

SUSY-After-Higgs Workshhop

UC Davis

April 22-26, 2013

Searching for Supersymmetry with the ATLAS Detector at the LHC

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

SUSY States

SUSY posits a complete set of mirror states with $S_{SUSY} = |S_{SM} - \frac{1}{2}|$

Standard particles

- Stabilize Higgs mass for GUTs
- Can provide reasonable dark-matter candidate
- Minimum of two Higgs doublets

R Parity

To avoid lepton/baryon number violation can require that "SUSYness" is conserved, i.e., preserves an additive "parity" quantum number R such that $R_{SM} = +1$; $R_{SUSY} = -1$

If you can't get rid of SUSYness, then the lightest super-symmetric particle (LSP) must be stable → dark matter, missing energy

LSP is typically a "neutralino" (dark matter must be neutral); admixture of $\widetilde{W}^0, \widetilde{B}^0, \widetilde{H}^0, \widetilde{H}^0,$

But we know that SUSY is broken...

SUGRA: Local supersymmetry broken by **supergravity** interactions Phenomenology: LEP (usually χ_1^0) carries missing energy.

GMSB: Explicit couplings to intermediate-scale ($M_{EW} < \Lambda < M_{GUT}$) "messenger" **gauge** interactions **mediate** SUSY breaking. Phenomenology: Gravitino (\widetilde{G}) LSP; NLSP is χ_1^0 or $\widetilde{\tau}$. Content of χ_1^0 germane.

AMSB: Higher-dimensional SUSY breaking communicated to 3+1 dimensions via "Weyl **anomaly**".

Phenomenology: LSP tends to be \widetilde{W} , with χ_1^+ , χ_1^0 nearly degenerate.

The 8 TeV (2012) ATLAS Data Set

A total of 20.7 fb⁻¹ deemed to be adequate for SUSY analyses

The 7 TeV (2011) ATLAS Data Set

A total of 4.7 fb⁻¹ deemed to be adequate for SUSY analyses

The ATLAS Detector

Favorite Discriminating Variables

- E_T^{miss}: Transverse momentum imbalance
 ➢ LSP escapes detection (RP conserving SUSY)
- m_{eff}, H_T, etc: Transverse energy scale
 - > Strong production can reach high mass scales
 - ➤ "Scale chasing"
- m_{t2}, m_{ст}: Generalized (under-constrained) transverse mass
 ➢ When two copies of intermediate state are produced
- $\Delta \phi_x$: Minimum ϕ separation between E_T^{miss} vector and any object of type X.
 - LSP produced in intermediate-to-high mass decay
 - Separation between LSP and decay sibling
 - Jet backgrounds tend to have small separation
- Heavy Flavor: "Natural" preference for 3rd generation
 - \succ b jets, τ jets (now also c jets)

A

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

Mass scale [TeV]

	MSUGRA/CMSSM : 0 lep + j's + E _{T,miss}	L=5.8 fb1, 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q = g mass
	MSUGRA/CMSSM : 1 lep + j's + E _{T,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = g mass
S	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb1, 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV g mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$ AILAS
she	Pheno model : 0 lep + j's + $E_{\tau,miss}$	L=5.8 fb1, 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV \vec{q} mass $(m(\vec{g}) < 2$ TeV, light $\vec{\chi}_1^0$ Preliminary
arc	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{\tau miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV \widetilde{g} mass $(m(\widetilde{\chi}^0) < 200 \text{ GeV}, m(\widetilde{\chi}^z) = \frac{1}{2}(m(\widetilde{\chi}^0) + m(\widetilde{g}))$
Se	GMSB (INLSP): 2 lep (OS) + i's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV \widetilde{g} mass $(\tan\beta < 15)$
6	GMSB ($\tilde{\tau}$ NLSP)': 1-2 $\tilde{\tau}$ + j's + $E_{T_{miss}}$	L=20.7 fb ⁴ , 8 TeV [1210.1314]	1.40 TeV ĝ mass (tan\$ > 18)
ISI	GGM (bino NLSP) : $\gamma\gamma + E_{T miss}^{\gamma}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV \tilde{g} mass $(m(\chi_{1}^{0}) > 50 \text{ GeV})$
Id	GGM (wino NLSP) : γ + lep + $E_{T_{max}}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass Ldt = (4.4 - 20.7) fb
11	GGM (higgsino-bino NLSP) : $\gamma + b + E_{T miss}^{\gamma}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g mass (m(x ⁰ _c) > 220 GeV)
	GGM (higgsino NLSP) : Z + jets + E T miss	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV \widetilde{g} mass $(m(\widetilde{H}) > 200 \text{ GeV})$ (S = 7, 8 TeV
	Gravitino LSP : 'monojet' +ET.miss	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV F ^{Y/2} scale (m(G) > 10 ⁴ eV)
, P	$\tilde{q} \rightarrow b b \gamma^0$: 0 lep + 3 b-i's + E_{τ}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV \widetilde{g} mass $(m(\widetilde{\chi}^0) < 200 \text{ GeV})$
no no	ã→ttỹ ⁰ : 2 SS-lep + (0-3b-)i's + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	900 GeV \tilde{q} mass $(any m(\tilde{\chi}^0))$ 8 TeV, all 2012 data
d g	$\tilde{q} \rightarrow t t \tilde{\gamma}^0$: 0 lep + multi-i's + $E_{\tau \rightarrow t \tau}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV \tilde{q} mass $(m\bar{q}^0) < 300$ GeV) 0 TeV (set in 1.00 to the
30	$\tilde{q} \rightarrow t\bar{t}\gamma^0$: 0 lep + 3 b-i's + E_{τ}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV \tilde{q} mass $(m(\tilde{\chi}^0) < 200 \text{ GeV})$ o TeV, partial 2012 data
	$bb, b \rightarrow b\overline{\gamma}^{0+}$ 0 lep + 2-b-iets + E_{τ}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass (m(7. ⁰) < 120 GeV) 7 TeV, all 2011 data
S C	$\widetilde{bb}, \widetilde{b}, \rightarrow t\gamma^{\pm}$: 2 \$S-lep + (0-3b-)i's + E_{τ}	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	430 GeV b mass $(m(\overline{\chi}^{\pm}) = 2 m(\overline{\chi}^{0}))$
ark tio	\widetilde{tt} (light), $\widetilde{t} \rightarrow b\widetilde{\gamma}^{\pm}$; 1/2 lep (+ b-iet) + E_{\pm}	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102] 16	$(m(\chi^0) = 55 \text{ GeV})$
dni	\widetilde{t} (medium), $\widetilde{t} \rightarrow b \widetilde{\gamma}^{\pm}$: 1 lep + b-jet + E_{τ} mas	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	160-410 GeV t mass $(m(\bar{\chi}^0) = 0 \text{ GeV}, m(\bar{\chi}^\pm) = 150 \text{ GeV})$
S. OO	\widetilde{t} (medium), $\widetilde{t} \rightarrow b \widetilde{y}^{\pm}$: 2 lep + E_{τ}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV t mass $(m(\overline{\chi}^0) = 0 \text{ GeV}, m(\overline{\chi}) = 10 \text{ GeV})$
t p	\widetilde{t} (heavy), $\widetilde{t} \rightarrow t \widetilde{\gamma}^{0}$: 1 lep + b-iet + E_{τ}	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	200-610 GeV t mass $(m(\bar{\chi}^0) = 0)$
d g	$\tilde{t}t$ (heavy), $\tilde{t} \rightarrow t\gamma^0$: 0 lep + 6(2b-)jets + E_{τ}	L=20.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-024]	320-660 GeV t mass $(m(\tilde{\chi}_{0}^{0}) = 0)$
iig di 33	tt (natural GMSB) : Z(→II) + b-jet + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	500 GeV t mass $(m(\chi^0) > 150 \text{ GeV})$
	$\tilde{t}_{1}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z : Z(\rightarrow II) + 1 \text{ lep } + b \text{ -jet } + E_{-}^{T, \text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	520 GeV \tilde{t}_{n} mass $(m(\tilde{t}_{n}) = m(\tilde{\chi}^{0}) + 180 \text{ GeV})$
	$, \rightarrow _{2}^{\circ}: 2 \text{ lep } + E_{\tau}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 85	-195 GeV mass $(m(\chi^0) = 0)$
. 7:	$\tilde{\gamma}^+ \tilde{\gamma}^-, \tilde{\gamma}^+ \rightarrow \tilde{\nu}(\tilde{\gamma})^+; 2 \text{ lep } + E_{\pi}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV $\tilde{\chi}^{\pm}$ Mass $(m(\tilde{\chi}^0) < 10 \text{ GeV}, m(\tilde{\chi}^0) = \frac{1}{2}(m(\tilde{\chi}^{\pm}) + m(\tilde{\chi}^0)))$
N DE	$\chi^+\chi^-,\chi^+\to \tilde{\tau}\nu(\tilde{\tau}\tilde{\nu}): 2\tau + E_{\tau miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-028]	180-330 GeV $\tilde{\chi}^{\pm 1}_{+}$ MASS $(m(\bar{\chi}^0) < 10 \text{ GeV}, m(\bar{\tau}, \bar{\nu}) = \frac{1}{2} (m(\bar{\chi}^{\pm}) + m(\bar{\chi}^{\pm})))$
di la	$\chi^{\pm}\chi^{0} \rightarrow \tilde{l}, \nu \tilde{l}, l(\tilde{\nu}\nu), l\tilde{\nu}\tilde{l}, l(\tilde{\nu}\nu) : 3 \text{ lep } + E_{\pm}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-035]	600 GeV $\tilde{\chi}^{\pm}_{\perp}$ M3SS $(m(\bar{\chi}^{\pm}) = m(\bar{\chi}^{0}_{\perp}), m(\bar{\chi}^{0}) = 0, m(\tilde{l}, \bar{v})$ as above)
	$\widetilde{\gamma}^{\pm}\widetilde{\widetilde{\gamma}}^{0} \rightarrow W^{(*)}\widetilde{\gamma}^{0}Z^{(*)}\widetilde{\gamma}^{0}: 3 \text{ lep } + E_{\tau}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-035]	315 GeV $\tilde{\chi}^{\pm}$ Mass $(m(\tilde{\chi}^{\pm}) = m(\tilde{\chi}^{0}), m(\tilde{\chi}^{0}) = 0$, sleptons decoupled)
7	Direct $\tilde{\gamma}^{\mu}$ pair prod. (AMSB) : long-lived $\tilde{\gamma}^{\mu}$	L=4.7 fb ⁻¹ , 7 TeV [1210.2852]	220 GeV $\tilde{\chi}^{\pm}_{-}$ mass (1 < $\tau(\tilde{\chi}^{\pm})$ < 10 ns)
Vec	Stable q. R-hadrons : low B. By	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	985 GeV g mass
I'l I	GMSB, stable τ̃ : low β	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV $\tilde{\tau}$ mass (5 < tan β < 20)
ong	GMSB, $\chi^0 \rightarrow \gamma \tilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV $\tilde{\chi}_{4}^{0}$ MASS $(0.4 < \tau(\chi_{2}^{0}) < 2 \text{ ns})$
P L	$\tilde{\chi}^0 \rightarrow qq\mu (RPV)^1$: μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV \tilde{q} Mass (1 mm < ct < 1 m, \tilde{g} decoupled)
	LFV : pp $\rightarrow \tilde{v}_{*}+X, \tilde{v}_{*}\rightarrow e+\mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV \tilde{V}_{τ} MASS $(\lambda_{\tau m}^{2}=0.10, \lambda_{\tau m}=0.05)$
	LFV : pp $\rightarrow \tilde{v}_{\star} + X$, $\tilde{v}_{\star} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV \tilde{V}_{-} mass $(\lambda_{-}=0.10, \lambda_{-}==0.0)$
~	Bilinear RPV CMSSM : 1 lep + 7 j's + E T miss	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $\tilde{q} = \tilde{q}$ mass $(c\tau_{ros} < 1 \text{ mm})$
đ	$\tilde{\chi}^+ \tilde{\chi}, \tilde{\chi}^+ \rightarrow W \tilde{\chi}^0, \tilde{\chi}^0 \rightarrow eev e \mu v : 4 lep + E_{T mice}$	L=20.7 fb1, 8 TeV [ATLAS-CONF-2013-036]	760 GeV $\tilde{\chi}^{+}$ mass $(m(\chi^{0}) > 300 \text{ GeV}, \lambda_{eq} > 0)$
CC I	$\tilde{\gamma}^{\dagger}\tilde{\gamma}^{\dagger}$ $\tilde{\gamma}^{\dagger}\to\tau\tau\nu$ etv.: 3 lep + 1τ + E_{-}	L=20.7 fb1, 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\tilde{\chi}^+$ mass $(m(\tilde{\chi}^0) > 80 \text{ GeV}, \lambda_{so} > 0)$
	$\widetilde{q} \rightarrow q q q$; 3-iet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass
	q→tt, t→bs : 2 SS-lep + (0-3b-)j's + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	880 GeV Q MASS (any m(t))
	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV SQIUON MASS (incl. limit from 1110.2893)
WIM	IP interaction (D5, Dirac χ) : 'monojet' + $E_{T_{min}}$	L=10.5 fb1, 8 TeV [ATLAS-CONF-2012-147]	704 GeV M* scale (m _x < 80 GeV, limit of < 687 GeV for D8)
	7,006		
		10-1	<i>i i i i</i>

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Jets + MET in Minimal (MSUGRA) Paradigm

- Very basic signature
- Interpreted in fully-constrained model (five fundamental parameters)
- Employs "scale chasing" to limit backgrounds (high m_{eff})
- Maintains some low m_{eff} analyses

		Channel						
	Requirement	А	В	С	D	Е		
		2-jets	3-jets	4-jets	5-jets	6-jets		
	$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160						
	$p_{\rm T}(j_1) [{\rm GeV}] >$	¹³⁰ 6 fb ⁻¹ at 8 TeV						
	$p_{\mathrm{T}}(j_2) [\mathrm{GeV}] >$	60						
	$p_{\rm T}(j_3) [{\rm GeV}] >$	-	60	60	60	60		
	$p_{\rm T}(j_4)$ [GeV] >	-	-	60	60	60		
	$p_{\mathrm{T}}(j_5) [\mathrm{GeV}] >$	-	-	_	60	60		
_	$p_{\rm T}(j_6) [{\rm GeV}] >$	-	-	-	١	60		
	$\Delta \phi$ (jet, E_T^{miss}) _{min} [rad] >	0.4 (<i>i</i> = {1	,2,(3)})	$0.4 (i = \{1, 2,\})$	3}), $0.2(p_{\rm T})$	> 40 GeV jets)		
	$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$	0.3/0.4/0.4 (2j)	0.25/0.5/- (2j)	0.25/0.3/0.3 (4j)	0.15 (5j)	0.15/0.25/0.3 (6j)		
	$m_{\rm eff}({\rm incl.})$ [GeV] >	1900/1300/1000	1900/1300/-	1900/1300/1000	1700/-/-	1400/1300/1000		

- Plot shows one of 12 selections (some SRs have loose, medium, tight m_{eff} cut)
- Observed: 5 events; Expected: 6.3 ± 2.1
- $\sigma_{\rm NP}$ < 1.03 fb; typical for model point (best of 12 is C_{tight} at 0.57 fb)
- At each point in MSUGRA parameter space, choose SR with best expected sensitivity...

Jets+MET Exclusion in MSUGRA Parameter Space

Set limits in MSUGRA parameter space

➔To get a handle on scale, re-cast in MSUGRA-constrained generic squark and gluino mass space

 \rightarrow Excluded scale at $m_{gluino} = m_{squark}$ is ~ 1500 GeV

But many scenarios for which SUSY can still exist below 1500 GeV!

The gaps in coverage arise from many different considerations.

How do we identify them?

→ Reasoning and intuition: 3rd generation NLSP, no light strong partners, "compressed" scenarios, etc...

→ Brute force: model-space carpet bombing (e.g. "pMSSM"...)

The pMSSM

M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo

Our p(henomenological)MSSM

Now an ATLAS associate!

General CP-conserving MSSM with R-parity

- MFV at the TeV scale (CKM)
- Lightest neutralino/gravitino is the LSP.
- 1st/2nd generation sfermions degenerate
- Ignore 1st/2nd generation Yukawa's.
- No assumptions wrt SUSY-breaking

\rightarrow the <u>pMSSM</u> with 19/20 parameters

(Flat priors)

```
50 GeV \leq |M_1| \leq 4 TeV

100 GeV \leq |M_2, \mu| \leq 4 TeV

400 GeV \leq M_3 \leq 4 TeV

1 \leq \tan \beta \leq 60

100 GeV \leq M_A, l, e \leq 4 TeV

400 GeV \leq q_1, u_1, d_1 \leq 4 TeV

200 GeV \leq q_3, u_3, d_3 \leq 4 TeV

|A_{t,b,\tau}| \leq 4 TeV
```

 $1 \text{ eV} \le \text{m}_{3/2} \le 1 \text{ TeV} (\log \text{ prior})$

<u>Goal</u>: obtain ~225k points in each of these 2 spaces satisfying existing data then study their signatures @ the LHC & elsewhere.. NO FITS!

We're going for breadth not depth ! \rightarrow -

Minimal (constrained) vs. General Models

Idea #1: Are model-dependent linkages between masses fooling us?

SUSY-After-Higgs; UC Davis 2013

Jets+MET in a Generalized MSUGRA Scenario

Jets+MET interpreted with simplified model

- generic squark
- generic gluino
- χ⁰ LSP
- All other SUSY states decoupled
- Standard decay of SUSY particles to accessible states

➔ Limits in same range (scenario has at least one accessible strong partner

→ Again, excluded scale is ~1500 GeV for $m_{squark} = m_{gluino}$ (for light χ_1^{0}) Bruce Schumm SUSY-After-Higgs; UC Davis 2013

15

Compressed Scenarios

Idea #2: Is visible signature too soft to see or trigger on?

Small mass splittings can lead to signature with little visible energy

→ Even if E_T^{miss} is large, events can be buried in backgrounds or not even stored on disk
 → Requires complex triggers (object + E_T^{miss}) and clever analyses

Important weapon: Initial state radiation

- ATLAS is perfecting its modeling of ISR
- Can look for events for which ISR "stiffen" the visible content of the event
- Somewhat "up-and-coming"

Compression and the Jets+MET Analysis

	Channel						
Requirement	А	В	С	D	Е		
	2-jets	3-jets	4-jets	5-jets	6-jets		
$\Delta \phi$ (jet, E_T^{miss}) _{min} [rad] >	$0.4 \ (i = \{1, 2, (3)\})$		$0.4 \ (i = \{1, 2, 3\}), 0.2 \ (p_{\rm T} > 40 \text{ GeV jets})$				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.3/0.4/0.4 (2j)	0.25/0.3/- (3j)	0.25/0.3/0.3 (4j)	0.15 (5j)	0.15/0.25/0.3 (6j)		
$m_{\rm eff}({\rm incl.})$ [GeV] >	1900/1300/1000	1900/1300/-	1900/1300/1000	1700/-/-	1400/1300/1000		

Removal of m_{eff} cut for some SRs geared towards compressed scenarios

17

Strong vs. Electroweak Production

- ➔ probe high mass scale
- → steep mass dependence (~M⁻¹⁰)
- → beam energy vs. luminosity
- ➔ lower backgrounds

a

probe intermediate mass scales
 higher backgrounds

→ benefit from high ∫L·dt

However: if colored states are decoupled, EW production will dominate

- Dedicated EW prod. analyses
- Pure-EW simplified models (new!)

SUSY-After-Higgs; UC Davis 2013

EW Production Searches

Next Idea: Are non-colored states the only accessible states?

Many "natural" scenarios have fewhundred GeV gauginos, decoupled colored sparticles (except perhaps 3rd generation; see next section)...

- Multi-lepton signals
- $\succ E_T^{miss}$ from v and χ_1^0

Simplified model, only gauginos and sleptons light

Large backgrounds to content with(smaller cross section for given mass scale)

Multi-lepton + MET EW SUSY Searches

- Employ simplified models with bino, wino masses as free parameters; all else decoupled
- Can also have light sleptons

Example:

- $\chi_1^+ \chi_2^0$ degenerate wino NLSP, χ_1^0 bino LSP
- Two cases: only gauginos light, or also with generic left-handed slepton with mass half-way between bino and wino,
- Produce $\chi_1^+\chi_1^-$ or $\chi_1^+\chi_2^{0}$; involves opposite-sign, same-flavor lepton pair

3 Lepton + MET Weak-Production Search

Search for 3 leptons, including one same-flavor, opposite-sign pair
 Signal regions consider presence (SRZ) or absence (SRnoZ) of on-shell Z
 E_T^{miss}, transverse mass

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
mSFOS [GeV]	<60	60-81.2	<81.2 or >101.2	81.2-101.2	81.2-101.2	81.2-101.2
$E_{\rm T}^{\rm miss}$ [GeV]	>50	>75	>75	75-120	75-120	>120
$m_{\rm T}$ [GeV]	_	-	>110	<110	>110	>110
$p_{\mathrm{T}} 3^{\mathrm{rd}} \ell [\mathrm{GeV}]$	>10	>10	>30	>10	>10	>10
SR veto	SRnoZc	SRnoZc	-	_	_	-

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
Tri-boson	1.7 ± 1.7	0.6 ± 0.6	0.8 ± 0.8	0.5 ± 0.5	0.4 ± 0.4	0.29 ± 0.29
ZZ	14 ± 8	1.8 ± 1.0	0.25 ± 0.17	8.9 ± 1.8	1.0 ± 0.4	0.39 ± 0.28
tīV	0.23 ± 0.23	0.21 ± 0.19	$0.21^{+0.30}_{-0.21}$	0.4 ± 0.4	0.22 ± 0.21	0.10 ± 0.10
WZ	50 ± 9	20 ± 4	2.1 ± 1.6	235 ± 35	19 ± 5	5.0 ± 1.4
Σ SM irreducible	65 ± 12	22 ± 4	3.4 ± 1.8	245 ± 35	20 ± 5	5.8 ± 1.4
SM reducible	31 ± 14	7 ± 5	1.0 ± 0.4	4^{+5}_{-4}	1.7 ± 0.7	0.5 ± 0.4
ΣSM	96 ± 19	29 ± 6	$\textbf{4.4} \pm \textbf{1.8}$	249 ± 35	22 ± 5	6.3 ± 1.5
Data	101	32	5	273	23	6
<i>p</i> ₀ -value	0.41	0.37	0.40	0.23	0.44	0.5
N _{signal} excluded (exp)	39.3	16.3	6.2	67.9	13.2	6.7
$N_{\rm signal}$ excluded (obs)	41.8	18.0	6.8	83.7	13.9	6.5
σ_{visible} excluded (exp) [fb]	1.90	0.79	0.30	3.28	0.64	0.32
$\sigma_{\rm visible}$ excluded (obs) [fb]	2.02	0.87	0.33	4.04	0.67	0.31

3 Lepton + MET Analysis

Limits ~600 GeV when sleptons are accessible Softer limits without sleptons (vector boson BFs) Still at the ~1/2 TeV scale for now

SUSY-After-Higgs; UC Davis 2013

The One that Almost Got Away

Exploration of non-excluded pMSSM points revealed that a Heavy chargino scenario not considered!

Significant Z-mediated production of $\chi_2^{\ 0}\chi_3^{\ 0}$ if they contain significant higgsino admixture

Accessible right-handed sleptons → 4-lepton final state dominant

Compressed Scenarios in Weak Production

What to improve? (Anadi Canepa, ATLAS)

- Coverage of compressed scenarios using
 - low pT leptons
 - SS like search
 - mono-jet like search

(and perhaps also ISRenhanced events?)

Higgs in EW SUSY Decay Chains

Very important final state!

- Current sensitivity is very limited so dedicated signal regions are required
- Searches in the bb and tau-tau decay modes of the higgs are ongoing
- Combination will be boost the overall sensitivity
- Once finalized, search results should be presented in the context of the pMSSM

4/16/13

Anadi Canepa (SUSY Workshop)

12

Maximal mixing for 3rd generation: $\tilde{b}_1, \tilde{t}_1, \tilde{\tau}_1$ naturally lightest sfermions Naturalness suggests they might well be accessible Low cross-section to single chiral state (e.g. $\sigma_{stop-L} \approx 1/20 \sigma_{gluino}$) Challenging signatures with high backgrounds

- Look for **leptons**, **E**_T^{miss}, **b-tagged jets**
- Make use of **kinematic variables** ($\Delta \phi_{\text{jet,MET}}$, m_{T2},...)
- Stop can be more difficult than sbottom (softer jets)
- Gluino mass limits can be compromised if stop dominates decay chain

Assume left-handed stop only accessible colored state. Look for decays through

- t χ_1^0
- $b \chi_1^+$ with $\chi_1^+ \rightarrow W^{(*)} \chi_1^{0}$; assume some χ_1^+ mass (e.g. 150 GeV)

Limits around 600 GeV for $t\chi_1^0$; 500 GeV for $b\chi_1^+$

SUSY-After-Higgs; UC Davis 2013

Summary of Light-Stop Results

Reach for $b\chi_1^+$ analysis very dependent on χ_1^+ mass, but some sensitivity to regions not probed by $t\chi_1^{0}$ mass (avoid top in decay chain)

Gluino lower limits soften to ~1300 GeV if decay chain forced to go through sbottom, stop

N.B.: No lower limits on stau from direct stau production (look for 1-2 taus plus E_T^{miss}

The One that Got Away

- N₁, N₂, C₁ degenerate: sb sb and st st look alike.
- Final states (w/o soft fermions from C₁,N₂ decays) tb+LSP (44%) tt+LSP (33%), bb+LSP (15%)

Final State with Photons

Arise from bino-like NLSP

GMSB has χ_1^0 NLSP over much of parameter space

Pure bino NLSP: BR($\chi_1^0 \rightarrow \gamma G$) = cos² θ_W = 78%

Consider both pure bino-NLSP case as well as admixture

Signatures Considered:

Pure bino-like NLSP: **Diphoton + MET** (including non-pointing photons)

Higgsino Admixtue: **Photon + bjet(s) + MET**

Pure Wino NLSP (BR($\chi_1^0 \rightarrow \gamma G$) = sin² θ_W = 22%): Photon + lepton + MET

Bino-Like NLSP: The Diphoton + MET Search

Three signal regions: Two 50 GeV isolated photons plus:

.			
	SR A	SR B	SR C
$E_{\rm T}^{\rm miss} >$	$200{ m GeV}$	$100{ m GeV}$	$125{ m GeV}$
$H_{\rm T} >$	$600{ m GeV}$	$1100{ m GeV}$	-
$\Delta \phi_{\min}(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}) >$	0.5	-	0.5

A: Strong production, massive binoB: Strong production, light binoC: Weak production (SPS8 GMSB Model)

•7 TeV data only

- •Gluino limits above 1100 GeV for all bino mass
- •SPS8 (minimal GMSB) dominated by EW production ($\chi_2^0\chi_1^{\pm}$ and $\chi_1^{+}\chi_1^{-}$)

•SPS8 limits suggest sensitivity to ~550 GeV gauginos; GGM EW analysis under development for 8 TeV data

New: Non-Pointing Photons (Long-Lived Bino)

Coupling to gravity sector is unconstrained

Long-lived binos natural in cosmological and compressed scenarios

Fine η-segmentation of ATLAS calorimeter very advantageous

7 TeV data only

Require 1 tight, 1 loose photon

Fit to ZDCA distribution of loose photon

Result begs to be combined with prompt diphoton analysis (soon!)

SUSY-After-Higgs; UC Davis 2013

Photon + Lepton + MET: The Wino-Like NLSP

Yields	electron channel	muon channel
$W\gamma$	$6.1^{+2.5}_{-2.3}$	$8.6^{+2.9}_{-2.8}$
W + jets	0.5 ± 0.4	$0.3^{+0.4}_{-0.3}$
$t\bar{t}\gamma$	2.2 ± 1.0	2.3 ± 1.0
fully-leptonic tī	1.5 ± 0.4	$2.3^{+0.6}_{-0.8}$
semi-leptonic tī	$0.02^{+0.06}_{-0.02}$	$0.03^{+0.17}_{-0.01}$
single top	$0.2^{+0.1}_{-0.2}$	0.4 ± 0.2
WW, WZ, ZZ	0.9 ± 0.2	0.7 ± 0.3
$Z\gamma$	0.2 ± 0.1	0.3 ± 0.1
Z + jets	0.8 ± 0.7	0.1 ± 0.1
diphoton	$0.5^{+0.7}_{-0.5}$	_
γ + jets	0.1 ± 0.3	_
total predicted	13.0 ± 3.4	15.1 ± 3.6
data	15	11

- •Can proceed via strong or EW production
- Photon from photino-like component of neutral wino
- Lepton from chargino

•Require $E_T^{miss} > 100 \text{ GeV}; m_T > 100 \text{ GeV}$

Photon + bjet(s) + MET: Higgs in the Decay Chain!

Also require $E_T^{miss} > 150 \text{ GeV}, m_T > 100 \text{ GeV}$ Model: Free parameters are gluino, χ_1^{0} mass Adjust M_1 , μ ($\mu < 0$) to maintain $BR[\chi_1^{0} \rightarrow (\gamma, h, Z)G] = (56,33,11)\%$ Probe strong scales to 900 GeV, weak to 350 GeV

First SUSY analysis with final-state Higgs!

Also can have $\mu > 0$

To explore this, are creating grid with BR[$\chi_1^0 \rightarrow (\gamma, h, Z)$ G] = (50, 2, 48)%

Few b-jets or leptons

Photon + njets + MET is final neutralino-NLSP-inspired signature to be explored

Disappearing Tracks!!! (+ E_T^{miss})

Disappearing track → few TRT hits

AMSB: Chargino/Neutralino naturally quasi-degenerate

- Long-lived states
- Asymmetric decay
- ➔ Disappearing tracks
- → TRT is critical component

- No discoveries claimed
- SUSY scale pushed up to 1500 GeV for standard scenarios
- ➢ If only gauginos or 3rd generation squarks accessible, limits in 500-600 GeV range
- Light stau with interediate (~1 TeV) gauginos is a challenge
- ➤ Many analyses have yet to update to 20 fb⁻¹ at 8 TeV
- > Have ~2 years to continue looking for holes in coverage
- > As gaps become more contrived, motivation may wane
- > 14 TeV will be welcome, but maybe we're getting a little jaded.
- Pray to the Goddess for new states!

Back-Up

