How well can we resolve two bosons with near degenerate masses?

 $H \rightarrow ZZ \rightarrow 4I$ channel

Andrey Korytov (personal perspective)

small print: legal disclaimer

- No ATLAS/CMS public results on separation of two bosons with near degenerate masses near 126 GeV are available
- What follows are back-of-envelope estimates obtained using publicly available results
- I bare the full responsibility for all mistakes
- Neither ATLAS nor CMS underwrite quantitative estimates and qualitative opinions stated in these slides

Experimental questions to ask

(1) Small mass split: Δm << instrumental resolution

- couplings not SM Higgs-like? May be a smoking gun, but indirect (not in this talk)
- presence of different J^{CP} contributions ?
- should two states interfere, a more delicate search may be in order (not in this talk)

(2) Moderate mass split: ∆m ≈ instrumental resolution

- distorted mass line shape?
 - is the apparent total width consistent with zero (experimentally, 4 MeV = 0) ? (not in this talk)
 - fit for two narrow mass peaks ?
 - two-peak fit assisted by different J^{CP} assumptions? (not in this talk)

(3) Large mass split: Δm >> instrumental resolution

- just keep searching for an independent small peak (not in this talk)

Alternative approach:

assume that one of the bosons is THE SM Higgs boson and use it as a part of the SM background; certainly, it is very model dependent (not in this talk)

Note: "instrumental resolution" depends on integrated luminosity

J^{CP}-fraction: introduction

- two bosons X₁ and X₂ with very close masses: Δm << det. resolution
- no interference:
 - either different spins
 - or different initial states (e.g. $gg \rightarrow X_1$ and $qq \rightarrow X_2$)
 - or $\Delta m >> \Gamma$ for the same production mechanisms and same spins
- both decay to ZZ->4I,
- but have **different spin-parity** quantum numbers.

Relative production rates for these two bosons can be assessed from **kinematics of four leptons** in the final state

J^{CP}-fraction: quantifying results

- Relative rates can be defined:
 - either for the total cross sections pp->X->ZZ->4I (σ)
 - or for cross sections within experimental acceptance (A)

$$r = \frac{\sigma_2}{\sigma_1 + \sigma_2} \qquad f = \frac{A_2 \cdot \sigma_2}{A_1 \cdot \sigma_1 + A_2 \cdot \sigma_2}$$

$$r = \left(1 + \frac{A_2}{A_1} \left(\frac{1}{f} - 1\right)\right)^{-1}$$

- Both definitions are useful/relevant:
 - ratio *r* is appropriate for projecting sensitivities and for reporting null search results
 - ratio *f* is more appropriate for reporting the first evidence for presence of two J^{CP}-contributions at the time when their origins have not been established yet

J^{CP}-fraction: back-of-envelope stat. model

Test statistic distributions for J^{CP} tests are fairly Gaussian

- Hence, statistically, we are close to the asymptotic regime
- Then, if the separation of pure 0^+ and J^{CP} states is $N\sigma$, a mixture $(1-f) \times 0^+ + f \times J^{CP}$ is expected to manifest itself with significance $f \times N\sigma$ with respect to pure 0^+

J^{CP}-fraction: stat. model validation

CMS:

the expected separation for **pure 0**⁺ and **pure 0**⁻ states is **2.6σ**

Back-of-envelope projections:

- 1σ-sensitivity for *f*=1/2.6=0.38
- 2σ-sensitivity for f=2/2.6=0.77

CMS:

- expected 1σ-sensitivity for *f*=0.41
- expected 2σ-sensitivity for *f*=0.75

April 23, 2013

compare

J^{CP}-fractions: back-of-envelope sensitivities

$$f = \frac{A_X \cdot \sigma_X}{A_X \cdot \sigma_X + A_H \cdot \sigma_H} \qquad r = \frac{\sigma_X}{\sigma_X + \sigma_H}$$

 $X = J^{CP}$; $H = 0^+$; σ - cross section; A - four-lepton acceptance (varies from 0.3 to 0.6)

JCP state	Current sensitivities for separating pure J ^{CP} and O ⁺	<u>Projected</u> 2σ-sensitivity for <i>f</i>	<u>Projected</u> 2σ-sensitivity for <i>r</i>	<u>Projected</u> 2σ-sensitivity for <i>r</i> (300 fb⁻¹, 14 TeV)
$gg \rightarrow 0^-$	2.6σ (CMS) / 3.1σ (ATLAS)	0.77 *	0.78	0.15
$gg \rightarrow 0^+_h$	1.7σ (CMS)	-	-	0.20
qq \rightarrow 1 ⁻	2.8σ (CMS) / 3.1σ (ATLAS)	0.71	0.81	0.20
$qq \rightarrow 1^+$	2.3σ (CMS) / 2.9σ (ATLAS)	0.87	0.91	0.22
$gg \rightarrow 2_{m}^{+}$	1.8σ (CMS) / 1.5σ (ATLAS)	-	-	0.21
$qq \rightarrow 2^+_m$	1.7σ (CMS)	-	-	0.25
$gg \rightarrow 2^-$	2.7σ (ATLAS)	0.73	0.74	0.14

* CMS public results for f(0⁻): expected limit: < 0.75 at 95%CL

observed < 0.58 (better than the expected 0.75 due to some statistical luck)

April 23, 2013

Mass line shape: introduction

- Narrow four-lepton mass peak
- Fairly flat background
- Good signal-to-background ratio
- But very few events...

Mass line shape: simplified model

- Four-lepton mass distribution
- No additional discriminators, like ME-based KD, jet tags, p_T(4l), VD(m_{jj}, Δη_{jj}):
 - only very little help in the mass line shape analysis
 - one may not want to use them without knowing the nature of one of the two or even both bosons
- No split by flavor

Mass line shape: background model

Background under the peak:

- flat, 1 event/GeV
- very similar for ATLAS and CMS

Mass line shape: signal model

- Take total event yield **expected** for the SM Higgs boson: **21** events
 - CMS: **21.1** (m_H=126)
 - ATLAS: 20.6 (average between m_H=125 and 127)
 - NOTE: observed signal strengths are somewhat different: 0.9±0.3 (CMS) and 1.7±0.5 (ATLAS)
- Approximate signal shape with **Gaussian** (ignore tails): $\sigma_m = 1.7 \text{ GeV}$
 - average over flavors and between Gaussian core σ and RMS for CMS (ATLAS number are about +20%)

CMS	4μ		2e2µ		4e	
	peak width	fraction	peak width	fraction	σ _m (GeV)	fraction
Core σ_m (GeV)	1.2	250/	1.7	46%	2.0	18%
RMS (GeV)	1.7	35%	2.4		3.0	

Andrey Korytov

Mass line shape: back-of-envelope stat. model

- Significance in general: $Z = \sqrt{2 \ln Q}$
- Likelihood ratio for one-peak and background-only hypotheses (the product runs over "infinitely small" bins *i*)

$$Q = \prod_{i} \frac{P(n_i \mid b_i + s_i)}{P(n_i \mid b_i)} = e^{-S_{TOT}} \cdot \prod_{i} \left(1 + \frac{s_i}{b_i}\right)^{n_i}, \text{ where } n_i = b_i + s_i$$

• Likelihood ratio for two-peak and one-peak hypotheses $Q = \prod_{i} \frac{P(n_i \mid b_i + (1 - f) \cdot s_i(m_1) + f \cdot s_i(m_2))}{P(n_i \mid b_i + s_i(\tilde{m}))} = \prod_{i} \left(\frac{b_i + (1 - f) \cdot s_i(m_1) + f \cdot s_i(m_2)}{b_i + s_i(\tilde{m})} \right)^{n_i},$

where

$$m_1$$
 and m_2 – masses of bosons X₁ and X₂
 f – fraction of the smaller peak wrt the total ($f < 0.5$)
 $n_i = b_i + (1 - f) \cdot s_i(m_1) + f \cdot s_i(m_2)$
 \tilde{m} – best-fit mass for one peak in presence of two bosons

Two peaks: back-of-envelope sensitivity

• Features:

- mass split "chimney"
- min signal strength "base"
- Current data:
 - 3σ-sensitivity? not yet
 - 2σ-sensitivity? yes:
 - min mass split: >4 GeV
 - smaller peak signal strength: >0.33
- L=300 fb⁻¹, 14 TeV:
 - 3σ-sensitivity? not yet
 - 2σ-sensitivity? yes, if
 - min mass split: >1.7 GeV
 - smaller peak signal strength: >0.05

Two peaks: m_x from a single-peak fit

WORD OF CAUTION

- while inside the "chimney" (Δm < 4 GeV), the mass obtained in a single-peak fit tracks the center-of-gravity of two peaks
- outside the "chimney" (∆m > 6 GeV), the fit locks to the mass of the largest peak
- in the transition region, the single-peak mass fit results may be unstable (i.e. the fit may intermittently lock to the center-of-gravity of two peaks or to the largest peak, depending on small variations in data)

Back-of-envelope conclusions

- admixture of "wrong" J^{CP}-contribution (not mixed):
 - currently, very limited ability: r > 0.8
 - − 300 fb⁻¹: *r* > 0.2

- mass lineshape:
 - currently: Δm > 4 GeV, f > 0.3
 - 300 fb⁻¹: Δm > 2 GeV, f > 0.05