Higgs couplings after Moriond

Béranger Dumont (LPSC Grenoble)

based on: G. Belanger, BD, U. Ellwanger, J. F. Gunion, and S. Kraml [JHEP02(2013)053, arXiv:1212.5244] and [arXiv:1302.5694] (update in preparation)

> HEFTI Higgs workshop April 22, 2013

The Higgs boson has been found

Decay mode	Expected (σ)	Observed (σ)
ZZ	7.1	6.7
$\gamma\gamma$	3.9	3.2
WW	5.3	3.9
bb	2.2	2.0
au au	2.6	2.8

CMS preliminary

- previous update in Moriond (in March)
 → almost all bosonic channels have been updated with full luminosity
- also, final results from Tevatron! (arXiv:1303.6346) very competitive for H→bb

What we know about it its mass

naive average: $m_H = 125.6 \pm 0.3 \text{ GeV}$

HEFTI Higgs workshop Béranger Dumont April 22, 2013

What we know about it signal strengths

$$\mu_i = \frac{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{observed}}{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{SM}}$$

HEFTI Higgs workshop

Béranger Dumont

What we know about it signal strengths

...but New Physics modify not only the Higgs decays but also its production

how can we use the experimental information in a correct way?

What do we have in the conf note?

[ATLAS-CONF-2013-012]

Abstract

Measurements of the mass and couplings of the Higgs-like boson in the two photon decay channel with the ATLAS detector at the LHC are presented. The proton-proton collision datasets used correspond to integrated luminosities of 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV and 20.7 fb⁻¹ collected at $\sqrt{s} = 8$ TeV. The updated measurements benefit from an increased data sample and an improved analysis. The measured value of the mass of the Higgs-like boson is $126.8 \pm 0.2(\text{stat}) \pm 0.7(\text{syst})$ GeV and the fitted number of signal events is found to be $1.65 \pm 0.24(\text{stat})^{+0.25}_{-0.18}(\text{syst})$ times the value predicted by the Standard Model. Measurements of the signal strengths in different production processes and a fiducial cross section for the observed particle are also presented.

What do we have in the conf note?

Abstract

Measurements of the mass and couplings of the Higgs-like cay channel with the ATLAS detector at the LHC are presented datasets used correspond to integrated luminosities of 4.8 fb⁻¹ 20.7 fb⁻¹ collected at $\sqrt{s} = 8$ TeV. The updated measuremen data sample and an improved analysis. The measured value o boson is $126.8 \pm 0.2(\text{stat}) \pm 0.7(\text{syst})$ GeV and the fitted number of $1.65 \pm 0.24(\text{stat})^{+0.25}_{-0.18}(\text{syst})$ times the value predicted by the Sta of the signal strengths in different production processes and a observed particle are also presented.

...but this is the combination of several sub-categories with different sensitivity to the various production mechanisms

[ATLAS-CONF-2013-012]

Ok, so let's have a look at the 14 sub-categories!

[ATLAS-CONF-2013-012]

Signal Strengt

Ok, so let's have a look at the 14 sub-categories!

[ATLAS-CONF-2013-012]

Hmm... is there anything else in this conf note?

[ATLAS-CONF-2013-012]

In a second step, signal strength parameters for different Higgs boson production modes are introduced to characterise their contributions to the observed excess. To further enhance the sensitivity, the

Béranger Dumont

- grouping VBF and VH=(WH,ZH): usually OK (custodial symmetry)
- grouping ggF and ttH: OK for now (ttH is not precisely probed yet)

but we only have contours...

simplest option: fit Gaussian measurements from one contour

is it a good approximation?

- grouping VBF and VH=(WH,ZH): usually OK (custodial symmetry)
- grouping ggF and ttH: OK for now (ttH is not precisely probed yet)

experimental 95% CL contour

but we only have contours...

simplest option: fit Gaussian measurements from one contour

is it a good approximation?✓ seems fairly good

extrapolated 95% CL contour

2D μ plots from ATLAS and CMS

ATLAS CMS CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$ μ_{VBF+VH} × B/B_{SM} μ _{VBF,VH} 10 **ATLAS** Preliminary $H \rightarrow \tau \tau$ $\sqrt{s} = 7 \text{ TeV}: \int \text{Ldt} = 4.6-4.8 \text{ fb}^{-1}$ $H \rightarrow WW$ 8 $\sqrt{s} = 8 \text{ TeV}$: $\int Ldt = 13-20.7 \text{ fb}^{-1}$ $H \rightarrow ZZ$ $H \rightarrow bb$ + Standard Model • H → yy $H \rightarrow \gamma \gamma$ $\rightarrow ZZ^{()} \rightarrow 4I$ × Best fit $\rightarrow WW^{(*)} \rightarrow hh$ 4 --- 95% CL 2 0 0 -2 m_u = 125.5 GeV 2 3 5 6 2 0 З $\mu_{ggF+ttH} \times B/B_{SM}$ $\mu_{ggH,ttH}$ [ATLAS-CONF-2013-034] [CMS PAS HIG-13-005]

whenever possible, we check the validity of the Gaussian approximation \rightarrow usually fairly good (see backup slides!)

Experimental data we use ATLAS

Channel	Signal strength μ	$m_H~({ m GeV})$	Production mode		Э	
			ggF	VBF	\mathbf{VH}	ttH
$H \rightarrow \gamma \gamma$	$(4.8 \text{ fb}^{-1} \text{ at } 7 \text{ TeV})$	$+~20.7~{ m fb}^{-1}$ a	at 8 TeV	() [1, 2]		
$\mu({ m ggF}+{ m ttH},\gamma\gamma)$	1.60 ± 0.41	125.5	100%	_	_	_
$\mu(\mathrm{VBF}+\mathrm{VH},\gamma\gamma)$	1.94 ± 0.82	125.5	_	60%	40%	_
$H \rightarrow ZZ$	$(4.6 \text{ fb}^{-1} \text{ at } 7 \text{ TeV})$	$+~20.7~{ m fb^{-1}}$:	at 8 TeV	() [3, 2]		
$\mu({ m ggF}+{ m ttH},ZZ)$	1.50 ± 0.50	125.5	100%	_	_	_
$\mu(\mathrm{VBF}+\mathrm{VH},ZZ)$	1.50 ± 2.52	125.5	_	60%	40%	-
$H \to WW \ (4.6 \ \text{fb}^{-1} \ \text{at} \ 7 \ \text{TeV} + 20.7 \ \text{fb}^{-1} \ \text{at} \ 8 \ \text{TeV}) \ [4, 5]$						
$\mu(\mathrm{ggF}+\mathrm{ttH},WW)$	0.79 ± 0.35	125.5	100%	_	_	_
$\mu(\mathrm{VBF}+\mathrm{VH},WW)$	1.71 ± 0.76	125.5	_	60%	40%	_
$H \to b\bar{b} \ (4.7 \ {\rm fb^{-1}} \ {\rm at} \ 7 \ {\rm TeV} + 13.0 \ {\rm fb^{-1}} \ {\rm at} \ 8 \ {\rm TeV}) \ [6, 2]$						
VH tag	-0.39 ± 1.02	125.5	_	_	100%	_
$H \rightarrow \tau \tau$ (4.6 fb ⁻¹ at 7 TeV + 13.0 fb ⁻¹ at 8 TeV) [2]						
$\mu(m ggF+ttH, au au)$	2.31 ± 1.61	125.5	100%	_	_	_
$\mu(\mathrm{VBF}+\mathrm{VH}, au au)$	-0.20 ± 1.06	125.5	_	60%	40%	_

Table 1: ATLAS results, as employed in this analysis. The following correlations are included in the fit: $\rho_{\gamma\gamma} = -0.27$, $\rho_{ZZ} = -0.46$, $\rho_{WW} = -0.18$, $\rho_{\tau\tau} = -0.49$.

Experimental data we use CMS

Channel	Signal strength μ	$m_H~({ m GeV})$	Production mo		ion mod	le	
			ggF	VBF	\mathbf{VH}	ttH	
$H o \gamma \gamma$	$\sqrt{(5.1 \text{ fb}^{-1} \text{ at } 7 \text{ TeV})}$	$+ 19.6 { m ~fb^{-1}}$	at 8 Te	V) [7, 8	3]		
$\mu(m ggF+ttH,\gamma\gamma)$	0.46 ± 0.40	125.7	100%	_	_	_	
$\mu(\mathrm{VBF}+\mathrm{VH},\gamma\gamma)$	1.68 ± 0.87	125.7	_	60%	40%	_	
$H \rightarrow Z$	Z (5.1 fb ⁻¹ at 7 Te	$ m V+19.6~fb^-$	¹ at 8 1	eV) [9]			
$\mu(\text{ggF} + \text{ttH}, ZZ)$	0.98 ± 0.46	125.8	100%	_	_	_	
$\mu(\mathrm{VBF}+\mathrm{VH},ZZ)$	1.07 ± 2.37	125.8	_	60%	40%	-	
$H \to WW$ (up to 4.9 fb ⁻¹ at 7 TeV + 19.5 fb ⁻¹ at 8 TeV) [10, 11, 12, 8]							
$\mu(\mathrm{ggF}+\mathrm{ttH},WW)$	0.78 ± 0.23	125.7	100%	_	_	-	
$\mu(\mathrm{VBF}+\mathrm{VH},WW)$	0.33 ± 0.70	125.7	_	60%	40%	_	
$H \to b\bar{b}$ (up to 5.0 fb ⁻¹ at 7 TeV + 12.1 fb ⁻¹ at 8 TeV) [13, 14, 8]							
VH tag	$1.31\substack{+0.68\\-0.61}$	125.7	_	_	100%	_	
ttH tag	$-0.15\substack{+2.82\\-2.90}$	125.7	_	_	_	100%	
$H \to \tau \tau$ (4.9 fb ⁻¹ at 7 TeV + 19.4 fb ⁻¹ at 8 TeV) [15, 8]							
$\mu(m ggF+ttH, au au)$	0.67 ± 0.79	125.7	100%	_	_	_	
$\mu({ m VBF}+{ m VH}, au au)$	1.59 ± 0.83	125.7	-	60%	40%	_	

Table 2: CMS results, as employed in this analysis. The following correlations are included in the fit: $\rho_{\gamma\gamma} = -0.48$, $\rho_{ZZ} = -0.73$, $\rho_{WW} = -0.21$, $\rho_{\tau\tau} = -0.47$.

HEFTI Higgs workshop Béranger Dumont

April 22, 2013

15

A word on CMS $H \rightarrow \gamma \gamma$

HEFTI Higgs workshop

Béranger Dumont

Experimental data we use Tevatron

Channel	Signal strength μ	$m_H~({ m GeV})$	Production mode				
			ggF	VBF	VH	ttH	
$H \to \gamma \gamma \ [17]$							
Combined	$5.97\substack{+3.39 \\ -3.12}$	125	78%	5%	17%	_	
$H \to WW$ [17]							
Combined	$0.94\substack{+0.85 \\ -0.83}$	125	78%	5%	17%	_	
$H \rightarrow b\bar{b} \ [17]$							
VH tag	$1.59\substack{+0.69\\-0.72}$	125	_	_	100%	_	

Table 3: Tevatron results for up to 10 fb⁻¹ at $\sqrt{s} = 1.96$ TeV, as employed in this analysis.

- Tevatron $H \rightarrow \tau \tau$ is omitted (large uncertainties)
- H→γγ and H→WW are approximated as inclusive searches (ratio of inclusive cross sections for pp̄ collisions at 2 TeV)

Combined 2D µ plots bosonic channels

Béranger Dumont

Combined 2D µ plots fermionic channels

HEFTI Higgs workshop Béranger Dumont

April 22, 2013

19

Dependence on m_н

- we would like to treat the Higgs mass as a nuisance parameter
- a priori important for the two high resolution channels (H \rightarrow ZZ and H $\rightarrow\gamma\gamma$)

• unfortunately impossible to use together with the 2D μ information

Béranger Dumont

Higgs couplings

How can we use this information to constrain the couplings of the Higgs?

• We first need to specify a Lagrangian. Our choice:

$$\mathcal{L} = g \left[C_V \left(m_W W_\mu W^\mu + \frac{m_Z}{\cos \theta_W} Z_\mu Z^\mu \right) - C_U \frac{m_t}{2m_W} \bar{t}t - C_D \frac{m_b}{2m_W} \bar{b}b - C_D \frac{m_\tau}{2m_W} \bar{\tau}\tau \right] H$$

Scaling factors C parametrize deviations from the SM

- We calculate $\overline{C_g}$ (for gluon-gluon fusion) and $\overline{C_\gamma}$ (for $H \rightarrow \gamma \gamma$) from C_U , C_D , C_V and we allow for additional particles in the loop: ΔC_g and ΔC_γ $\rightarrow C_g = \overline{C_g} + \Delta C_g$ and $C_\gamma = \overline{C_\gamma} + \Delta C_\gamma$
- Total Higgs width: not accessible at the LHC. 2 possibilities:
 1) assume that BR(H→invisible/undetected) = 0
 2) allow for H→invisible/undetected

Searches for invisible decays of the Higgs boson

 $\mathcal{B}(H \to \text{inv.}) < 0.65 \text{ at } 95\% \text{ CL}$

HEFTI Higgs workshop Béranger Dumont April 22, 2013

Searches for invisible decays of the Higgs boson

see also earlier studies based on e.g. monojet searches [Djouadi et al. '12]

Fitting procedure

• simple
$$\chi^2$$
 fit: $\chi^2 = \sum_k \frac{(\mu_k - \mu_k^{\exp})^2}{\Delta \mu_k^2}$

- ATLAS 95% CL limit on BR(H \rightarrow invisible) implemented as a hard cut
- μ_{k} : rescaling of the SM prediction (given by the LHC Higgs XS WG)
- when showing contours of $\Delta \chi^2$: we profile the likelihood over the unseen parameters

A word on $H \rightarrow \gamma \gamma$

- contribution from the W is 5 times larger than from the top quark and with opposite sign
- small contributions from bottom and lighter quarks
- new particles in the loop could change the Hγγ rate (e.g. charged Higgses, charginos, staus, ...)

I) ΔC_{g} , ΔC_{γ} fit

- we assume $C_U = C_D = C_V = 1 \Delta C_g$ and ΔC_{γ} are free to vary \rightarrow new physics as additional particles in the loops
- relevant in the context of Universal Extra Dimensions, VLQ, ...

HEFTI Higgs workshop

Béranger Dumont

II) C_{U} , C_{D} , C_{V} fit

- we assume $\Delta C_g = \Delta C_{\gamma} = 0 C_U^2$, C_D^2 and C_V^2 are free to vary \rightarrow modified Higgs sector + no new particles in the loops
- can arise with extended Higgs sectors (e.g. 2HDM with heavy H⁺)

- C_U<0 (sign opposite to C_V): constructive interference with W disfavored at the level of 2.4σ
- minimum with $C_D > 0$ and $C_D < 0$ are practically equivalent

HEFTI Higgs workshop

Béranger Dumont

II) C_{U} , C_{D} , C_{V} fit

- we assume $\Delta C_g = \Delta C_{\gamma} = 0$ C_U , C_D and C_V are free to vary \rightarrow modified Higgs sector + no new particles in the loops
- can arise with extended Higgs sectors (e.g. 2HDM with heavy H⁺)

HEFTI Higgs workshop Béranger Dumont April 22, 2013

II) C_{U} , C_{D} , C_{V} fit

Single top production in association with a Higgs boson could help discriminate between $C_{U} > 0$ and $C_{U} < 0$ [Biswas, Gabrielli and Mele '12; Farina et al. '12]

HEFTI Higgs workshop Béranger Dumont April 22, 2013

III) C_{U} , C_{D} , C_{V} , ΔC_{q} , ΔC_{γ} fit

- general case: $C_{U}^{}$, $C_{D}^{}$, $C_{V}^{}$, $\Delta C_{g}^{}$ and $\Delta C_{\gamma}^{}$ are free to vary (but no invisible)
- encompasses a very broad class of models

Béranger Dumont

III) C_{U} , C_{D} , C_{V} , ΔC_{g} , ΔC_{γ} fit

- general case: $C_{_U}$, $C_{_D}$, $C_{_V}$, $\Delta C_{_g}$ and $\Delta C_{_\gamma}$ are free to vary (but no invisible)
- encompasses a very broad class of models

- determination of C_{n} is robust

- anticorrelation between $C_{_{U}}$ and $\Delta C_{_{a}}$

Béranger Dumont

III) C_{U} , C_{D} , C_{V} , ΔC_{g} , ΔC_{γ} fit

- balance between $C_{_{U}}$ and $\Delta C_{_{\gamma}}$

• the determination of C_v is robust

Béranger Dumont

Invisible decays of the Higgs boson

HEFTI Higgs workshop Béranger Dumont April 22, 2013

Invisible decays of the Higgs boson and dark matter

if invisible = dark matter: interplay between direct searches and $H \rightarrow$ invisible

HEFTI Higgs workshop

Béranger Dumont

Goodness-of-fit

Fit	Standard Model	$\Delta C_{\gamma}, \Delta C_g$	C_U, C_D, C_V	$C_U, C_D, C_V, \Delta C_{\gamma}, \Delta C_g$
$\chi^2_{ m min}$	19.0	17.6	17.6	17.2
$\chi^2_{\rm min}/{ m d.o.f.}$	0.86	0.88	0.93	1.01
dominant	ATLAS $\gamma\gamma$	${\rm CMS} \gamma\gamma$	ATLAS $\gamma\gamma$	$\rm CMS \gamma\gamma$
contributions	Tevatron $\gamma\gamma$	ATLAS $\gamma\gamma$	CMS WW	ATLAS $\gamma\gamma$
to $\chi^2_{\rm min}$	$CMS \ WW$	Tevatron $\gamma\gamma$	Tevatron $\gamma\gamma$	Tevatron $\gamma\gamma$

- no improvement of χ^2 /d.o.f. (hence the *p*-value) when allowing for additional freedom

- most of the tensions in the fit come from $\gamma\gamma$

Two Higgs Doublet Model

- Model-dependent study: 2HDM type I and II
- 2 parameters (angles): α and β

	Type I and II	Type I		Type II		
Higgs	VV	up quarks down quarks &		up quarks	down quarks &	
			leptons		leptons	
h	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	
Н	$\cos(\beta - \alpha)$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	
A	0	\coteta	$-\cot\beta$	\coteta	aneta	

- in both cases we have:
 - $-|C_V| < 1$
 - $-|C_U| < 1.4 \text{ if } \tan \beta > 1$
- both h and H could be the 125.5 GeV observed state

Two Higgs Doublet Model h⁰ results

Two Higgs Doublet Model h⁰ results

Conclusion

- previously favored C_{U} <0 region is now disfavored at the level of 2.4 σ (unless we allow for additional loop contributions to ggF)
- overall, the observed Higgs boson seems very SM-like (but still waiting for updates, especially in fermionic channels)
- first step in the study of the implications of the new boson
 → time has come to explore the consequences for BSM models

I) ΔC_{g} , ΔC_{γ} fit before and after Moriond

40

Invisible decays of the Higgs boson before Moriond

Computation of C_g and C_{γ}

$$\bar{C}_{\gamma}^{2} = \frac{C_{V}^{2}\Gamma_{\gamma\gamma}^{WW} + C_{U}^{2}\Gamma_{\gamma\gamma}^{tt} + C_{D}^{2}\Gamma_{\gamma\gamma}^{bb} + C_{D}^{2}\Gamma_{\gamma\gamma}^{\tau\tau} + \text{interferences}}{\Gamma_{\gamma\gamma}^{WW} + \Gamma_{\gamma\gamma}^{tt} + \Gamma_{\gamma\gamma}^{bb} + \Gamma_{\gamma\gamma}^{\tau\tau} + \text{interferences}} \left\{ \begin{array}{c} \text{taken from HDECAY} \\ \text{(with EW corrections switched off)} \end{array} \right\}$$
$$C_{\gamma}^{2} = \left(\sqrt{\bar{C}_{\gamma}^{2}} + \Delta C_{\gamma}\right)^{2}$$

HEFTI Higgs workshop Béranger Dumont April 22, 2013

2D µ plots – ATLAS validity of the Gaussian approximation

HEFTI Higgs workshopBéranger DumontApril 22, 2013

43

2D µ plots – CMS validity of the Gaussian approximation

only 68% CL contours are available for CMS H \rightarrow WW and H \rightarrow $\tau\tau$

HEFTI Higgs workshop Béranger Dumont April 22, 2013