

Searches for direct production of stops and sbottoms at LHC

Artur Apresyan Caltech/FNAL

UC Davis 2013: SUSY after Higgs

04/25/13

The Ultimate Question of Life, The Universe, and Everything

- THE theory describing all **fundamental particles** and their **interactions**
 - With **minimum** of assumptions and free parameters.
 - Describes all interactions from small to cosmological scales.
- The Standard Model (SM) is our *best* attempt
 - Successful theory of interactions of elementary particles and fields
 - Describes *essentially* all lab data so far
 - but (*g*-2)_µ...

arXiv:1205.6497

The new particle

- Not too heavy (as SUSY would have liked), but not too light either...
 Are we in metastable vacuum? Is the quartic coupling →0 at Plank scale?
- New physics needed to stabilize its mass (is Nature fine-tuned?)
- SUSY theories can provide an appealing solution

 Large radiative corrections to Higgs mass are cancelled mostly by the stop and sbottom.

"Natural" SUSY spectrum

- "*Natural*" SUSY spectrum:
 - two higgsinos: one chargino and two neutralinos below 200 350 GeV.
 - two stops and one (left-handed) sbottom: both below 500 700 GeV.
 - a not too heavy gluino, below 900 GeV 1.5 TeV.

Searching for Natural SUSY

• Different possibilities exist, depending on model

But common approaches can be used to target different decays
 o e.g. T_b, T_b, T_t, are all with all bbW⁺W⁻χ⁰χ⁰ (but on-shell t→Wb in T_t)

Abbreviation	Decay mode	Conditions			
T_t	${ ilde t} o t \chi^0$	$m_{ ilde{t}} > m_t + m_{\chi^0}$			
$ $ T_b	$\tilde{t} \rightarrow b \chi^+ \rightarrow b W^+ \chi^0$	$m_{ ilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} > m_{\chi^0} + m_W$			
$T_{b'}$	${\tilde t} ightarrow b \chi^+ ightarrow b W^{+*} \chi^0$	$m_{ ilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} < m_{\chi^0} + m_W$			
$T_{t'}$	$\tilde{t} \rightarrow t^* \chi^0 \rightarrow b W^+ \chi^0$	$m_{ ilde{t}} < m_t + m_{\chi^0}, m_{ ilde{t}} < m_{\chi^+} + m_b$			
T_c	${ ilde t} o c \chi^0$	$m_{ ilde{t}} < m_t + m_{\chi^0}, m_{ ilde{t}} < m_{\chi^+} + m_b$			
B_b	${ ilde b} o b \chi^0$				
B_t	${{\widetilde b}} ightarrow t \chi^- ightarrow t W^- \chi^0$	$igg m_{ ilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} > m_{\chi^0} + m_W igg $			
B_t'	$\tilde{b} \to t \chi^- \to t W^{-*} \chi^0$	$m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} < m_{\chi^0} + m_W$			

The third generation: how?

- Excellent performance of reconstruction is needed for high sensitivity
 - Complex final states with multiples objects
 - *b*-tagging to identify jets originating from *b*-hadrons
 - o *jets and escaping particles* **most** of the time: good understanding of jets, MET
- CMS uses **particle flow (PF)** technique for global event reconstruction
 - Use a combination of all CMS sub-detectors to get the best estimates of energy, direction, particle ID
 - Improve HCAL resolution with tracker
- ATLAS uses detector based event reconstruction for jets, MET,...
 - Combine into more sophisticated tools, e.g. for b-tagging

- Factorized approach to set the jet energy scale
 - > PU offset corrections: derived from from zero-bias data and MC simulations
 - Absolute: obtained from MC; residual differences corrected from Z and γ +jet
- JEC uncertainties dominated by :
 - $\circ~$ PU at low p_{T} , jet flavor, extrapolation to high p_{T}
 - CMS time stability (forward region) is a temporary artifact of using prompt reco data, will be fixed in the reprocessed data

Event reconstruction: missing energy (MET)

- MET is one of the crucial variables in
 - Susceptible to imperfections:
 - Hot calorimeter cells, detector noise, beam-halo particles
- Good control over the instrumental noise: data agrees with simulation

RBX-wide (TS

(TS4-TS5)/(JS4+JS5 iv b 9 m

Event reconstruction: missing energy (MET)

- PU worsens the MET resolution by ~3.5 GeV per additional vertex (in quadrature)
 - Both experiments have developed sophisticated algorithms to improve MET resolution degradation from PU

Event reconstruction: *b*-tagging

- Several algorithms based on variables such as
 - the impact parameters of charged-particle tracks
 - o properties of reconstructed decay vertices, the presence/absence of a lepton
 - neural network using the output weights of the IP3D, JetFitter+IP3D, and SV1 algorithms (ATLAS)

Background estimation

A crucial element is to have a good control of the backgrounds
 o Both shapes and normalizations need to be very well understood

Standard Model QCD, EWK, ttbar, dibosons, ... fake MET, fake leptons can't rely on simulation:

fully data-driven methods

control regions

Irreducible backgrounds

ttbar, EWK: derive normalizations from CR, transfer functions from MC

Systematic uncertainties

- Background (and uncertainty) determination verified and constrained in control regions
 - $\circ~$ Small systematic uncertainty on the background is essential, especially in small Δm regions
- Experimental uncertainties
 - Jet energy scale and resolution, MET resolution
 - Lepton energy scale and efficiency
 - b-tagging and mis-tagging efficiency
 - Trigger efficiency, luminosity, pileup modeling
- Theoretical uncertainties
 - $\circ~$ Generator modelling ($\mu_{F},\mu_{R},$ ME/PS matching, α_{s} scale choice when possible)
 - PS uncertainties (typically compare Pythia and Herwig)
 - PDF choice
 - Understanding ISR modeling in MC

Direct stop/sbottom searches

- Searches are challenged by

 Small signal Xsections (t- and u-channels suppressed)
 - Often similar in kinematics to large backgrounds
- Targeted efforts, specific channels (0, 1, 2 leptons)
 - MET and *b*-tagging requirements reduce backgrounds
 - All hadronic modes: larger branching ratio, lots of backgrounds
 - Leptonic searches are "cleaner" at the expense of statistics

• Suppress large QCD backgrounds with α_{T} > 0.55 cut

$$lpha_{\rm T} = rac{E_{\rm T}^{j_2}}{M_{\rm T}} \ , \ M_{\rm T} = \sqrt{\left(\sum_{i=1}^2 E_{\rm T}^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{j_i}\right)^2}.$$

>2 jets
$$\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (MH_T)^2}}$$

Remaining backgrounds with real MET

 W/Z+jets, ttbar+jets: estimate from data

- Signal regions are defined as:
- 8 bins in H_T (275 to \geq 875 GeV),
- 2 bins N_{jet} (2-3, ≥4),
- 5 bins in N_{bjet} (0,1,2,3, ≥4)

- Different backgrounds in N_{bjet} bins:
 - 0 bjets: W+jets with lepton not identified, or W→τν, Z→νν+jets
 - 1 bjet: W/Z+jets and ttbar are comparable in contributions
 - $\circ \geq 2$ bjets: **ttbar** is the dominant background
- Build models of backgrounds from data control regions:
 - W+jets and ttbar estimated from μ +jets; Z $\rightarrow \nu\nu$ from Z $\rightarrow \mu\mu$ and γ +jets
 - QCD estimated from the sideband in 0.52< α_{T} <0.55

CMS-PAS-12-028

0-lepton final state: CMS

- No significant excess above the SM P_2
 - Set limits on SMS models
 - Consider T2bb and T2tt
 - Exclude sbottom quarks up to **m**_{sbottom}≈600 GeV
 - For T2tt use only $N_{jet} ≥ 4$ and $N_{bjet} = 1$ or $N_{bjet} = 2$ events

 $M_R \sim \frac{M_{squark}^2 - M_\chi^2}{M_{squark}}$

- Devise variables to increase the sensitivity
 - o Razor variables to recast tail search into a bump-hunt
- Stops/Sbottoms are heavy → produced at threshold
 - Longitudinal boost to the frame where jets momenta are equal (*R*-frame)
- $M_R \rightarrow 2|p|$ in the *R*-frame (*a la* invariant mass), and M_T^R is transver o Define $R = M_T^R / M_R \rightarrow$ characterizes the angle between jets

0-lepton final state: CMS

TECHNOLO ALIF R GY С 0 N N S ΤЕ 0 F A Т

0-lepton final state: CMS

• Apply the razor analysis technique in a multi-box approach

0-lepton final state: CMS

CMS Prejiminary vs = 7 TeV

Model independent results showing data/prediction compatibility

0-lepton final state: CMS

Exclude stop masses up to **~420 GeV** for neutrualino masses of ~50 GeV

ALIFORNIA INSTITUTE OF TECHNOLOGY

С

O-lepton final state: ATLAS-CONF-2012-165 & 2013-001

- Variables used to define signal regions: MET, $\Delta \phi_{min'} m_{eff'} H_{T,x'} m_{CT}$
- Multijet background estimated using jet response smearing technique
 - Gaussian core of the jet response function from di-jet events
 - o non-Gaussian tails from three-jet events: MET is from mis-measurements
- top (pair and single), W/Z+bjets from control regions with 1 or 2 leptons
 Simultaneous profile likelihood fit in the control regions

0-lepton final state: ATLAS-CONF-2012-165 & 2013-001

- Optimized signal region definitions for various mass-splittings (∆m)
- Three sets of signal regions defined:
 - SR1 for large Δm : 2 b-jets (veto on third jet), large MET
 - Cut on m_{CT} to suppress backgrounds. Edge at $(m_{sbottom}^2 m_{\chi 10}^2)/m_{sbottom}$
 - SR2 for medium Δm : looser than SR1 cuts, due to softer kinematics
 - SR3 for small Δm : select events with high p_T *non*-b-jet (ISR), two softer b-jets

ATLAS-CONF-2012-165 & 2013-001 O-lepton final state: ATLAS

• Sensitive to sbottom and stop production (stop $\rightarrow b\chi_1^{\pm}$)

- Target the all-hadronic decays of the stop (stop $\rightarrow t\chi_1^0$)
- Large MET from LSP, use as discriminant
 - 3 SR targeting different ranges of the stop mass

			Signal	tī CR	Z+jets CR	Multijet CR	
				single	two		
		Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	electron (muon)	electron (muon)	$E_{\mathrm{T}}^{\mathrm{miss}}$	
	-	N _{lep}	0	1	2	0	
		p_{T}^{ℓ}	< 10 (10)	> 35 (35)	> 20 (20)	< 10 (10)	
	lepton veto	$p_{T}^{ar{\ell}_2}$	_	< 10 (10)	> 20 (10)		
	-	$m_{\ell\ell}$	—	—	81 to 101	—	
	T I	N _{jet}	≥ 6	≥ 6	≥ 6	≥ 6	
		p_{T}^{jet}	> 80,80,35,35	> 80,80,35,35	> 80,80,35,35	> 80,80,35,35	
		N _{b-jet}	≥ 2	≥ 2	≥ 2	≥ 2	
sig	nal selection	m_{jjj}	80 to 270	0 to 600	80 to 270	—	
		$E_{\rm T}^{\rm miss}$	> 200, 300, 350	> 200, 300, 350	> 70	> 160	
		$E_{\mathrm{T}}^{\mathrm{miss,track}}$	> 30	> 30	> 30	> 30	
	î	$\Delta \phi(E_{\rm T}^{ m miss}, E_{\rm T}^{ m miss, track})$	$<\pi/3$	$< \pi/3$	$<\pi/3$	$>\pi/3$	
	OCD veto	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$		40 to 120			
		$\Delta \phi$ (jet, E_{T}^{miss})	$>\pi/5$	$>\pi/10$	$>\pi/5$	$<\pi/5$	
	· · ·	$m_{\rm T}(b\text{-jet}, E_{\rm T}^{\rm miss})$	> 175		> 175	> 175	
	top veto	Tau veto	yes	no	yes	no	
	CALIFORN	IA INSTIT	UTE OF	TECHN	IOLOGY		

- At high MET the dominant background is semileptonic ttbar ($W \rightarrow \tau v$)
 - Derive from a sample with one charged lepton; remove top veto
 - Treat the lepton as a *non*-b-jet
- Z+jets derived from $Z \rightarrow ll$ sample: remove leptons from the event
- Multijet derived from a dijet sample with JER smearing technique

- No excess in any of the signal regions considered
 - ∘ stop pair production: t_1 mostly t_R (95%), BR($t_1 \rightarrow t\chi_1^0$) = 100%
 - exclude stop quarks 320<m_{stop}<660 GeV

CALI

- Target the cleaner final state with one leptons from:

 pp → *tt*^{*} → *ttx*⁰¹*x*⁰¹ → *bb*W⁺W⁻*x*⁰¹*x*⁰¹
 pp → *tt*^{*} → *bbx*⁺*x*⁻¹ → *bb*W⁺W⁻*x*⁰¹*x*⁰¹
 - Signal looks like ttbar+MET
- Largest backgrounds: semi-leptonic ttbar and W+jets
 - Have an edge at $M_T < M_W$ → search in the region above M_W
 - Suppress ttbar background: veto events with addl. isolated tracks
 - Require at least one b-jet

		Signal Region	Minimum <i>M</i> _T [GeV]	Minimum E _T ^{miss} [GeV]	
Loo	se: sensitive	SRA	150	100	
to s	mall ∆m 🚽	SRB	120	150	
		SRC	120	200	
		SRD	120	250 7	at: consitivo
		SRE	120	300 to 12	$\frac{1}{100}$
		SRF	120	350	
		SRG	120	400	1891
				-	

- Backgrounds estimated using MC simulation
 - Validated in control regions: derive the MC scale factors
 - Normalize in 50<M_T<80 GeV peak region: reduce the uncertainty

- Interpret results in several models
 - $\,\circ\,$ stops are generated as a 50/50 mixture of t_R and t_L
 - exclude stop quarks 160<m_{stop}<430 GeV

- Same final states targeted as in CMS search, similar event selection
 - \circ Dedicated signal regions for various Δm hypotheses
 - Loosest selection for small Δm :
 - use a 2D shape fit in MET-M_T plane to increase sensitivity
 - tag one b-jet, identify one all-hadronic top candidate
- Backgrounds estimated from control regions in data

RNIA H N CALIFO I N STITU TE F 0 GY 0 т E С

CMS-PAS-12-029

33

2-lepton final state: CMS

- Select same-sign (SS) di-leptons + b-jets:
 - very rare in SM, sensitive to $\tilde{b}_1 \to t \tilde{\chi}_1^-$ and $\tilde{\chi}_1^- \to W^- \tilde{\chi}_1^0$
- Select events with 2 SS, high p_T isolated e/µ leptons and ≥2 jet
 Require 2 b-jets to suppress dominant background (ttbar)
- Misidentified leptons are main background
 - HF decay, misidentified hadrons, muons from meson DIF, electrons from conversions, or charge "flips": extrapolation method in lepton ID/iso

No. of jets	≥ 2	≥ 2	≥ 2	≥ 4	≥ 4	\geq 4	≥ 4	≥ 3	\geq 4
No. of btags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	\geq 3	\geq 2
Lepton charges	++/	++/	++	++/	++/	++/	++/	++/	++/
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 0 GeV	> 30 GeV	> 30 GeV	> 120 GeV	> 50 GeV	> 50 GeV	> 120 GeV	> 50 GeV	> 0 GeV
$H_{\rm T}$	> 80 GeV	> 80 GeV	> 80 GeV	> 200 GeV	> 200 GeV	> 320 GeV	> 320 GeV	> 200 GeV	> 320 GeV
Charge-flip BG	3.35 ± 0.67	2.70 ± 0.54	1.35 ± 0.27	0.04 ± 0.01	0.21 ± 0.05	0.14 ± 0.03	0.04 ± 0.01	0.03 ± 0.01	0.21 ± 0.05
Fake BG	24.77 ± 12.62	19.18 ± 9.83	9.59 ± 5.02	0.99 ± 0.69	4.51 ± 2.85	$\textbf{2.88} \pm \textbf{1.69}$	0.67 ± 0.48	0.71 ± 0.47	4.39 ± 2.64
Rare SM BG	11.75 ± 5.89	10.46 ± 5.25	6.73 ± 3.39	1.18 ± 0.67	3.35 ± 1.84	2.66 ± 1.47	1.02 ± 0.60	0.44 ± 0.39	3.50 ± 1.92
Total BG	39.87 ± 13.94	32.34 ± 11.16	17.67 ± 6.06	2.22 ± 0.96	8.07 ± 3.39	5.67 ± 2.24	1.73 ± 0.77	1.18 ± 0.61	8.11 ± 3.26
Event yield	43	38	14	1	10	7	1	1	9
N _{UL} (13% unc.)	27.2	26.0	9.9	3.6	10.8	8.6	3.6	3.7	9.6
N_{UL} (20% unc.)	28.2	27.2	10.2	3.6	11.2	8.9	3.7	3.8	9.9
N_{UL} (30% unc.)	30.4	29.6	10.7	3.8	12.0	9.6	3.9	4.0	10.5

CMS-PAS-12-029

2-lepton final state: CMS

3rd generations searches summary

CALIFORNIA INSTITUTE OF TECHNOLOGY

35

Prospects with HL-LHC

• Projection for HL-LHC sensitivity assuming realistic running conditions and no improvement on the analyses

Conclusion

- A broad search program for 3rd generation direct production
 - Many novel approaches, new variables, search regions, final states
 - No excesses observed so far
 - Probe stop/sbottom masses up to ~500-600 GeV
- Several scenarios where stop/sbottom may have eluded detection in existing searches
 - Stops with mass near top quarks, or mass > 500 GeV
 - Compressed spectra, e.g. stop \rightarrow top+ χ , with small Δ m=m_{stop}-m_{χ}
 - Consider other decays: stop \rightarrow c χ , higgs, taus
 - Boosted stops reconstruction, to reach higher masses
- Many new analysis in the pipeline, stay tuned

- When correcting for luminosity and \sqrt{s} , the ATLAS limit covers more of the $t \rightarrow t \chi^0$ space for 2 reasons:
 - O 1) Different signal model: CMS signal model has unpolarized tops from t→t χ⁰. ATLAS signal model has top quarks which are mostly right-handed. This choice increases the large lepton p_T and M_T(ℓ,MET) acceptance because it causes the lepton to be emitted preferentially parallel to the top boost. We estimate the size of this effect to be ~25%.
 - 2) Tuned kinematical requirements: The most important one appears to be the hadronic top reconstruction. This is not currently implemented in the CMS in order to maintain sensitivity to both the t \rightarrow t χ^0 and t \rightarrow b χ^{\pm} decay modes.

ATLAS stop combination

- Where did the particle originate from? → **tracking detectors**
 - Long-lived particles travel substantial distance before decaying
 - For precise reconstruction of objects' P_T need to know origin precisely

- Momenta of the particles → tracking detectors and magnet
 - The higher the magnetic field, the better we can measure: R = p/(qB)
 - CMS magnetic field: **3.8 Tesla**

43

- Energy of all particles produced in the collision
 - Photons and pions measured in **electromagnetic calorimeters**
 - homogeneous Lead-Tungstate crystal

- Energy of all particles produced in the collision
 - Strongly interacting hadrons measured in hadronic calorimeter

- Muon detectors at the outermost edges of the detector
 - Negligible energy loss in the calorimeters: minimum ionizing particles
 - Combine measurements in the inner tracker with hits in the outermost

Drift tubes, CSC + RPC $\sigma(P_T) \sim 13\% / 4.5\%$ (standalone/with tracker) for 1TeV μ

The third generation: how?

• **Particle Flow (PF)** technique for global event reconstruction

- Charged particles : ~60% (**Tracker**) \rightarrow Charged π , Ks and γ s, some electrons and μ s
- Photons : ~25% (**ECAL**) \rightarrow Mostly from π^0
- Long-lived neutral hadrons : ~10% (**HCAL**) \rightarrow K⁰_L, neutrons
- Short-lived neutral hadrons : ~5% (**Tracker**) $\rightarrow K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$, $\Lambda \rightarrow \pi^{-}p$, γ conversions, nuclear interactions in the detector material.

- Factorized approach to set the jet energy scale
- L1: derived from from zero-bias data and MC simulations
- L2L3: obtained from MC; residual differences corrected from Z and γ +jet
 - The response of different flavors is within the 2-3% of QCD flavor mixture.

- Uncertainties in the jet energy corrections come from different sources
 - Physics modeling in MC (showering, underlying event, etc.)
 - MC modeling of detector response and properties (noise, etc.)
- 16 sources of sub-uncertainties
 - Main uncertainty sources in $|\eta| < 1.3$: pile up, jet flavor, and extrapolation.
 - In 2.5 < $|\eta|$ < 3: time dependence and out-of-time pile up.

- Jet resolution: important to achieve good data/MC agreement
 - Affects not only jets, but also any analysis with MET: need to smear MC jets
- Measure from data using dijet and γ +jet events

Event reconstruction: *b*-tagging

- Exploit specific characteristics of b-hadrons
 - Lifetime ~1.5 ps ($c\tau$ = 450 µm); p~20 GeV/c → decay length ~1.8 mm.
 - The high mass of ~5.2 GeV and a decay multiplicity of ~5 charged tracks.
 - \circ High p_T of decay products, relative to the flight direction of b-hadrons.
 - The semi-leptonic decays, branching fraction of ~11 %
- Variety of algorithms based on variables such as
 - the impact parameters of chargedparticle tracks
 - properties of reconstructed decay vertices, the presence/absence of a lepton
 - neural network using the output weights of the IP3D, JetFitter+IP3D, and SV1 algorithms (ATLAS)

