Mixed moduli-AMSB models (mirage unification)

Aspects

丸 Inspired by KKLT moduli stabilization and uplifting in string models
\star Soft SUSY breaking terms from mixed gravity/anomaly mediation (mix parameter α, Choi et al.)

* Gauge couplings unify at $M_{G U T}$ but soft terms unify at intermediate scale (hence, mirage unification)
\star Spectra compressed; for given $m_{\tilde{g}}$, harder to see than mSUGRA/CMSSM at LHC
* Model is pre-programmed in Isasugra/Isajet (model \#9)
\star Allows solution of gravitino problem, high $T_{R}>2 \times 10^{9} \mathrm{GeV}$ allowed, allows for $f_{a} \sim M_{G U T}$ when mixed axion/LSP dark matter
* See e.g. HB, E. Park, X. Tata and T. Wang, JHEP 0608:041,2006 and JHEP 0706:033,2007; HB, A. Lessa, S. Kraml and S. Sekmen, JCAP 1011:040,2010.

ENTER alpha, M_(3/2), $\tan \left(\right.$ beta), $\operatorname{sgn}(m u), M_{_} t:$

$$
4,21000,10,1,173.3
$$

ENTER moduli weights $\mathrm{nQ}, \mathrm{nD}, \mathrm{nU}, \mathrm{nL}, \mathrm{nE}, \mathrm{nHd}, \mathrm{nHu}[/$ for all 0]:

> .5,.5,.5,.5,.5,1,1

ENTER moduli parameters L1, L2, L3 [/ for all 1]:
/
Run Isatools? Choose 2=all, $1=$ some, $0=$ none:

```
    M_1 = 433.33 M_2 = 494.08 M_3 = 785.15
    mu(Q) = 441.47 B(Q) = 37.08 Q =611.17
M_Hd^2 = 0.244E+05 M_Hu^2 =-0.195E+06 TANBQ = 14.591
```

ISAJET masses (with signs):
$\mathrm{M}(\mathrm{GL})=820.27$
$\mathrm{M}(\mathrm{UL})=735.01 \mathrm{M}(\mathrm{UR})=716.75 \mathrm{M}(\mathrm{DL})=739.71 \mathrm{M}(\mathrm{DR})=717.84$
$\mathrm{M}(\mathrm{B} 1)=679.88 \mathrm{M}(\mathrm{B} 2)=714.98 \mathrm{M}(\mathrm{T} 1)=538.27 \mathrm{M}(\mathrm{T} 2)=749.67$
$\mathrm{M}(\mathrm{SN})=443.24 \mathrm{M}(\mathrm{EL})=450.95 \mathrm{M}(\mathrm{ER})=410.52$
$\mathrm{M}(\mathrm{NTAU})=439.37 \quad \mathrm{M}($ TAU1 $)=400.14 \quad \mathrm{M}($ TAU2 $)=452.30$
$\mathrm{M}(\mathrm{Z} 1)=-389.53 \mathrm{M}(\mathrm{Z} 2)=-443.91 \mathrm{M}(\mathrm{Z} 3)=445.47 \mathrm{M}(\mathrm{Z} 4)=-537.28$
$\mathrm{M}(\mathrm{W} 1)=-408.44 \mathrm{M}(\mathrm{W} 2)=-527.44$
$\mathrm{M}(\mathrm{HL})=114.60 \mathrm{M}(\mathrm{HH})=472.09 \mathrm{M}(\mathrm{HA})=468.96 \mathrm{M}(\mathrm{H}+)=478.79$
theta_t $=0.9924$ theta_ $\mathrm{b}=0.4300$ theta_l $=1.2674$ alpha_h $=0.0715$

NEUTRALINO MASSES (SIGNED) = -389.532 -443.910 $445.467-537.279$
EIGENVECTOR $1=-0.490300 .548970 .37278-0.56505$
EIGENVECTOR $2=0.28127-0.27972-0.43961-0.80585$
EIGENVECTOR $3=-0.70852-0.70288$ 0.05374 -0.03263
EIGENVECTOR $4=-0.42248$ 0.35545 -0.815410 .17398

Expanding SUSY and Low-Scale SUSY Models that evade LHC limits-A Panel Discussion

Howard E. Haber
SUSY Recast-A HEFTI Workshop
April 8, 2011

A few figures and table taken from a paper by S. Cassel, D.M. Ghilencea, S. Kraml, A. Lessa and G.G. Ross, arXiv:1101.4664, may be instructive.

Two-loop fine-tuning versus Higgs mass for the scan over CMSSM parameters with no constraint on the Higgs mass. The solid line is the minimum fine-tuning with $\left(\alpha_{s}, m_{t}\right)=(0.1176,173.1 \mathrm{GeV})$. The dark green, purple, crimson and black colored regions have a dark matter density within $\Omega h^{2}=0.1099 \pm 3 \times 0.0062$, while the lighter colored versions of these regions lie below this bound. The colors and associated numbers refer to different LSP structures. Regions 1,3,4 and 5 have an LSP that is mostly bino-like. In region 2 , the LSP has a significant higgsino component.

In the left panel, the fine-tuning versus the scalar mass parameter is exhibited. In the right panel, the fine-tuning versus the gluino mass is exhibited. In both cases, the constraint on the Higgs mass, $m_{h}>114.4 \mathrm{GeV}$ is applied.

Regions of low fine-tuning $(\Delta<100)$ in the m_{0} versus $m_{1 / 2}$ plane, summed over $\tan \beta$ and A_{0}. All points satisfy the SUSY and Higgs mass limits, $\Omega h^{2}<0.1285$ (dark points having $0.0913<\Omega h^{2}<0.1285$), the B-physics and δa_{μ} constraints, and the CDMS-II bound on the dark matter detection cross section. The area below the red line shows the CMSSM exclusion (for $\tan \beta=3$ and $A_{0}=0$) from the CMS dijet $+E_{T}^{\text {miss }}$ analysis.

	SUG0	SUG1	SUG2	SUG3	SUG5
m_{0}	1455	1508	2270	113	725
$m_{1 / 2}$	160	135	329	383	535
A_{0}	238	1492	30	-220	1138
$\tan \beta$	22.5	22.5	35	15	50
μ	191	433	187	529	581
$m_{\tilde{g}}$	482	414	900	898	1252
$m_{\tilde{u}_{L}}$	1469	1509	2331	826	1315
$m_{\tilde{t}_{1}}$	876	831	1423	602	1000
$m_{\tilde{\chi}_{1}^{+}}$	106	104	168	293	416
$m_{\tilde{\chi}_{2}^{0}}$	108	104	181	293	416
$m_{\tilde{\chi}_{1}^{0}}$	60	53	123	155	222
Δ	9	50	45	68	84
$\Omega_{\tilde{\chi}_{1} h^{2}}$	0.41	0.13	0.10	0.13	0.10
$\mathrm{BR}(b \rightarrow s \gamma) \times 10^{4}$	3.4	3.7	3.4	3.2	3.2
$\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \times 10^{9}$	3.0	2.9	2.9	3.4	1.7
$\delta a_{\mu} \times 10^{10}$	4.5	3.2	3.2	22.5	16.6
$\sigma_{\chi p}^{\text {SI }}(\mathrm{pb}) \times 10^{10}$	108	5	432	24	101
$\sigma^{(L O)}(7 \mathrm{TeV})(\mathrm{pb})$	8	12	0.9	0.4	0.02
$\sigma^{(L O)}(14 \mathrm{TeV})(\mathrm{pb})$	40	75	3	5	0.4

Table 1: CMSSM parameters and sparticle masses in GeV for the points used in our LHC analysis. We also show for each of the points the amount of fine-tuning, the neutralino relic density, the branching ratios of $b \rightarrow s \gamma$ and $B_{s} \rightarrow \mu^{+} \mu^{-}$, the SUSY contribution to the muon anomalous magnetic moment δa_{μ}, the spin-independent LSP scattering cross section off protons $\sigma_{\chi p}^{\mathrm{SI}}$, and the total leading-order sparticle production cross-sections for the LHC at $\sqrt{s}=7$ and 14 TeV .

CLAIM：compactified string theories with stabilized moduli that could describe our world generically have spectrum： Scalars $\approx \mathrm{M}_{3 / 2}$ 目 30 TeV ；gluinos 目 TeV；LSP（wino－like）目200 GeV
\rightarrow At LHC can only see gluinos，N1，N2，C1，h（h is SM－like）Davis，April Gordy Kane

2011
\rightarrow Gluinos decay dominantly to $3^{\text {rd }}$ family so gluino pair decays mainly to bbbb，bbtt，tbtb，tttt（ plus two of N1，N2，C1）
［studied backgrounds，easy to find signals；［x］ 1 events pass 35pb－1 ATLAS，CMS cuts］
\square could describe world：4D；TeV scale emerges；deS；CC～0；BBN； $\mathrm{N}=1$ susy；susy breaking；supergravity framework，etc－expect many solutions that can describe our world，and many that cannot－don＇t care about latter
－First derived in series of papers for M－theory compactified on G2 manifold［Acharya， Kane，Bobkov，Kumar，Shao，Kuflik，Lu，Watson，Feldman，Wang，Nelson，Suruliz Kadota，Velasco］
－Also showed for M－theory model that TeV scale emerges；potential in metastable deS minimum；universe has non－ thermal cosmological history，non－thermal wimp miracle；soft－breaking terms real；all CPV from phases of Yukawas； EDMs ok and predicted；strong CPV explained；no flavor problems；wino－like LSP good DM candidate；first string－ based solution of μ problem，predicts 缧 sI 圈 $10^{-45} \mathrm{~cm}^{2}$
－Then realized that some results，including spectrum and signatures，seems valid for any compactified string theory
－Note－some guessed scalars decoupled－here masses derived，not decoupled
＊Key point－study full moduli－like mass matrix－assume（at least one）moduli stabilized by susy－breaking interaction－then showed that smallest moduli mass \sim M3／2 \rightarrow moduli and gravitino masses related！
（NEW，Acharya，GK，Kuflik，arXiv：1006．3272）
\square Cosmology（BBN，or energy density）\rightarrow moduli masses 娄 $30 \mathrm{TeV} \rightarrow \mathrm{M} 3 / 2$ 圈 30 TeV
\square Then supergravity implies scalars（squarks etc）and trilinears［炎 30 TeV
\square Gauginos too？No in M theory，probably no generically
\square Known that if only usual moduli in the theory get AdS minima，not deS
\square Generically also have chiral matter at conical singularities on G2，CY manifolds，submanifolds－cannot neglect－condense to mesons，meson F terms positive，raise potential so metastable deS minimum， so these F terms are main contribution to susy－breaking
\square Mesons not in gauge kinetic function so do not contribute to leading term for gaugino masses \rightarrow gaugino masses suppressed 50 in \mathbf{M}－theory（at low scale）
\square True in M－theory／G2－some such additional susy－breaking contribution must occur in any string theory to have deS minimum \rightarrow gaugino mass suppression may be generic in string theories
$>$ Run down from $\sim 30 \mathrm{TeV}$ ，like REWSB， $3^{\text {rd }}$ family runs fastest，stops and sbottoms lighter，dominate gluino decay，get mainly bbbb，ttbb，tttt each plus N1N1 or N2N2 or C1N1 or C1C1 etc for gluino pairs
－EWSB？？Large little hierarchy？？－Fine Tuning an effective theory concept－there are solutions with EWSB，small μ ，scalars \sim tens of TeV －have found one analytically，several numerically－need to show boundary conditions for those solutions inevitable in underlying theory

Hard Susy (1)

■ $C_{1} \rightarrow N_{1} W$ and $N_{2} \rightarrow N_{1} Z$
■ BRs and backgrounds
$\square \mathrm{R}(\mathrm{W} / \mathrm{Z})$ vs $\mathrm{N}_{\mathrm{jet}}$?

- $\tilde{\ell} \rightarrow \ell N_{1}$ and $\Delta M \rightarrow 0$

■ $\widetilde{q} \rightarrow q N_{1}, \widetilde{g} \rightarrow q \bar{q} N_{1}$ and $\Delta M \rightarrow 0$

- ISR tags have large systematics
- Wino or Higgsino LSP

■ leptonic decays lost

- difficult if just ino production
$\square \widetilde{\tau}$ is NLSP or dominates decays
■ "tau" \simeq skinny jet
■ superheavy $\widetilde{q}, \widetilde{g}$, all else light ■ SUSY normalized away?

Hard Susy (2)

Increased pile-up will weaken effectiveness of triggers
■ soft leptons \Rightarrow high- p_{T} jet trigger
■ soft jets \Rightarrow high $-p_{T}$ lepton trigger

Tevatron Searches: Sbottom

V. M. Abazov et al. [D0 Collaboration], 1005.2222
S. Su

Tevatron Searches: Sbottom

Tevatron Searches: gluino

CDF, Run II, $2.5 \mathrm{fb}^{-1}$, gluino pair production, $\tilde{g} \rightarrow b \tilde{b} \quad \tilde{b} \rightarrow b \tilde{\chi}_{1}^{0}$
two or more jets, large MET, 2b-tagging
T. Aaltonen et al. [CDF Collaboration], PRL 102, 221801 (2009).

Tevatron Searches: Stop

CDF, Run II, $2.7 \mathrm{fb}^{-1}$, stop pair production, $\quad \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm} \rightarrow b \tilde{\chi}_{1}^{0} l \nu$
$\mathrm{m}_{\mathrm{st}}>150-185 \mathrm{GeV}$

Observed 95\% CL

Observed 95\% CL

A. G. Ivanov [CDF Collaboration], arXiv:0811.0788 [hep-ex].

ATLAS searches with b-tag

0 lepton, 3 j (1b)

- Branching ratios
- Small mgluino-msb, msb - mX 1^{0} might lose 2 b jets

Extra cuts

- 2-3 jets
- other $\mathrm{f}=\mathrm{met} /$ Meff: larger for $\mathbf{2 j}$
- other MET, Meff values
- loose $\Delta \Phi$ min
- transverse sphericity $\mathbf{S T}_{\mathbf{T}}$

ATLAS searches with b-tag

1 lepton, 2 j (1b)

Fully hadronic channel with b-tag
o more jets $(\geq 5,6)$

- $\boldsymbol{\Delta} \boldsymbol{\Phi}$ min
- other values for MET, Meff

ATLAS searches with b-tag

pMSSM SUSY Searches @ 7 TeV

CMS
A Compact Solenoidal Detector for LHC

J.A. Conley, J. S. Gainer, J. L. Hewett, M.-P. Le \& TGR arXiv:1009.2539,1103.1697
T.G. Rizzo
$04 / 13 / 11$

ATLAS \& CMS have already made a dent in SUSY space

- However, as these searches proceed we need to be sure that the analyses don't miss anything by assuming specific SUSY breaking mechanisms such as mSUGRA, GMSB, AMSB, etc.
- How do we do this? There are several possible approaches ${ }_{2 \text {.. }}$

Issues:

- The general MSSM is too difficult to study due to the large number of soft SUSY breaking parameters (~ 100).
- Many analyses limited to specific SUSY breaking scenarios having only a few parameters...can we be more general?

\rightarrow Model Generation Assumptions:

- The most general, CP-conserving MSSM with R-parity
- Minimal Flavor Violation at the TeV scale
- The lightest neutralino is the LSP \& a thermal relic.
- The first two sfermion generations are degenerate \& have negligible Yukawa's.
\rightarrow These choices mostly control flavor issues producing a fairly general scenario for collider \& other studies \rightarrow the pMSSM

19 pMSSM Parameters

10 sfermion masses: $m_{Q_{1}}, m_{Q_{3}}, m_{u_{1}}, m_{d_{1}}, m_{u_{3}}, m_{d_{3}}, m_{L_{1}}$, $\mathrm{m}_{\mathrm{L}_{3}}, \mathrm{~m}_{\mathrm{e}_{1}}, \mathrm{~m}_{\mathrm{e}_{3}}$

3 gaugino masses: M_{1}, M_{2}, M_{3} 3 tri-linear couplings: A_{b}, A_{t}, A_{τ} 3 Higgs/Higgsino: $\mu, M_{A}, \tan \beta$

How? Perform 2 Random Scans

Flat Priors

emphasizes moderate masses
$100 \mathrm{GeV} \leq \mathrm{m}_{\text {sfermions }} \leq 1 \mathrm{TeV}$ $50 \mathrm{GeV} \leq\left|\mathrm{M}_{1}, \mathrm{M}_{2}, \mu\right| \leq 1 \mathrm{TeV}$ $100 \mathrm{GeV} \leq \mathrm{M}_{3} \leq 1 \mathrm{TeV}$
$\sim 0.5 \mathrm{M}_{\mathrm{z}} \leq \mathrm{M}_{\mathrm{A}} \leq 1 \mathrm{TeV}$

$$
1 \leq \tan \beta \leq 50
$$

$$
\left|A_{t, b, \tau}\right| \leq 1 \mathrm{TeV}
$$

Log Priors

emphasizes lower masses but also extends to higher masses

$$
\begin{aligned}
& 100 \mathrm{GeV} \leq \mathrm{m}_{\text {sermions }} \leq 3 \mathrm{TeV} \\
& 10 \mathrm{GeV} \leq\left|\mathrm{M}_{1}, \mathrm{M}_{2}, \mu\right| \leq 3 \mathrm{TeV} \\
& 100 \mathrm{GeV} \leq \mathrm{M}_{3} \leq 3 \mathrm{TeV} \\
& \sim 0.5 \mathrm{M}_{\mathrm{z}} \leq \mathrm{M}_{\mathrm{A}} \leq 3 \mathrm{TeV} \\
& 1 \leq \tan \beta \leq 60 \text { (flat prior) } \\
& 10 \mathrm{GeV} \leq\left|\mathrm{A}_{\mathrm{t}, \mathrm{~b}, \mathrm{r}}\right| \leq 3 \mathrm{TeV}
\end{aligned}
$$

- Flat Priors: 10^{7} models scanned, 68422 survive
- Log Priors : 2×10^{6} models scanned, 2908 survive \rightarrow Comparison of these two scans will show the prior sensitivity,

Some Constraints

- W/Z ratio b $\boldsymbol{\rightarrow} \mathbf{s} \boldsymbol{\gamma}$
- $\Delta(\mathrm{g}-2)_{\mu}$
$\Gamma(Z \rightarrow$ invisible)
- Meson-Antimeson Mixing
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$
$B \rightarrow \tau \nu$
- DM density: $\Omega h^{2}<0.121$. We treat this only as an upper bound on the neutralino thermal relic contribution
- Direct Detection Searches for DM (CDMS, XENON...)
- LEP and Tevatron Direct Higgs \& SUSY searches : there are manysearches \& some are quite complicated with many caveats.... These needed to be 'revisited' for the more general case considered here \rightarrow simulations limit model set size (~ 1 core-century for set generation)

ATLAS SUSY Analyses w/ a Large Model Set

- We passed these points through the ATLAS inclusive MET analyses (@ both $\underline{7}$ \&14TeV !), designed for mSUGRA , to explore this broader class of models (~ 150 core-yrs)
- We used the ATLAS SM backgrounds with their associated systematic errors, search analyses/cuts \& criterion for SUSY discovery. (\rightarrow ATL-PHYS-PUB-2010-010 for 7 TeV)
- We verified that we can approximately reproduce the $\underline{7}$ \& 14 TeV ATLAS results for their benchmark mSUGRA models with our analysis techniques for each channel. ..BUT beware of some analysis differences:

US

ISASUGRA generates spectrum \& sparticle decays

Partial NLO cross sections using PROSPINO \& CTEQ6M

Herwig for fragmentation \& hadronization

GEANT4 for full detector sim

SuSpect generates spectra with SUSY-HIT\# for decays

NLO cross section for all 85 processes using PROSPINO** \& CTEQ6.6M

PYTHIA for fragmentation \& hadronization

PGS4-ATLAS for fast detector
simulation
** version w/ negative K-factor errors corrected
\# version w/o negative QCD corrections, with $1^{\text {st }} \& 2^{\text {nd }}$ generation fermion masses \& other very numerous PS fixes included. e.g., explicit small $\Delta \mathrm{m}$ chargino decays, etc.

$M_{\text {eff }}$ distribution for 4-jet, 0 lepton analysis

$\mathrm{M}_{\text {eff }}$ distribution for 2-jet, 0 lepton analysis

14 TeV

4j
$M_{\text {eff }}$ distribution for \xlongequal{M} lepton analysis

$\mathrm{M}_{\text {eff }}$ distribution for b-jet analysis

\rightarrow We do quite well reproducing ATLAS $7 \& 14 \mathrm{TeV}$ benchmarks with some small differences due to, e.g., (modified) public code usages \& PGS vs GEANT4

- The first question: 'How well do the ATLAS analyses cover the pMSSM model sets?' More precisely, 'what fraction of these models can be discovered (or not!) by any of the ATLAS analyses \& which ones do best?'
- Then we need to understand WHY some models are missed by these analyses even when high luminosities are available

FLAT

Solid=4j, dash=3j, dot=2j final states

Red $=20 \%$, green $=50 \%$, blue $=100 \%$ background systematic errors

Solid=4j, dash=3j, dot=2j final states

Red $=20 \%$, green $=50 \%$, blue $=100 \%$ background systematic errors

What fraction of models are found by \mathbf{n} analyses @7 TeV assuming, e.g., $\delta \mathrm{B}=20 \%$?

\rightarrow| \# anl. | Flat $\mathcal{L}_{0.1}$ | Flat \mathcal{L}_{1} | Flat \mathcal{L}_{10} | $\log \mathcal{L}_{0.1}$ | $\log \mathcal{L}_{1}$ | $\log \mathcal{L}_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 38.172 | 7.5501 | 0.9965 | 63.64 | 43.988 | 22.92 |
| 1 | 9.2928 | 4.1988 | 0.90862 | 5.376 | 4.8674 | 5.8482 |
| 2 | 8.7432 | 4.6665 | 1.6102 | 3.6687 | 5.6665 | 6.0298 |
| 3 | 41.836 | 59.878 | 39.573 | 26.008 | 34.907 | 35.38 |
| 4 | 0.65686 | 4.9257 | 7.9422 | 0.25427 | 2.2158 | 6.4657 |
| 5 | 0.53472 | 4.2629 | 6.7163 | 0.47221 | 2.0341 | 4.8311 |
| 6 | 0.54366 | 8.5391 | 13.494 | 0.32692 | 3.0875 | 6.5383 |
| 7 | 0.067026 | 2.5217 | 8.9044 | 0.21794 | 1.453 | 4.1773 |
| 8 | 0.062558 | 1.2288 | 5.6364 | 0.036324 | 0.72648 | 2.2884 |
| 9 | 0.077452 | 1.2958 | 6.548 | 0 | 0.58118 | 2.9422 |
| 10 | 0.013405 | 0.93241 | 7.6711 | 0 | 0.47221 | 2.579 |

$\rightarrow \rightarrow$ SUSY signals usually seen in multiple analyses

How good is the pMSSM coverage @ 7 TeV as the luminosity evolves ??

The coverage is quite good for both model sets !

- These figures emphasize the importance of decreasing_background systematic errors to obtain good pMSSM model coverage. For FLAT priors we see that, e.g.,

$$
\begin{aligned}
& L=5(10) \mathrm{fb}^{-1} \text { and } \delta B=100 \% \text { is 'equivalent' to } \\
& L=0.65(1.4) \mathrm{fb}^{-1} \text { and } \delta B=50 \%(\underline{x \sim 7}) \text { OR to } \\
& L=0.20(0.39) \mathrm{fb}^{-1} \text { and } \delta B=20 \%(\underline{x \sim 25})!!
\end{aligned}
$$

This effect is less dramatic for the LOG case due to the potentially heavier \& possibly compressed mass spectrum

ATLAS pMSSM Model Coverage* RIGHT NOW for ~35 pb-1 @ 7 TeV

FLAT: 16\% 29\% 39\%
LOG: 11\% 20\% 27\%

Wow! This is actually quite impressive as these LHC SUSY searches are just beginning!

* Fraction of models that SHOULD have been found but weren't if all ATLAS analyses were performed as stated

Search 'effectiveness': If a model is found by only 1 analysis which one is it??

Analysis	Flat $\mathcal{L}_{0.1}$	Flat \mathcal{L}_{1}	Flat \mathcal{L}_{10}	$\log \mathcal{L}_{0.1}$	$\log \mathcal{L}_{1}$	$\log \mathcal{L}_{10}$
4j01	71.037	63.533	59.18	75.676	63.433	41.615
3j0l	1.154	11.493	18.689	1.3514	11.94	21.118
2j0l	26.206	13.799	4.4262	20.27	15.672	12.422
4j11	0.30454	4.6116	6.5574	0	5.9701	7.4534
3j1l	0.096169	0.81589	0.98361	0	0	0.62112
2j1l	0.080141	1.8801	4.0984	0	0	6.2112
4jOSDL	0.048085	0	0	0	0.74627	0
3jOSDL	0.032056	1.6318	0.32787	0	0	0.62112
2jOSDL	0.99375	1.6673	0.4918	1.3514	1.4925	1.8634
2jSSDL	0.048085	0.56758	5.2459	1.3514	0.74627	8.0745

$\delta B=20 \%$

The Undiscovered SUSY

Why Do Models Get Missed by ATLAS?

The most obvious things to look at first are :

- small signal rates due to suppressed σ 's
- which can be correlated with large sparticle masses
- small mass splittings w/ the LSP (compressed spectra)
- decay chains ending in stable charged sparticles

o's: Squark \& gluino production cross sections @ 7 TeV cover a very wide range \& are correlated with the search significance. But there are models with $\sigma \sim 30 \mathrm{pb}$ that are missed by all ATLAS analyses while others with σ below $\sim 100 \mathrm{fb}$ are found.

Models that fail all analyses for flat priors, $1 \mathrm{fb}^{-1}$

Soft jets \& leptons

Both 7 \& 14 TeV models can be missed due to small mass splittings between squarks and/or gluinos and the LSP \rightarrow softer jets or leptons not passing cuts. ISR helps in some cases...

4 jol analysis for flat priors, $1 \mathrm{fb}^{-1}$

4 jOl analysis for flat priors, $1 \mathrm{fb}^{-1}$

For small mass splittings w/ the LSP a smaller fraction of events will pass analysis cuts

Missed vs Found Model Comparisons

- 38036 ($\sim 2.5 \mathrm{pb})$ fails while 47772 (~1.7 pb) passes all njol
- u_{R} lighter ($\sim 500 \mathrm{vs} \sim 635 \mathrm{GeV}$) \& produces larger σ in 38036 but decays $\sim 75 \%$ to $j+M E T$ in both models
- BUT due to the $\Delta \mathrm{m} w /$ LSP difference (\rightarrow eff $\sim 13 \%$ vs $\sim 3.5 \%$) 38036 fails to have a large enough rate after cuts Efficiencies win over cross sections !

Missed vs Found Model Comparisons

34847-21089-LEP1 ${ }_{\text {Trigger }}$

What went wrong ??

- 21089 ($\sigma \sim 4.6 \mathrm{pb}$) \& 34847 ($\sigma \sim 3.3 \mathrm{pb}$) yet both models fail njOl due to smallish $\Delta \mathrm{m}$'s. BUT 34847 is seen in the lower background channels (3,4)j11
- In 34847, u_{R} cascades to the LSP via $\chi_{2}{ }^{0}$ \& the chargino producing leptons via W emission. The LSP is mostly a wino in this case.
- In 21089, however, u_{R} can only decay to the lighter \sim Higgsino triplet which is sufficiently degenerate as to be incapable of producing high p_{T} leptons
- Note that the jets in both u_{R} decays have similar p_{T} 's

Missed vs Found Model Comparisons

What went wrong??

- 8944 seen in $(3,4)$ OSDL while 21089 is completely missed njOl fail due to spectrum compression but with very similar colored sparticle total $\sigma=(3.4,4.6) \mathrm{pb}$
- models have similar gaugino sectors $w / \chi_{1,2}{ }^{0}$ Higgsino-like $\& \chi_{3}{ }^{0}$ bino-like
- $\chi_{3}{ }^{0}$ can decay thru sleptons to produce OSDL + MET
- However in 8944, the gluino is heavier than d_{R} so that d_{R} can decay to $\chi_{3}{ }^{0}$
- But in 21089, the gluino is lighter than u_{R} so that it decays into the gluino \& not the bino so NO leptons

Missed vs Found Model Comparisons

9781-20875-LEP2-Trigger

What went wrong??

- 9781 seen in 2jSSDL while 20875 is completely missed njOl fail due to spectrum compression but with very similar colored sparticle total $\sigma=(1.1,1.3) \mathrm{pb}$
- Both models have highly mixed neutralinos \& charginos w/ a relatively compressed spectrum
- In model $9781, \mathrm{u}_{\mathrm{R}}$ can decay to $\mathrm{j}+$ leptons+MET via the bino part of $\chi_{2}{ }^{0}$ through intermediate e, μ sleptons
- But in 20875, these sleptons are too heavy to allow for decay on-shell \& only staus are accessible. The resulting leptons from the taus are too soft to pass analysis cuts

Missed vs Found Model Comparisons

68329-10959-MET Trigger

What went wrong ??

- 68329 passes $4 \mathrm{jOI}(\sigma \sim 4.6 \mathrm{pb})$ while 10959 ($\sigma \sim 6.0 \mathrm{pb}$) fails all
- In 68329, d_{R} decays to $j+M E T(B \sim 95 \%)$ since the gluino is only ~3 GeV lighter. The gluino decays to the LSP via the sbottom (B~100\%) with a $\Delta \mathrm{m} \sim 150 \mathrm{GeV}$ mass splitting . The LSP is bino-like in this model
- In 10959, d_{R} decays via the $\sim 107 \mathrm{GeV}$ lighter gluino ($\mathrm{B} \sim 99 \%$) and the gluino decays (with $\Delta \mathrm{m} \sim 40 \mathrm{GeV}$) through sbottom \& $2^{\text {nd }}$ neutralino to the (wino-like) LSP (with $\Delta \mathrm{m} \sim 60 \mathrm{GeV}$).
- Raising the LSP \& b_{1} masses in 68239 by 50 GeV (the $2^{\text {nd }}$ set of curves) induces failure due to the new gluino decay path

Missed vs Found Model Comparisons

- 13900 \& 65778 have heavy spectra \& well-mixed gauginos w/ $\sigma \sim 0.36(0.22) \mathrm{pb}$, too small for nj0l but 65778 seen in 4j1l
- In 13900 the gluino decays to sbottoms \& stops while u_{R} goes mostly to the LSP, so no leptons
- In 65778, (d,u) $)_{R}$ decay to $\mathrm{j}+\chi_{2,4}{ }^{0}$, then to $\mathrm{W}_{\chi_{1}}{ }^{ \pm} \mathrm{w} / \mathrm{B} \sim 75 \%$ \& $\Delta \mathrm{m} \sim 160-270 \mathrm{GeV}$, producing a subsequent lepton

A 14 TeV Example:

-				Meff-3	Meff-2 Sum-4jet-pt Sum-3jet-pt Sum-2jet-pt			
43704 46.50313 0.3305726	114.8049	424.9652	1070.408	996.6819	859.0967	893.2752	819.5494	681.9642
6317074.54320 .3209754	200.8012	368.0755	1090.669	1005.495	867.3606	819.9918	734.8182	596.6838

What went wrong??

In 43704: gluinos $\rightarrow \mathrm{d}_{\mathrm{R}} \rightarrow \chi_{2}{ }^{0} \rightarrow \mathrm{~W}+$ 'stable' chargino ($\sim 100 \%$) (Zanesville, OH) as the $\chi_{2}{ }^{0}$-LSP mass splitting is $\sim 91 \mathrm{GeV}$

In 63170: gluinos $\rightarrow \mathrm{u}_{\mathrm{R}} \rightarrow \chi_{2}{ }^{0} \rightarrow \mathrm{Z} / \mathrm{h}+\mathrm{LSP}(\sim 30 \%)$ as the (St. Louis, MO) $\chi_{2}{ }^{0}-$ LSP mass splitting is larger $\sim 198 \mathrm{GeV}$

- Again: a small spectrum change can have a large effect on the signal observability!
- \rightarrow Searches for stable charged particles in complex cascades may fill in some gaps as they are common in our model sets

'Stable' Charged Particles in Cascades

\rightarrow Mostly long-lived charginos produced in long decay chains
$\sim 84 \%$ of these $\chi_{1}{ }^{ \pm}$with $\mathrm{c} \tau>20 \mathrm{~m}$ have $\sigma \mathrm{B}>10 \mathrm{fb} @ 7 \mathrm{TeV}$

Unboosted Minimum Decay Length

Estimated σ B

Impact of Higgs Searches

Searches for the various components of the SUSY Higgs

Baglio \& Djouadi 1103.6247 sector also can lead to very important constraints on SUSY parameter space.

So far with $\sim 35 \mathrm{pb}^{-1}$ these searches have excluded only 4 of our models (due to the existing strong flavor constraints) but these searches are just beginning ..

Summary \& Conclusions

- ATLAS searches at both $7 \& 14 \mathrm{TeV}$ (\& any value in between) with $\sim 10 \mathrm{fb}^{-1}$ will do quite well at discovering or excluding most of the FLAT pMSSM models \& not at all badly with the LOG prior set
- With $\sim 35 \mathrm{pb}^{-1}$, a reasonable fraction of this model space has already been 'covered' !
- Reducing SM background uncertainties is quite important in enhancing model coverage..
- Models 'missed' due to either compressed spectra or because of low MET cascades ending in 'stable' charginos or... There are actually MANY reasons that models are missed.

Summary \& Conclusions (cont.)

- Searches in other channel, e.g., stable charged particles \& Higgs, will play an important role in covering the pMSSM parameter space
- Quite commonly small changes in the sparticle spectrum can lead to very significant changes in signal rates \& will then substantially alter the chances for SUSY discovery

BACKUP SLIDES

Models that fail all analyses for flat priors, $10 \mathrm{fb}^{-1}$

Fine-Tuning SUSY?

- It is often claimed that if the LHC (@7 TeV) does not find anything then SUSY must be VERY fine-tuned \& so 'less likely'. Is this true for the pMSSM??

\rightarrow Models w/ low tuning do appear to 'suffer' more than those w / larger values from null SUSY searches
- The amount of fine tuning in the LOG prior set is somewhat less influenced by null ATLAS searches due to spectrum differences, i.e., compression plus mass stretch-out

- How many signal events do we need to reach $S=5$? Depends on the $\mathrm{M}_{\text {eff }}$ 'cut' which is now 'optimized' @ 7 TeV
N_{S} required to get 5σ discovery with various $M_{\text {eff }}$ cuts for njol

N_{S} required to get 5σ discovery with various $M_{\text {eff }}$ cuts for njosdl

- The size of the background systematic error can play a very significant role in the pMSSM model coverage especially for $\mathrm{nj}(0,1) \mathrm{I} . .$.

N_{S} required to get 5σ discovery with various $\mathrm{Meff}_{\text {eff }}$ cuts for nj11


```
4josdl-Meff=400
4josdl-Meff=800
```

osdl-Meff=1200 \ldots.....
3 josdl-Meff=400
$3 j$ esdl-Meff $=800$
3josdl-Meff=800
3josdl-Meff=1200 \quad " \quad !
2josdl-Meff=400
2josdl-Meff=800
$\begin{aligned} & \text { 2osdl-Meff }=800 \\ & \text { 2josdl-Meff }=1200\end{aligned}$
N_{S} required to get 5σ discovery with various $\mathrm{M}_{\text {eff }}$ cuts for 2 jss d

Survivor Spectra : FLAT

d_{R} Mass Distribution for FLAT models failed for 50% error

d_{L} Mass Distribution for FLAT models failed for 50\% error

$u_{\llcorner }$Mass Distribution for FLAT models failed for 50% error

u_{R} Mass Distribution for FLAT models failed for 50% error

b_{1} Mass Distribution for FLAT models failed for 50% error

$X_{1}{ }^{\circ}$ Mass Distribution for FLAT models failed for 50% error

$e_{\text {L }}$ Mass Distribution for FLAT models failed for 50% error

e_{R} Mass Distribution for FLAT models failed for 50% error

Aside: How many models remain missing in the 'best' case as the minimum requirements of ' $\mathrm{S}=5$ ' for all searches is weakened?

