Sabine Kraml LPSC Grenoble

(Nearly) Degenerate Higgs Bosons Theory motivations and questions

HEFTI Higgs Signal Workshop, UC Davis, 22-26 April 2013

- Our original motivation to be interested in the possibility of (quasi)degenerate Higgs bosons was the enhanced $\gamma\gamma$ signal rate:
- In a variety of multi-Higgs models, a γγ enhancement is associated with the observed state at ~125 GeV mixing with a nearby (unobserved) 2nd Higgs-like state.
- With a little tuning, this 2nd state can easily be made degenerate with the observed one.

- Our original motivation to be interested in the possibility of (quasi)degenerate Higgs bosons was the enhanced $\gamma\gamma$ signal rate:
- In a variety of multi-Higgs models, a γγ enhancement is associated with the observed state at ~125 GeV mixing with a nearby (unobserved) 2nd Higgs-like state.
- With a little tuning, this 2nd state can easily be made degenerate with the observed one.

Examples:

- ★ h I and h2 in the NMSSM Ellwanger, 112.3548 Gunion, Jiang, SK, 1207.1545
- \star Higgs and radion in RS models

Grzadkowski, Gunion, Toharia, 1202.5017

★ h/H/A in 2HDM Ferreira, Haber, Sanots, Silva, 1211.3131 Drozd, Grzadkowski, Gunion, Jiang, 1211.3580

- Our original motivation to be interested in the possibility of (quasi)degenerate Higgs bosons was the enhanced $\gamma\gamma$ signal rate:
- In a variety of multi-Higgs models, a γγ enhancement is associated with the observed state at ~125 GeV mixing with a nearby (unobserved) 2nd Higgs-like state.
- With a little tuning, this 2nd state can easily be made degenerate with the observed one.

Examples:

- ★ h I and h2 in the NMSSM Ellwanger, 112.3548 Gunion, Jiang, SK, 1207.1545
- \star Higgs and radion in RS models

Grzadkowski, Gunion, Toharia, 1202.5017

★ h/H/A in 2HDM Ferreira, Haber, Sanots, Silva, 1211.3131 Drozd, Grzadkowski, Gunion, Jiang, 1211.3580

- Our original motivation to be interested in the possibility of (quasi)degenerate Higgs bosons was the enhanced $\gamma\gamma$ signal rate:
- In a variety of multi-Higgs models, a γγ enhancement is associated with the observed state at ~125 GeV mixing with a nearby (unobserved) 2nd Higgs-like state.
- With a little tuning, this 2nd state can easily be made degenerate with the observed one.
- Even without $\gamma\gamma$ enhancement the question

"is there more than one Higgs hiding in the I25 GeV signal ?"

is an intriguing one.

Next-to-minimal SUSY

• MSSM with the addition of a singlet superfield

$$W_{\rm MSSM} = \mu H_u H_d + \dots \rightarrow W_{\rm NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$

• Neutral Higgs sector: 3 CP-even states (h₁, h₂, h₃); 2 CP-odd states (a₁, a₂)

$$h_{1} = S_{1,d}H_{d} + S_{1,u}H_{u} + S_{1,s}S,$$

$$h_{2} = S_{2,d}H_{d} + S_{2,u}H_{u} + S_{2,s}S,$$

$$h_{3} = S_{3,d}H_{d} + S_{3,u}H_{u} + S_{3,s}S.$$

$$\frac{g_{h_ibb}}{g_{H_{SM}bb}} = \frac{S_{i,d}}{\cos\beta}, \quad \frac{g_{h_iVV}}{g_{H_{SM}VV}} = \cos\beta S_{i,d} + \sin\beta S_{i,u}$$

• Extra tree-level contribution to Higgs mass ~ $\lambda^2 v^2 \sin 2\beta$

Next-to-minimal SUSY

• MSSM with the addition of a singlet superfield

$$W_{\rm MSSM} = \mu H_u H_d + \dots \rightarrow W_{\rm NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$

• Neutral Higgs sector: 3 CP-even states (h₁, h₂, h₃); 2 CP-odd states (a₁, a₂)

$$\begin{array}{l} \text{MSSM} \twoheadrightarrow & h_1 = S_{1,d}H_d + S_{1,u}H_u + S_{1,s}S, \\ & h_2 = S_{2,d}H_d + S_{2,u}H_u + S_{2,s}S, \\ & h_3 = S_{3,d}H_d + S_{3,u}H_u + S_{3,s}S. \end{array}$$

$$\frac{g_{h_i b b}}{g_{H_S M b b}} = \frac{S_{i,d}}{\cos \beta}, \quad \frac{g_{h_i V V}}{g_{H_S M V V}} = \cos \beta S_{i,d} + \sin \beta S_{i,u}$$

• Extra tree-level contribution to Higgs mass ~ $\lambda^2 v^2 \sin 2\beta$

Next-to-minimal SUSY

• MSSM with the addition of a singlet superfield

$$W_{\rm MSSM} = \mu H_u H_d + \dots \rightarrow W_{\rm NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$

• Neutral Higgs sector: 3 CP-even states (h₁, h₂, h₃); 2 CP-odd states (a₁, a₂)

$$\begin{array}{l} \text{MSSM} \twoheadrightarrow & h_1 = S_{1,d} H_d + S_{1,u} H_u + S_{1,s} S, \\ & h_2 = S_{2,d} H_d + S_{2,u} H_u + S_{2,s} S, \\ & h_3 = S_{3,d} H_d + S_{3,u} H_u + S_{3,s} S. \end{array}$$

$$\frac{g_{h_ibb}}{g_{H_{SM}bb}} = \frac{S_{i,d}}{\cos\beta}, \quad \frac{g_{h_iVV}}{g_{H_{SM}VV}} = \cos\beta S_{i,d} + \sin\beta S_{i,u}$$

• Extra tree-level contribution to Higgs mass ~ $\lambda^2 v^2 \sin 2\beta$

Ulrich's talk just afterwards

Enhancement of $\gamma\gamma$ rate

• In 2010, Ulrich Ellwanger pointed out that for large λ (and small tan β), doublet-singlet mixing can reduce the hbb coupling, thus enhancing $h \rightarrow \gamma \gamma$.

• This works for both CP-even scalars, h₁ and h₂

h_1 or h_2 at 125 GeV?

Scan over "semi-constrained NMSSM" with universal m_0 , $m_{1/2}$, A_0 at the GUT scale plus λ , κ , A_{λ} , A_{κ} , μ_{eff} and tan β at EW scale.

limits imposed: mass limits, B-physics constraints, $\Omega h^2 < 0.135$

Two NMSSM Higgses near 125 GeV?

J.F. Gunion, Y. Jiang, SK, arXiv: 1207.1545

- On the previous slide, we had either h₁ or h₂ at 125 GeV, but the "other" Higgs need not be very far away.
- It is possible the h₁ and h₂ are so close in mass that they both fall into the 123-128 GeV mass window.
- In this case they may either both contribute to the signal at 125 GeV, or one Higgs contributes dominantly while the other one is hidden.
- Effective Higgs mass and signal rate:

$$m_h^Y(X) \equiv \frac{R_Y^{h_1}(X)m_{h_1} + R_Y^{h_2}(X)m_{h_2}}{R_Y^{h_1}(X) + R_Y^{h_2}(X)}$$

$$R_Y^h(X) = R_Y^{h_1}(X) + R_Y^{h_2}(X)$$

$$R^{h_i}_{gg}(X) = \frac{\Gamma(gg \to h_i) \ BR(h_i \to X)}{\Gamma(gg \to H_{\rm SM}) \ BR(H_{\rm SM} \to X)}$$

Two NMSSM Higgses near 125 GeV?

Two NMSSM Higgses near 125 GeV?

Diagnosing degenerate Higgs bosons

J.F. Gunion, Y. Jiang, SK, arXiv: 1208.1817

A way to reveal the presence of degenerate 123<*m*_{*h*},*m*_{*h*}<128 Higgs bosons is through double ratios of 1.8 signal strengths. 1.6 1.4 R^{h}_{VBF} $(\gamma\gamma)/R^{h}_{gg}$ $(\gamma\gamma)$ 1.2 Not all signal strengths are independent 1 from each other. In models with doublets 0.8 +singlets, we can form 3 independent 0.6 0.4 double ratios: 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 I): $\frac{R_{VBF}^{h}(\gamma\gamma)/R_{gg}^{h}(\gamma\gamma)}{R_{VBF}^{h}(bb)/R_{aa}^{h}(bb)},$ $R_{\rm VBF}^{h}(bb)/R_{aa}^{h}(bb)$ 1.2 $[R^{h}_{\mathrm{VBF}} \ (\gamma\gamma)/R^{h}_{gg} \ (\gamma\gamma)]/[R^{h}_{\mathrm{VBF}} \ (bb)/R^{h}_{gg} \ (bb)]$ 1.1 II): $\frac{R_{VBF}^{h}(\gamma\gamma)/R_{gg}^{h}(\gamma\gamma)}{R_{VBF}^{h}(WW)/R_{gg}^{h}(WW)},$ 0.9 0.8 0.7 III): $\frac{R^h_{VBF}(WW)/R^h_{gg}(WW)}{R^h_{VBF}(bb)/R^h_{aa}(bb)},$ 0.6 0.5 0.4 1.5 2 2.5 3 0.5 1 If there is only one Higgs, each of these $R_{qq}^{h}(\gamma\gamma)$

Diagnosing degenerate Higgs bosons

 More generally, one can form a "signal matrix" based on different initial and final states:

$$R = \frac{R_a}{R_b} = \frac{R(X \to h \to Y)_a}{R(X \to h \to Y)_b}$$

- Then rank(R) gives a lower limit on the number of resonances required to explain the data
- When R is a block matrix, det(R)=0 implies one resonance, while det(R)≠0 implies at least two contributing states
- using 2x2 sub-matrices this gives our "double ratios" from the previous slide

Grossman, Surujon, Zupan, arXiv:1301.0328

Questions, concerns

- How should we best combine the signals (signal strengths) of two nearby, or maybe not so nearby, states?
- So far: effective mass definition for two almost degenerate states

$$m_h^Y(X) \equiv \frac{R_Y^{h_1}(X)m_{h_1} + R_Y^{h_2}(X)m_{h_2}}{R_Y^{h_1}(X) + R_Y^{h_2}(X)}$$

and just adding up the signal strengths

$$R_Y^h(X) = R_Y^{h_1}(X) + R_Y^{h_2}(X)$$
.

- But this depends on the channel-by-channel resolutions!
- Moreover, for scans, we need to describe the transition from two separate peaks (to one of which exclusion limits apply) to a combined signal

SO ...

although there is currently no evidence for more than one Higgs in the data

it may be ...

(it's all the same mountain on the same climb)

search climb with an open mind

