\text {hv }}\right|^{2}<0.5}^{2}$
- H_{2} region II, $\mathrm{m}_{\mathrm{H}_{1}<\mathrm{m}_{\mathrm{H}} / 2, \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}}$
- black: perturbativity till mat

12 (1 ,

- green, red, purple, black: satisfy $\sigma X B r(y Y, W W)$
- H_{2} region $\left|A, m_{H_{1}}>\mathrm{m}_{\mathrm{H}} / 2,\left|\xi_{\mathrm{H}_{2}}{ }^{\text {hv }}\right|^{2}>0.5\right.$
- H_{2} region IB, $\mathrm{m}_{\mathrm{H} 1}>\mathrm{m}_{\mathrm{H} 2} / 2,\left|\xi_{\mathrm{H} 2}{ }^{\mathrm{hv}}\right|^{2}<0.5$
- H_{2} region II, $\mathrm{m}_{\mathrm{H} 1}<\mathrm{m}_{\mathrm{H}} / 2, \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}$
- black: perturbativity till mgut

LHC phenomenology

LHC phenomenology

LHC phenomenology

- $\mathrm{H}_{1}-126, \mathrm{~A}_{1}$ decay

LHC phenomenology

- $\mathrm{H}_{1}-126$, decay to Higgs boson

$$
\begin{aligned}
& H_{1} \rightarrow A_{1} A_{1}, \quad Z A_{1}, \\
& H_{2} \rightarrow A_{1} A_{1}, \quad Z A_{1}, \quad H_{1} H_{1}, \\
& H_{3} \rightarrow A_{1} A_{1}, \quad H_{1} H_{1}, \quad Z A_{1}, \quad W^{ \pm} H^{\mp}, \quad A_{1} A_{2}, \quad H_{1} H_{2}, \quad H_{2} H_{2}, \quad H^{+} H^{-}, \\
& H^{ \pm} \rightarrow W^{ \pm} A_{1}, \quad W^{ \pm} H_{2}, \quad W^{ \pm} H_{1}, \\
& A_{1} \rightarrow Z H_{1}, \\
& A_{2} \rightarrow A_{1} H_{1}, \quad A_{1} H_{2}, \quad W^{ \pm} H^{\mp}, \quad Z H_{1}, \quad Z H_{2}, \quad Z H_{3}, \quad A_{1} H_{3},
\end{aligned}
$$

LHC phenomenology

- $\mathrm{H}_{1}-126, \mathrm{H}_{1}, \mathrm{H}_{2}$ decay

LHC phenomenology

o $\mathrm{H}_{1}-126, \mathrm{H}_{3}, \mathrm{H}^{ \pm}$decay

LHC phenomenology

$\bigcirc H_{1-126, ~} A_{1}, A_{2}$ decay

LHC phenomenology

- $\mathrm{H}_{2}-126$, decay to Higgs bosons

$$
\begin{aligned}
& H_{2} \rightarrow H_{1} H_{1}, \\
& H_{3} \rightarrow H_{1} H_{1}, \quad H_{1} H_{2}, \quad Z A_{1}, \quad A_{1} A_{1}, \quad H_{2} H_{2}, \\
& H^{ \pm} \rightarrow W^{ \pm} H_{1}, \quad W^{ \pm} A_{1}, \quad W^{ \pm} H_{2}, \\
& A_{1} \rightarrow Z H_{1}, \quad Z H_{2}, \\
& A_{2} \rightarrow Z H_{1}, \quad A_{1} H_{1}, \quad A_{1} H_{2}, \quad Z H_{2}, \quad W^{ \pm} H^{\mp}, \quad Z H_{3}, \quad A_{1} H_{3},
\end{aligned}
$$

Conclusion (part I)

- $126 \pm 2 \mathrm{GeV}\left(\sim S M\right.$ strength) in NMSSM: low m_{A} region
- small $\mathrm{m}_{\mathrm{A}}(\leq 200 \mathrm{GeV})$, all Higgses light, possible large mixing effects
- singlet helps to lift mass: large λ, small tan β
- mixing with singlet, change Г ${ }_{\mathrm{bb}}, \Gamma_{\text {wwizz, }} . .$.
- MSSM
- $\mathrm{m}_{\mathrm{A}} \sim \mathrm{m}_{\mathrm{z}}$, non-decoupling, $\mathrm{H}^{0} \mathrm{SM}$-like
- $m_{A} \geq 300 \mathrm{GeV}$, decoupling, h^{0} SM-like
- stops either heavy or large LR-mixing
- NMSSM
- m_{A} : 0-200 GeV
- either H_{1} or H_{2} SM-like (hard to realize $\mathrm{H}_{3} \mathrm{SM}$-like)
- interesting features in each region
- stop sector less constrained
S. Su

Conclusion (part I)

- $\mathrm{H}_{1} 126 \mathrm{GeV}$
$-\lambda \geq 0.55, \mathrm{~K} \geq 0.3,1 \leq \tan \beta \leq 3.5$
- H_{1} SM h-like, $\mathrm{H}_{2}, \mathrm{H}_{3} \mathrm{~S}$-H mixture
$-H_{1} \rightarrow A_{1} A_{1}: H_{1}, H_{2}$ h-H mixture, H_{3} S-like
- $\mathrm{H}_{2} 126 \mathrm{GeV}$
$-0.4 \leq \lambda \leq 0.75, \quad \mathrm{~K} \geq 0.05,1 \leq \tan \beta \leq 3.25$
$-100 \leq m_{A} \leq 200 \mathrm{GeV}$, small μ
- case with $\mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}$
- H_{2} h-S mixture, $\mathrm{H}_{3} \mathrm{~S}-\mathrm{H}$ mixture
$-\mathrm{H}_{1}, \mathrm{H}_{2}$, h-H-S mixture; H_{3} : S-H mixture
- $\mathrm{H}_{3} 126 \mathrm{GeV}$: fine tuned region, hard to realize

Conclusion (part I)

- relax perturbativity requirement, allowed region enlarge significantly
- SM-like Higgs signal might be modified: prod and decay
- yY rate can be enhanced, yy/WW, WW/bb ratios can be violated.
- New Higgs bosons may be readily produced
- production could be similar to that of the SM production
- decay could be larger than that of the SM.
- Heavy Higgs \rightarrow light Higgs bosons or light Higgs+W/Z, multiple t,b,tau

2HDM Higgs Sector

- Type II Two Higgs Doublet Model

$$
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right)+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right\}+\left\{\lambda_{6}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right\}
\end{aligned}
$$

- Z2 symmetry
- EWSB

$$
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \longrightarrow v_{d} / \sqrt{2}
$$

$$
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
$$

after EWSB, 5 physical Higgses $C P$-even Higgses: h^{0}, H^{0} CP-odd Higgs: A^{0} Charged Higgses: $\mathrm{H}^{ \pm}$

2HDM Higgs Sector

- Type II Two Higgs Doublet Model

$$
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left(x_{2}\right)+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right\}+\left\{\lambda_{6}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right\}
\end{aligned}
$$

- Z2 symmetry
- EWSB

$$
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} v_{d} / \sqrt{2}
$$

$$
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
$$

after EWSB, 5 physical Higgses CP-even Higgses: $\mathbf{h}^{0}, \mathrm{H}^{0}$ CP-odd Higgs: A ${ }^{0}$ Charged Higgses: $\mathbf{H}^{ \pm}$

2HDM Higgs Sector

- Type II Two Higgs Doublet Model

$$
\begin{aligned}
& V\left(\Phi_{1}, \Phi_{2}\right)=m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\frac{2}{2 \dagger \pi}+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)
\end{aligned}
$$

- Z2 symmetry
- EWSB

$$
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} v_{d} / \sqrt{2}
$$

$$
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
$$

after EWSB, 5 physical Higgses CP-even Higgses: $\mathbf{h}^{0}, \mathrm{H}^{0}$ CP-odd Higgs: A ${ }^{0}$ Charged Higgses: $\mathrm{H}^{ \pm}$

2HDM Higgs Sector

- couplings

$\xi_{h}^{V V}$	$\sin (\beta-\alpha)$	$\xi_{H}^{V V}$	$\cos (\beta-\alpha)$	$\xi_{A}^{V V}$	0
ξ_{h}^{u}	$\cos \alpha / \sin \beta$	ξ_{H}^{u}	$\sin \alpha / \sin \beta$	ξ_{A}^{u}	$\cot \beta$
ξ_{h}^{d}	$-\sin \alpha / \cos \beta$	ξ_{H}^{d}	$\cos \alpha / \cos \beta$	ξ_{A}^{d}	$\tan \beta$
ξ_{h}^{l}	$-\sin \alpha / \cos \beta$	ξ_{H}^{l}	$\cos \alpha / \cos \beta$	ξ_{A}^{l}	$\tan \beta$

- parameters

$$
m_{11}^{2}, m_{22}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \longrightarrow v, \tan \beta, \alpha, m_{h}, m_{H}, m_{A}, m_{H^{ \pm}}
$$

- Theoretical constrains
- vacuum stability
- perturbativity
- unitarity
- $\Delta \rho$
S. Su
- Experimental constraints
- LEP Higgs searches (neutral Higgs, charged Higgs)
- Tevatron Higgs searches
- LHC Higgs searches (SM-like Higgs searches, MSSM Higgs searches)

2HDM Higgs Sector

o previous work in 2HDM...

Ferreira et. al., 1112.3772, 2HDM, H1 125, $\tan \beta$ vs. sin a Basso et. al., 1205.6569, CP violating 2HDM, H1 125, Cheon et. al., 1207.1083, Type II 2HDM, H1 or H2 125
Chang et. al., 1210.3439, 2HDM, H1 or H2 or degenerate H1/A, x2 fit
Drozd et. al., 1211.3580, Type I and II 2HDM, H1 or H2 125 or degenerate, $\mathrm{m}_{12}{ }^{2} \neq 0$, Craig and Thomas, 1207.4835, 2HDM, H1 125, various search channels
Ferreira et. al., 1211.3131, degenerate Higgses

Our work:

- Type II 2HDM with $\mathrm{m}_{12}{ }^{2}=0,5$ parameter scan
- impose theoretical and experimental constraints
- h^{0} or $\mathrm{H}^{0} 126 \mathrm{GeV}$
- study parameter space and correlations

Analyses Methods

$$
\odot h^{0}-126
$$

$0.25 \leq \tan \beta \leq 5$
 $-1 \leq \sin (\beta-\alpha) \leq 1$

$126 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}} \leq 1000 \mathrm{GeV}$
$20 \mathrm{GeV} \leq \mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{Hpm}} \leq 1000 \mathrm{GeV}$

- $\mathrm{H}^{\mathbf{0}} \mathbf{- 1 2 6}$

$$
\begin{gathered}
1 \leq \tan \beta \leq 30 \\
-1 \leq \sin (\beta-\alpha) \leq 1
\end{gathered}
$$

$$
6 \mathrm{GeV}<\mathrm{m}_{H}<121 \mathrm{GeV}
$$

$20 \mathrm{GeV} \leq \mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{Hpm}} \leq 1000 \mathrm{GeV}$

$$
0.9<\frac{\sigma(g g \rightarrow h / H \rightarrow \gamma \gamma)}{\sigma_{\mathrm{SM}}}<2.2, \quad 0.2<\frac{\sigma(g g \rightarrow h / H \rightarrow V V)}{\sigma_{\mathrm{SM}}}<1.4
$$

2HDM Calculator (2HDMC) + HIGGSBOUNDS (+ latest LHC bounds) + SUPERISO for flavor constraints

$h^{0} 126 \mathrm{GeV}$

Light CP-even Higgs as 126 GeV SM-like Higgs

Type II 2HDM: $h^{0} 126 \mathrm{GeV}$

$$
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\operatorname{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
$$

Type II 2HDM: $h^{0} 126 \mathrm{GeV}$

Type II 2HDM: $h^{0} 126 \mathrm{GeV}$

$$
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\operatorname{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
$$

$\stackrel{\text { ๓ }}{\text { ฐ }}$| $\frac{\sigma}{\sigma_{\mathrm{SM}}}(\mathrm{gg} \rightarrow \mathrm{h})$ | $\quad \sin ^{2} \alpha$ |
| :--- | :--- |
| $\frac{\left\|A\left(\tau_{b}\right)\right\|^{2}}{\cos ^{2} \beta} \frac{\left.A\left(\tau_{t}\right)\right\|^{2}}{\|c\|}$ | |

Type II 2HDM: $h^{0} 126 \mathrm{GeV}$

$$
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\operatorname{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
$$

Type II 2HDM: $h^{0} 126 \mathrm{GeV}$

$h^{0} 126$ GeV: yy vs. WW correlation

S. Su

$h^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$

$h^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$

S. Su

$h^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$

$h^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$

S. Su

$h^{0} 126 \mathrm{GeV}: \mathrm{m}_{\mathrm{H}}$ vs. $\tan \beta$

$\sin (\beta-\alpha)<0$

S. Su
$\sin (\beta-\alpha)>0$

S. Su

$h^{0} 126 \mathrm{GeV}: \mathrm{m}_{\mathrm{Hpm}}$ vs. $\tan \beta$

$\sin (\beta-\alpha)<0$

S. Su
$\sin (\beta-\alpha)>0$

$h^{0} 126 \mathrm{GeV}: m_{\mathrm{A}}$ vs. $\tan \beta$

$\sin (\beta-\alpha)<0$

S. Su
$\sin (\beta-\alpha)>0$

$\sin (\beta-\alpha)<0$

S. Su
$\sin (\beta-\alpha)>0$

$h^{0} 126 \mathrm{GeV}: \mathrm{m}_{\mathrm{A}}$ vs. m_{H}

h ${ }^{0} 126 \mathrm{GeV}:$ bb/tт

S. Su

$h^{0} 126$ GeV: Yy and WW/ZZ

S. Su

64

$\mathrm{H}^{0} 126 \mathrm{GeV}$

Heavy CP-even Higgs as 126 GeV SM-like Higgs

Type II 2HDM: H ${ }^{0} 126 \mathrm{GeV}$

$H^{0} 126 \mathrm{GeV}$: yy and WW

S. Su

67

$H^{0} 126$ GeV: yy vs. WW correlation

$H^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$ vs. $\tan \beta$

S. Su

$H^{0} 126 \mathrm{GeV}: \sin (\beta-\alpha)$ vs. $\tan \beta$

S. Su

$H^{0} 126 \mathrm{GeV}: \mathrm{h}^{0}$

S. Su

$H^{0} 126 \mathrm{GeV}: m_{A}$ vs. $\sin (\beta-\alpha), \tan \beta$

$H^{0} 126 \mathrm{GeV}: m_{\text {Hpm }}$ vs. $\sin (\beta-\alpha), \tan \beta$

S. Su

$H^{0} 126 \mathrm{GeV}: m_{\mathrm{h}}$ vs. $\mathrm{m}_{\mathrm{A} / \mathrm{Hpm}}$

S. Su

$H^{0} 126 \mathrm{GeV}: ~ y y ~ a n d ~ W W ~$

S. Su

$\tan \beta$ $\frac{\sigma}{\sigma_{\mathrm{SM}}}(\mathrm{VBF} / \mathrm{VH} H=\mathrm{H} \rightarrow \mathrm{WW})$

$\mathrm{H}^{0} 126 \mathrm{GeV}$: bb and it

Conclusion (part II)

- 125 GeV (~SM strength) in Type II 2HDM
- parameters and $\sigma \mathrm{XBr}$ study
- $\mathrm{h}^{0} 125 \mathrm{GeV}$
- small tan $\beta \leq 4$
$-\sin (\beta-\alpha)-\tan \beta$ branches (with flavor)
- correlations between m_{H} and $\tan \beta$
- correlation between m_{A} and $m_{H p m}$ for $\sin (\beta-\alpha)>0$

- correlation between YY and WWIZZ
- $\mathbf{H}^{0} 125 \mathrm{GeV}$
- accommodate large tan β
$-\sin (\beta-\alpha) \leq 0$ versus $\tan \beta$ branch (with flavor)
- m_{h} up to 126 GeV possible, with small m_{h} for $\sin (\beta-\alpha) \leq 0$
- correlation between m_{A} and $m_{H p m}$
s. Ébrrelation between Yy, WW/ZZ

