CMS X126 boson results

Andrey Korytov on behalf of the CMS Collaboration

The LHC Higgs Signal: Characterization, Interpretation and BSM Model Implications UC Davis, 22-26 April 2013

Outline

- CMS: a few highlights
- SM Higgs boson search symphony
 - individual search channels and grand combination
- Mass measurement
 - if X126 is the SM Higgs boson, its mass is the last SM parameter to measure

Is X126 the SM Higgs boson?

- What can we tell about the X126 width from the mass line shape (not available)
- Compatibility of event yields with the SM Higgs boson
- Recast the event yields into "measurements" of couplings
- Spin-parity properties
- Is X126 one particle?

CMS: operation

Stats for the 8 TeV run:

- recorded: 94% of delivered
- validated for physics: 95% of recorded
- sub-detector operational status: 96% 99%

Outline

• CMS: a few highlights

• SM Higgs boson search symphony

- individual search channels and grand combination
- Mass measurement
 - if X126 is the SM Higgs boson, its mass is the last SM parameter to measure
- Is X126 the SM Higgs boson?
 - What can we tell about the X126 width from the mass line shape (not available)
 - Compatibility of event yields with the SM Higgs boson
 - Recast the event yields into "measurements" of couplings
 - Spin-parity properties
 - Is X126 one particle?

Search channels at low mass

	untagged	VBF-tag	VH-tag	ttH-tag
WW	5 + 20	5 + 12	5 + 20	
ZZ	5 + 20	5 + 20		
bb			5 + 12	5 + 5
ττ	5 + 20	5 + 20	5 + 20	
γγ	5 + 20	5 + 20	5 + 20	
Ζγ	5 + 20			

- Quoted X + Y numbers: X fb⁻¹@7 TeV + Y fb⁻¹@ 8 TeV (numbers are rounded)
- BEWARE: Tags are never pure; e.g. VBF-tags have 20%-80% of ggF, depending on analysis
- Zγ is not in combination

Andrey Korytov (UF)

$\mathsf{H} \rightarrow \mathsf{ZZ} \rightarrow \mathsf{4I}$

Analysis strategy:

- four prompt leptons (low p_T is important!)
- four-lepton mass is the key observable
- split events into 4e, 4μ , $2e2\mu$ channels:
 - different mass resolutions
 - different S/B rates (for reducible bkgd with "fake" leptons)
 - add ME-based discriminant K_D (2nd observable)
- split events further into exclusive categories:
 - untagged (add a 3rd observable: four-lepton p_T/m)
 - di-jet tagged (add a 3^{rd} observable: $V_D(m_{jj}, \Delta \eta_{jj})$)

– Backgrounds:

- ZZ (dominant) from MC
- reducible (with "fake" leptons): from control region

Analysis features to note:

- high S/B-ratio, but small event yield
- 4l mass resolution = 1-2%

$H \rightarrow ZZ \rightarrow 4I$: results

Points to note:

- >5 σ in one decay mode
- di-jet tag does not help much in sensitivity (too few expected events),
 but is needed to assess the relative contributions of ggF and VBF production (will be shown later)
- ZZ→4l channel provides the most accurate mass measurement (event-by-event mass uncertainties improve the measurement by about 8%)
- signal strength is about equal to the expected
- − Z→4l standard candle allows one to validate the mass (and future width) measurements (and eventually will allow one to measure σ_H/σ_Z with small experimental errors)

$\mathsf{H} \mathrel{\Rightarrow} \mathsf{\gamma} \mathsf{\gamma}$

• Analysis strategy:

- two isolated high- p_T photons
- vertex from recoiling charged particles
- di-photon mass is the key observable
- split events into exclusive categories:
 - untagged, and further divided into 4 classes based on
 - expected mass resolution
 - expected S/B-ratio
 - di-jet tagged, and further divided into 2 classes based on

 expected S/B-ratio
 - MET-tagged
 - electron-tagged
 - muon-tagged
- background: from m_{vv}-distribution sidebands
- Two versions of analysis:
 - MVA for photon-ID and event classification
 - Cuts for photon-ID and event classification
- Analysis features to note:
 - bad S/B-ratio, but high event yield (cf. ZZ->4I)
 - di-photon mass resolution = 1-2%

$H \rightarrow \gamma \gamma$: results

 $m_{\rm u} = 125.4 \pm 0.8$

— Stat + Syst

----- Stat Only

125

vs=7TeV L=5.1fb⁻¹

vs=8TeV L=19.6fb

127

m_H (GeV)

Points to note:

- alternative analysis results: Z=3.9 (exp. 3.5) and μ = 1.11 ± 0.31
 - statistical correlation between two analyses is found to be 0.75
 - taking this into account, stat significance of the difference in results is 1.5 σ
- significance is reduced compared to ICHEP:
 - ICHEP (10 fb⁻¹): **observed = 4.1**, expected = 2.7 (±1)
 - ICHEP (25 fb⁻¹): **observed = 3.2**, expected = 4.2 (±1)
 - New data show fewer than expected signal-like events ("Unlucky"? Or is it a "pay-back" for being too lucky before?)

126

- The expected sensitivity evolves as sqrt(L)
- Is the past intrigue of a seemingly enhanced yy-signal washing out?
- mass measurement becomes limited by systematic uncertainties

UC Davis, 22 April 2013

$H \rightarrow WW \rightarrow IvIv$

Analysis strategy:

- two prompt high-p_T leptons
- MET
- split events into ee, $\mu\mu$, $e\mu$ channels:
 - different S/B rates: Drell-Yan in ee/ $\mu\mu$!
- split events further into 0/1-jet:
 - different S/B rates: ttbar in 1-jet !
- Same-flavor dileptons: cut-based analysis
- Different-flavor: 2D distribution N(m_{II},m_T)
- Backgrounds (for low mass Higgs):
 - WW, tt, W+jets, DY+jets, Wγ: from control regions
 - ZW, ZZ: from MC (very small contribution)
- Analysis features to note (mH=125):
 - OK S/B-ratio, fair signal event yield
 - poor mass resolution ≈20%

$H \rightarrow WW \rightarrow IvIv:$ results

Points to note:

- very broad access, consistent with SM Higgs rate and the instrumental mass resolution (see injected signal)
- poor mass resolution does not allow to pin down the mass and hence signal strength
- the excess is consistent with m_{H} =125 GeV (µ=0.76 ± 0.21)
- significant updates should be expected:
 - di-jet tag channel results are not yet available
 - cut-based (same-flavor) and 2D-shape based (different-flavor)

$H \rightarrow \tau \tau$

Analysis strategy:

- di-tau candidates: $e\tau_h$, $\mu\tau_h$, $e\mu$, $\mu\mu$, $\tau_h\tau_h$
- MET
- DiTau mass (including MET): key distribution
- split events into jet categories:
 - 2-jets (VBF-tag): best S/B-ratio
 - 1-jet (ggF, VH): acceptable S/B-ratio
 - untagged: control region (S/B≅0)
- split 1-jet events further high/low p_T tau
 - different S/B rates

– Backgrounds:

- $Z \rightarrow \tau \tau$: $Z \rightarrow \mu \mu$ (data) with a simulated μ - τ swap
- Z→ee, W+jets, ttbar: MC for shapes, data for normalization
- QCD: from control regions
- Analysis features to note (m_H=125):
 - poor S/B-ratio, poor signal event yield
 - Higgs is on falling slope of Z-decays
 - poor mass resolution $\approx 15\%$

$H \rightarrow \tau \tau$: results

Points to note:

- broad access (poor mass resolution), consistent with SM Higgs rate
- close to reaching a 3σ-sensitivity: fair sensitivity for measurements
- 1-jet channel has a respectable weight in the search (cf. $\pm \delta \mu$ for 1-jet and 2-jet channels)
- VH(ττ) analysis is updated too; its sensitivity can be seen in the μ -compatibility plot
- despite poor mass resolution, the TauTau channel is **not completely mass-blind** !

VH, $H \rightarrow bb$: no updates since HCP (yet)

Brief summary:

- publicly available: 5 + 12 fb⁻¹; update with the full lumi is expected shortly
- Event classification: 2 b-jets + (ev, μv, ee, μμ, vv); V has low/high-pT; events with high-pT: tight/loose b-tag
- MVA-shape analysis gives 2σ-sensitivity: fair sensitivity for measurements
- **2** σ -excess with a signal strength consistent with the SM Higgs boson: $\mu = 1.3 \pm 0.7$
- mass resolution ≈10%

ttH, H \rightarrow bb: updated, but 5+5 fb⁻¹ only

Brief summary:

- publicly available: 5 + 5 fb⁻¹; update with the full lumi is expected shortly
- Event classification: bb+(lvjjbb); bb+(lvlvbb); events are categorized based on # of jets and # of b-tags
- very small event rate; fair S/B-ratio
- MVA-shape analysis: exclude μ>5.8 at 95% CL
- To reach 2σ-sensitivity, we need 30^x data

$\mathsf{H} \to \mathsf{Z} \gamma$

Analysis strategy:

- two prompt leptons: $Z \rightarrow ee$, $Z \rightarrow \mu\mu$
- isolated photon
- dilepton-photon mass is the key observable
- split events further into 4 classes, based on "geography" of leptons/photon and photon cluster quality
 - different mass resolutions
 - different S/B-ratios
- Background: fit using sidebands

Analysis features to note:

- very poor S/B-ratio, very small event yield
- 4l mass resolution = 1-2%

Results: m_H=125: μ>10 is excluded at 95% CL

Points to note:

need 100^x data to reach 2σ-sensitivity

Excess near 125 GeV: summary

Decay mode	Expected (σ)	Observed (σ)
ZZ	7.1	6.7
$\gamma\gamma$	3.9	3.2
WW	5.3	3.9
bb	2.2	2.0
ττ	2.6	2.8

Good mass resolution channels:

- ZZ(4I): 6.7 σ
- γγ: 3.2 σ

Poor mass resolution channels:

- WW: 3.9 σ
- **ττ:** 2.8 σ
- **bb: 2.0** σ VH(5+12 fb⁻¹); ttH(5+5 fb⁻¹); updates come soon
- **ττ+bb**: **3.4 σ** evidence for fermionic decays

Higgs-like signal is certainly there beyond any reasonable and unreasonable doubt

Outline

- CMS: a few highlights
- SM Higgs boson search symphony
 - individual search channels and grand combination
- Mass measurement
 - if X126 is the SM Higgs boson, its mass is the last SM parameter to measure
- Is X126 the SM Higgs boson?
 - What can we tell about the X126 width from the mass line shape (not available)
 - Compatibility of event yields with the SM Higgs boson
 - Recast the event yields into "measurements" of couplings
 - Spin-parity properties
 - Is X126 one particle?

Mass measurement

 A narrow resonance is seen with high significance in the two good mass resolution channels, ZZ(4I) and γγ

ZZ(4I): $m_{\chi} = 125.8 \pm 0.5$ (stat) ± 0.2 (syst) GeV main sources of systematic uncertainties:

- electron energy scale: 0.3%
- muon energy scale: 0.1%

γγ: m_x = 125.4 ± 0.5 (stat) ± 0.6 (syst) GeV

- main sources of systematic uncertainties:
 - electron-photon extrapolation
 - p_T scale extrapolation from $m_Z/2$ to $m_H/2$
- Results are consistent with one particle X
 → proceed with a combined mass measurement

Mass measurement

Assuming we indeed see one particle X, one can combine the two results

• either assuming the SM Higgs-like relationship for relative production rates (top plot)

 or letting relative event yields float free in the almost-model-independent fit (bottom plot):
 m_x = 125.7 ± 0.4 (0.3%) GeV = 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV

Evolution of m_x with time

Outline

- CMS: a few highlights
- SM Higgs boson search symphony
 - individual search channels and grand combination
- Mass measurement
 - if X126 is the SM Higgs boson, its mass is the last SM parameter to measure

• Is X126 the SM Higgs boson?

- What can we tell about the X126 width from the mass line shape (not available)
- Compatibility of event yields with the SM Higgs boson
- Recast the event yields into "measurements" of couplings
- Spin-parity properties
- Is X126 one particle?

Consistency of event yields (1)

Overall best-fit signal strength $\mu = 0.80 \pm 0.14$

Sub-combinations grouped by (production tag) × (decay mode)

Consistency with the SM Higgs: $\chi^2 / ndf = 6.2 / 13$ asymptotic P(χ^2 >6.2|ndf=13) = 0.94 pseudo-experiments: P = 0.87

NB: VBF-tagged channels have large gg->H contributions

Consistency of event yields (2)

 χ^2 / ndf = 3.3 / 5 asymptotic P(χ^2 >3.3 | ndf=5) = 0.65 pseudo-experiments: P = 0.50

 χ^2 / ndf = 1.3 / 4 asymptotic P(χ^2 >3.2 | ndf=4) = 0.52 pseudo-experiments: P = 0.37

Consistency of event yields (3)

- Introduce two signal strengths (μ_F, μ_V) in each of the 5 decay channels:
 - μ_F scales the **fermion-coupling** induced production mechanisms (gg-fusion, ttH)
 - **μ**_v scales the **W/Z-coupling** induced production mechanisms (VBF, VH)
- All channels give results consistent with the SM Higgs boson: (1,1)
- These 2D-results obtained for individual decay channels cannot be combined: they are decoupled by independent BRs.
- But the ratios μ_V/μ_F can be combined as BRs cancel out in such ratios
- The need W/Z-coupling induced production mechanisms is established with >3σ significance

Production × Decay parameterization

8 independent parameters to describe all currently relevant decays and production mechanisms:

$$\sigma(xx \to H) \cdot BR(H \to yy) \propto$$

- Г_{bb}
- Γ_{ττ}
- $\Gamma_{\gamma\gamma}$ (loop induced)
- $-\Gamma_{gg}$ (loop induced)
- Γ_{tt}

	untagged	VBF-tag	VH-tag	ttH-tag
WW	~	✓	~	
ZZ	~	✓		
bb			~	~
ττ	~	✓	~	
үү	~	✓	~	
Ζγ	~			

- $-\Gamma_{TOT}$ (including H \rightarrow "invisible")
- $-\Gamma_{z_{\gamma}}$ (loop induced) not used in the present combination

Couplings compatibility tests

- Extraction of all 8 parameters is too early with the current data •
- Instead, we go after coupling compatibility tests:
 - assume SM Higgs couplings
 - introduce a limited number of scaling factor for:
 - couplings (κ): $g_a = \kappa_a \cdot g_a^{\text{SM}}$
 - or ratios of couplings $(\lambda): (g_a/g_b) = \lambda_{ab} (g_a^{SM}/g_b^{SM}); \quad \lambda_{ab} = \kappa_a/\kappa_b$ also can add and probe BR(H->BSM): $\Gamma_{TOT} = \Gamma_{SM} + \Gamma_{BSM} = \frac{\Gamma_{SM}}{1 BR_{PRM}}$

These are <u>compatibility tests</u>, not measurements of couplings:

- In SM, couplings are not free parameters
- Any significant deviation of scaling factors from 1 would
 - imply new physics beyond SM
 - require a re-fit of event yields in the framework of particular BSM models

Custodial symmetry: λ_{WZ} and κ_{Z} (κ_{F})

1.0

0.5

0.0^E

0.5

95% CL

1.5

 λ_{WZ}

- Custodial symmetry: in SM, the ratio of couplings to W and Z bosons is almost not affected by loop corrections
- Compatibility test No.1 (top plot):
 - use un-tagged WW and ZZ channels
 - the ratio of signal event yields: $\sim g_W^2 / g_Z^2 = \lambda_{WZ}^2$
 - Assume SM coupling to fermions (κ_F=1); dependence on this assumption is weak
 - Fit for: λ_{wz} and κ_z
- Compatibility test No.2 (bottom plot):
 - use all channels
 - Assume a common scaling factor κ_F for all fermionic couplings
 - Fit for: λ_{wz} and κ_z, κ_F

Data are consistent with the custodial symmetry

• Further, we always use $\kappa_w = \kappa_z$ (κ_v)

Two parameters: K_v and K_F

Fermiophobic scenario is reliably excluded

Data are consistent with (κ_ν; κ_F)=(1; 1)

The previously seen global minimum of the likelihood in the (+; -) quadrant is gone, since the $\gamma\gamma$ -channel is no more enhanced

Look for new physics in loops: K₂ and K_y

Andrey Korytov (UF)

Two-parameter fit

- use all channels
- assume tree-level couplings = SM
- assume BR(BSM)=0

Data are consistent with $(\kappa_{\gamma}; \kappa_{g})=(1; 1)$

Look for new physics: BR(BSM), κ_g , κ_v

Three-parameter fit

- use all channels
- assume tree-level couplings = SM
- allow for BR(BSM) ≠ 0
- Fit for: BR("invisible"), κ_{γ} , κ_{g}

BR(BSM) < 0.52 at 95% CL

Asymmetry of couplings to fermions

Ratio of coupling between down- and up-fermions

Ratio of coupling between leptons and quarks

C5 model (almost a measurement)

8 independent parameters to describe all currently relevant decays and production mechanisms:

 Assume couplings to the 1st, 2nd, 3rd generations are modified the same way

C5 model (almost a measurement)

 Scale SM couplings by measured scale factors and plot modified couplings vs particle masses:

Note: the magnitude of couplings we try to assess range by a factor of 100! A test with 20+% accuracy is actually a very respectable test.

C6 model (almost a measurement)

8 independent parameters to describe all currently relevant decays and production mechanisms:

Spin-parity (J^{CP})

CMS has performed the following tests:

- ZZ4L:
 - 0⁻, 0⁺_h, qq \rightarrow 1⁻, qq \rightarrow 1⁺, gg \rightarrow 2⁺_m, qq \rightarrow 2⁺_m
- WW:
 - $gg \rightarrow 2^+_m$
- ZZ+WW:
 - $gg \rightarrow 2_m^+$
- γγ:
 - not spin-1 (Landau-Yang theorem)
 - spin-2 (not yet available)

ZZ->4L J^{CP} analysis: discriminants

- Analysis considers alternative signal+background hypotheses, where signal X can be either gg→H or xx → J^{CP}
 - Construct two ME-based discriminating observables:

where *ME* are complete LO matrix elements, and $m_X = m_{4\ell}$

 Extend KDs to include discriminating information from four-lepton mass:

 Without any loss of information, one can change "variables":

 And again without any loss of information, compress discriminants to be between 0 and 1

$$KD(H;ZZ) = \frac{|ME_{H}(gg \rightarrow H \rightarrow 4\ell)|^{2}}{|ME_{ZZ}(q\overline{q} \rightarrow 4\ell)|^{2}}$$

$$KD(J^{CP};ZZ) = \frac{|ME_{J^{CP}}(xx \rightarrow J^{CP} \rightarrow 4\ell)|^{2}}{|ME_{ZZ}(q\overline{q} \rightarrow 4\ell)|^{2}}$$

$$D(H;ZZ) = \frac{|ME_{X}(xx \rightarrow H \rightarrow 4\ell)|^{2} \cdot pdf(m_{4\ell} \mid m_{H})}{|ME_{ZZ}(q\overline{q} \rightarrow 4\ell)|^{2} \cdot pdf(m_{4\ell} \mid ZZ)}$$

$$D(J^{CP};ZZ) = \frac{|ME_{J^{CP}}(xx \rightarrow J^{CP} \rightarrow 4\ell)|^{2} \cdot pdf(m_{4\ell} \mid ZZ)}{|ME_{ZZ}(q\overline{q} \rightarrow 4\ell)|^{2} \cdot pdf(m_{4\ell} \mid ZZ)}$$

$$D(H;ZZ)$$

$$D(H;ZZ)$$

$$D(J^{CP};H) = \frac{D(J^{CP};ZZ)}{D(H;ZZ)} = \frac{|ME_{J^{CP}}(xx \rightarrow J^{CP} \rightarrow 4\ell)|^{2}}{|ME_{H}(gg \rightarrow H \rightarrow 4\ell)|^{2}}$$

$$D_{bkg} = \frac{1}{1 + const \cdot D(H;ZZ)}$$

ZZ->4L J^{CP} analysis: statistical analysis

• Build 2D-pdf's (templates) for different processes:

- Weigh templates by event rates to construct expected 2D-distributions for alternative signal+background hypotheses:
 - ZZ event rate: from MC
 - reducible background event rate: from control region
 - H and J^{CP} signal event rate: from two fits to data
- Using 2D event distributions for alternative hypotheses, construct the usual log-likelihood-ratio test statistic and perform statistical analyses by generating pseudo-observations

 $\partial^2 N$

 $\partial D_{bkg} \partial D_{I^{CP}}$

ZZ->4L J^{CP} analysis: results

$$CL_{S} = \frac{P(q \ge q^{obs} \mid J^{CP} + bkg)}{P(q \ge q^{obs} \mid H + bkg)}$$

D_{2m+ (qq)}

WW->2l2v J^{CP} analysis

• Full event reconstruction is not possible, but:

anin O	leptons tend to go in one direction: small m_{il}	
spin-u	neutrinos – in the other direction: large MET	
	leptons tend to go in opposite directions: larger m _{II}	
spin-z	neutrinos also go in opposite directions: smaller MET	

 $\partial^2 N$

 $\partial m_{\ell\ell} \partial E_{\mathrm{T}}^{\mathrm{mis}}$

- Using 2D event distributions for alternative hypotheses,
 construct the usual log-likelihood-ratio test statistic
 and perform statistical analyses by generating pseudo-observations
 - Observed CL_s=0.14 (data disfavor 2⁺, but exclusion at 95% CL cannot be claimed)
 - Observed test statistic is consistent with the SM Higgs boson
 - Observed test statistic is off "SM H median expected" to the left ("unlucky fluctuation")

ZZ+WW $gg \rightarrow 2_{m}^{+}$ combination

	Expected 1-CL _s	Observed 1-CL _s
ZZ	93.1%	98.6%
WW	91.9%	86.0%
Combination	98.8%	99.4%

- ZZ and WW have similar sensitivities, 1- $CL_s = 92\%-93\%$

- In combination, $gg \rightarrow 2_{m}^{+}$ is excluded at 99% CL

Is X126 one particle?

What if X126 is two bosons with near degenerate masses?

- What can we infer from the mass line shape?
 - no public results yet
- What can we infer from kinematics of decays?
 - CP-odd contribution (within detector acceptance): f(0⁻) < 0.58 at 95% CL

Summary

- In a combined search for the SM Higgs boson,
 a significant excess of events near m_H=126 GeV persists beyond any doubt and now has been established in individual decay channels:
 ZZ (6.7σ), WW (3.9σ), γγ (3.2σ), bb+ττ combined (3.4σ)
- New boson's mass: $m_{\chi} = 125.7 \pm 0.4 \text{ GeV}$ (from ZZ+ $\gamma\gamma$ channels)
- Is X126 the SM Higgs boson?
 - event yields in all individual channels are consistent with the SM Higgs boson;
 - couplings agree with the SM Higgs boson with the current statistical accuracy:
 20% (W & Z), 25% (t), 30% (τ), 60% (b);
 - 100% pure $J^{CP} = 0^-$, 1^{\pm} , 2^{+}_{m} states are excluded at >99% CL;
 - CP-odd contribution (within detector acceptance): f(0⁻) < 0.58 at 95% CL</p>

- X126 looks very much like the SM Higgs boson... STILL?
- No signs for extra Higgs-like bosons... YET?