#### Mixed moduli-AMSB models (mirage unification)

#### Aspects

- ★ Inspired by KKLT moduli stabilization and uplifting in string models
- ★ Soft SUSY breaking terms from mixed gravity/anomaly mediation (mix parameter α, Choi et al.)
- ★ Gauge couplings unify at M<sub>GUT</sub> but soft terms unify at intermediate scale (hence, mirage unification)
- ★ Spectra compressed; for given m<sub>g̃</sub>, harder to see than mSUGRA/CMSSM at LHC
- ★ Model is pre-programmed in Isasugra/Isajet (model #9)
- ★ Allows solution of gravitino problem, high  $T_R > 2 \times 10^9$  GeV allowed, allows for  $f_a \sim M_{GUT}$  when mixed axion/LSP dark matter
- ★ See e.g. HB, E. Park, X. Tata and T. Wang, JHEP 0608:041,2006 and JHEP 0706:033,2007; HB, A. Lessa, S. Kraml and S. Sekmen, JCAP 1011:040,2010.

Howie Baer, UC-Davis SUSY Recast workshop, April 8-9, 2011

#### ENTER alpha, M\_(3/2), tan(beta), sgn(mu), M\_t: 4,21000,10,1,173.3 ENTER moduli weights nQ, nD, nU, nL, nE, nHd, nHu [/ for all 0]: .5,.5,.5,.5,.5,1,1 ENTER moduli parameters L1, L2, L3 [/ for all 1]: / Run Isatools? Choose 2=all, 1=some, 0=none: M\_1 = 433.33 M\_2 = 494.08 M\_3 = 785.15 mu(Q) = 441.47 B(Q) = 37.08 Q = 611.17 M\_Hd^2 = 0.244E+05 M\_Hu^2 =-0.195E+06 TANBQ = 14.591

ISAJET masses (with signs):

M(GL) = 820.27

M(HL) = 114.60 M(HH) = 472.09 M(HA) = 468.96 M(H+) = 478.79

theta\_t= 0.9924 theta\_b= 0.4300 theta\_l= 1.2674 alpha\_h= 0.0715

NEUTRALINO MASSES (SIGNED) = -389.532 -443.910 445.467 -537.279EIGENVECTOR 1= -0.49030 0.54897 0.37278 -0.56505EIGENVECTOR 2= 0.28127 -0.27972 -0.43961 -0.80585EIGENVECTOR 3= -0.70852 -0.70288 0.05374 -0.03263EIGENVECTOR 4= -0.42248 0.35545 -0.81541 0.17398

Expanding SUSY and Low-Scale SUSY Models that evade LHC limits—A Panel Discussion

> Howard E. Haber SUSY Recast—A HEFTI Workshop April 8, 2011

A few figures and table taken from a paper by S. Cassel, D.M. Ghilencea, S. Kraml, A. Lessa and G.G. Ross, arXiv:1101.4664, may be instructive.



Two-loop fine-tuning versus Higgs mass for the scan over CMSSM parameters with no constraint on the Higgs mass. The solid line is the minimum fine-tuning with  $(\alpha_s, m_t) = (0.1176, 173.1 \text{ GeV})$ . The dark green, purple, crimson and black colored regions have a dark matter density within  $\Omega h^2 = 0.1099 \pm 3 \times 0.0062$ , while the lighter colored versions of these regions lie below this bound. The colors and associated numbers refer to different LSP structures. Regions 1,3,4 and 5 have an LSP that is mostly bino-like. In region 2, the LSP has a significant higgsino component.



In the left panel, the fine-tuning versus the scalar mass parameter is exhibited. In the right panel, the fine-tuning versus the gluino mass is exhibited. In both cases, the constraint on the Higgs mass,  $m_h > 114.4 \text{ GeV}$  is applied.



Regions of low fine-tuning ( $\Delta < 100$ ) in the  $m_0$  versus  $m_{1/2}$  plane, summed over  $\tan \beta$  and  $A_0$ . All points satisfy the SUSY and Higgs mass limits,  $\Omega h^2 < 0.1285$  (dark points having  $0.0913 < \Omega h^2 < 0.1285$ ), the *B*-physics and  $\delta a_{\mu}$  constraints, and the CDMS-II bound on the dark matter detection cross section. The area below the red line shows the CMSSM exclusion (for  $\tan \beta = 3$  and  $A_0 = 0$ ) from the CMS dijet+ $E_T^{\text{miss}}$  analysis.

|                                                  | SUG0 | SUG1 | SUG2 | SUG3 | SUG5 |
|--------------------------------------------------|------|------|------|------|------|
| $m_0$                                            | 1455 | 1508 | 2270 | 113  | 725  |
| $m_{1/2}$                                        | 160  | 135  | 329  | 383  | 535  |
| $A_0$                                            | 238  | 1492 | 30   | -220 | 1138 |
| aneta                                            | 22.5 | 22.5 | 35   | 15   | 50   |
| $\mu$                                            | 191  | 433  | 187  | 529  | 581  |
| $m_{	ilde{g}}$                                   | 482  | 414  | 900  | 898  | 1252 |
| $m_{	ilde{u}_L}$                                 | 1469 | 1509 | 2331 | 826  | 1315 |
| $m_{	ilde{t}_1}$                                 | 876  | 831  | 1423 | 602  | 1000 |
| $m_{\tilde{\chi}_1^+}$                           | 106  | 104  | 168  | 293  | 416  |
| $m_{\tilde{\chi}^0_2}$                           | 108  | 104  | 181  | 293  | 416  |
| $m_{	ilde{\chi}_1^0}$                            | 60   | 53   | 123  | 155  | 222  |
| Δ                                                | 9    | 50   | 45   | 68   | 84   |
| $\Omega_{	ilde{\chi}_1^0} h^2$                   | 0.41 | 0.13 | 0.10 | 0.13 | 0.10 |
| ${\rm BR}(b\to s\gamma)\times 10^4$              | 3.4  | 3.7  | 3.4  | 3.2  | 3.2  |
| $BR(B_s \to \mu^+ \mu^-) \times 10^9$            | 3.0  | 2.9  | 2.9  | 3.4  | 1.7  |
| $\delta a_{\mu} \times 10^{10}$                  | 4.5  | 3.2  | 3.2  | 22.5 | 16.6 |
| $\sigma_{\chi p}^{\rm SI}$ (pb) $\times 10^{10}$ | 108  | 5    | 432  | 24   | 101  |
| $\sigma^{(LO)}(7 \text{ TeV}) \text{ (pb)}$      | 8    | 12   | 0.9  | 0.4  | 0.02 |
| $\sigma^{(LO)}(14 \text{ TeV}) \text{ (pb)}$     | 40   | 75   | 3    | 5    | 0.4  |

Table 1: CMSSM parameters and sparticle masses in GeV for the points used in our LHC analysis. We also show for each of the points the amount of fine-tuning, the neutralino relic density, the branching ratios of  $b \to s\gamma$  and  $B_s \to \mu^+\mu^-$ , the SUSY contribution to the muon anomalous magnetic moment  $\delta a_{\mu}$ , the spin-independent LSP scattering cross section off protons  $\sigma_{\chi p}^{\text{SI}}$ , and the total leading-order sparticle production cross-sections for the LHC at  $\sqrt{s} = 7$  and 14 TeV.

CLAIM: compactified string theories with stabilized moduli *that could describe our world* generically have spectrum:

Scalars≈M<sub>3/2</sub> 🕅 30 TeV; gluinos 🕅 TeV; LSP(wino-like) 🕅 200 GeV

→At LHC can only see gluinos, N1, N2, C1, h (h is SM-like)

Gordy Kane Davis, April 2011

→Gluinos decay dominantly to 3<sup>rd</sup> family so gluino pair decays mainly to bbbb, bbtt, tbtb, tttt ( plus two of N1, N2, C1)

[studied backgrounds, easy to find signals; 🔣 1 events pass 35pb<sup>-1</sup> ATLAS, CMS cuts]

- could describe world: 4D; TeV scale emerges; deS; CC~0; BBN; N=1 susy; susy breaking; supergravity framework, etc – expect many solutions that *can* describe our world, and many that cannot – don't care about latter
- First derived in series of papers for M-theory compactified on G2 manifold [Acharya, Kane, Bobkov, Kumar, Shao, Kuflik, Lu, Watson, Feldman, Wang, Nelson, Suruliz Kadota, Velasco]
- Also showed for M-theory model that TeV scale emerges; potential in metastable deS minimum; <u>universe has non-thermal cosmological history, non-thermal wimp miracle</u>; soft-breaking terms real; all CPV from phases of Yukawas; EDMs ok and predicted; strong CPV explained; no flavor problems; wino-like LSP good DM candidate; <u>first string-based solution of μ problem</u>, predicts X<sub>SI</sub> X 10<sup>-45</sup>cm<sup>2</sup>

#### Then realized that some results, including spectrum and signatures, seems valid for any compactified string theory

• Note – some guessed scalars decoupled – here masses derived, not decoupled

★ Key point – study full moduli-like mass matrix – assume (at least one) moduli stabilized by susy-breaking interaction – then showed that smallest moduli mass ~ M3/2 → moduli and gravitino masses related!

(NEW, Acharya, GK, Kuflik, arXiv:1006.3272)

- □ Cosmology (BBN, or energy density)  $\rightarrow$  moduli masses 🕅 30 TeV  $\rightarrow$  M3/2 🕅 30 TeV
- □ Then supergravity implies scalars (squarks etc) and trilinears 🕅 30 TeV
- **Gauginos too?** No in M theory, probably no generically
- □ Known that if only usual moduli in the theory get AdS minima, not deS
- Generically also have chiral matter at conical singularities on G2, CY manifolds, submanifolds cannot neglect – condense to mesons, meson F terms positive, raise potential so metastable deS minimum, so these F terms are main contribution to susy-breaking
- □ Mesons not in gauge kinetic function so do not contribute to leading term for gaugino masses → gaugino masses suppressed 🕅 50 in M-theory (at low scale)
- □ True in M-theory/G2 some such additional susy-breaking contribution must occur in any string theory to have deS minimum → gaugino mass suppression may be generic in string theories
- Run down from ~ 30 TeV, like REWSB, 3<sup>rd</sup> family runs fastest, stops and sbottoms lighter, dominate gluino decay, get mainly bbbb , ttbb, tttt each plus N1N1 or N2N2 or C1N1 or C1C1 etc for gluino pairs
- EWSB?? Large little hierarchy?? Fine Tuning an effective theory concept there are solutions with EWSB, small μ, scalars ~ tens of TeV – have found one analytically, several numerically – need to show boundary conditions for those solutions inevitable in underlying theory

#### Hard Susy (1)

- $\blacksquare \ C_1 \to N_1 W \text{ and } N_2 \to N_1 Z$ 
  - BRs and backgrounds
  - R(W/Z) vs N<sub>jet</sub>?
- $\widetilde{\ell} \to \ell N_1$  and  $\Delta M \to 0$
- $\widetilde{q} \to q N_1, \widetilde{g} \to q \overline{q} N_1$  and  $\Delta M \to 0$ 
  - ISR tags have large systematics
- Wino or Higgsino LSP
  - leptonic decays lost
  - difficult if just ino production
- $\widetilde{\tau}$  is NLSP or dominates decays
  - "tau" ≃ skinny jet
- superheavy  $\tilde{q}, \tilde{g}$ , all else light
  - SUSY normalized away?



#### Hard Susy (2)

Increased pile-up will weaken effectiveness of triggers

- soft leptons  $\Rightarrow$  high- $p_T$  jet trigger
- soft jets  $\Rightarrow$  high- $p_T$  lepton trigger



### **Tevatron Searches: Sbottom**

$$\tilde{b} \to b \tilde{\chi}_1^0$$



V. M. Abazov et al. [D0 Collaboration], 1005.2222

1

### **Tevatron Searches: Sbottom**



## **Tevatron Searches:** gluino

#### CDF, Run II, 2.5 fb<sup>-1</sup>, gluino pair production, $\tilde{g} \rightarrow b\tilde{b} \quad \tilde{b} \rightarrow b\tilde{\chi}_1^0$ two or more jets, large MET, 2b-tagging

T. Aaltonen et al. [CDF Collaboration], PRL 102, 221801 (2009).



## **Tevatron Searches: Stop**

CDF, Run II, 2.7 fb<sup>-1</sup>, stop pair production,  $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b \tilde{\chi}_1^0 l \nu$ m<sub>st</sub> > 150 - 185 GeV



A. G. Ivanov [CDF Collaboration], arXiv:0811.0788 [hep-ex].

## ATLAS searches with b-tag



- Branching ratios
- Small mgluino-msb, msb mχ<sub>1</sub><sup>0</sup>
   might lose 2 b jets

Extra cuts

- 2-3 jets
- other f=met/Meff: larger for 2j
- other MET, Meff values
- Ioose ΔΦmin
- $\odot$  transverse sphericity  $S_T$

## ATLAS searches with b-tag

1 lepton, 2 j (1b)



Small mgluino-mst, mst -  $m\chi_1^{\pm} m\chi_1^{\pm} - m\chi_1^{0}$ might lose lepton, also suffer from small Br(I)

Fully hadronic channel with b-tag● more jets (≥ 5, 6)

- ΔΦmin
- other values for MET, Meff

## ATLAS searches with b-tag



## pMSSM SUSY Searches @ 7 TeV









J.A. Conley, J. S. Gainer, J. L. Hewett, M.-P. Le & TGR arXiv:1009.2539,1103.1697

04/13/11

T.G. Rizzo



#### ATLAS & CMS have already made a dent in SUSY space

- However, as these searches proceed we need to be <u>sure</u> that the analyses don't miss anything by assuming specific SUSY breaking mechanisms such as mSUGRA, GMSB, AMSB, etc.
- How do we do this? There are several possible approaches...

### <u>lssues</u>:

- The general MSSM is too difficult to study due to the large number of soft SUSY breaking parameters (~ 100).
- Many analyses limited to specific SUSY breaking scenarios having only a few parameters...can we be more general?

## $\rightarrow$ <u>Model Generation Assumptions</u> :

- The most general, CP-conserving MSSM with R-parity
- Minimal Flavor Violation at the TeV scale
- The lightest neutralino is the LSP & a thermal relic.
- The first two sfermion generations are degenerate & have negligible Yukawa's.
- → These choices mostly control flavor issues producing a fairly general scenario for collider & other studies → the pMSSM

## **19 pMSSM Parameters**

10 sfermion masses:  $m_{Q_1}$ ,  $m_{Q_3}$ ,  $m_{u_1}$ ,  $m_{d_1}$ ,  $m_{u_3}$ ,  $m_{d_3}$ ,  $m_{L_1}$ ,  $m_{L_3}$ ,  $m_{e_1}$ ,  $m_{e_3}$ 

3 gaugino masses: M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>
3 tri-linear couplings: A<sub>b</sub>, A<sub>t</sub>, A<sub>τ</sub>
3 Higgs/Higgsino: μ, M<sub>A</sub>, tanβ

# How? Perform 2 Random Scans

 $\begin{array}{l} \text{emphasizes moderate masses} \\ 100 \; \text{GeV} \leq m_{sfermions} \; \leq 1 \; \text{TeV} \\ 50 \; \text{GeV} \leq |M_1, \, M_2, \, \mu| \leq 1 \; \text{TeV} \\ 100 \; \text{GeV} \leq M_3 \leq 1 \; \text{TeV} \\ 100 \; \text{GeV} \leq M_A \; \leq 1 \; \text{TeV} \\ \sim 0.5 \; M_Z \leq M_A \; \leq 1 \; \text{TeV} \\ 1 \leq tan\beta \leq 50 \\ |A_{t,b,\tau}| \leq 1 \; \text{TeV} \end{array}$ 

**Flat Priors** 

#### Log Priors

emphasizes lower masses but also extends to higher masses

 $\begin{array}{l} 100 \; GeV \leq m_{sfermions} \; \leq 3 \; TeV \\ 10 \; GeV \leq |M_1, \, M_2, \, \mu| \leq 3 \; TeV \\ 100 \; GeV \leq \; M_3 \leq 3 \; TeV \\ \hlineleftarrow 0.5 \; M_Z \leq \; M_A \; \leq 3 \; TeV \\ \; 1 \leq tan\beta \leq 60 \; (flat \; prior) \\ 10 \; GeV \leq |A_{\; t,b,\tau}| \leq 3 \; TeV \end{array}$ 

- Flat Priors : 10<sup>7</sup> models scanned , 68422 survive
- Log Priors : 2x10<sup>6</sup> models scanned , 2908 survive

→Comparison of these two scans will show the prior sensitivity,

#### Some Constraints

- W/Z ratio  $b \rightarrow s \gamma$
- $\Delta(g-2)_{\mu}$   $\Gamma(Z \rightarrow invisible)$
- Meson-Antimeson Mixing
- $B_s \rightarrow \mu \mu$   $B \rightarrow \tau \nu$
- DM density:  $\Omega h^2 < 0.121$ . We treat this only as an *upper* bound on the neutralino thermal relic contribution
- Direct Detection Searches for DM (CDMS, XENON...)
- LEP and Tevatron Direct Higgs & SUSY searches : there are *many* searches & some are quite complicated with <u>many</u> caveats.... These needed to be <u>'revisited'</u> for the more general case considered here → simulations limit model set size (~1 core-century for set generation)

## ATLAS SUSY Analyses w/ a Large Model Set

• We passed these points through the ATLAS inclusive MET analyses (@ both 7 &14TeV !), designed for mSUGRA , to explore this broader class of models (~150 core-yrs)

• We used the <u>ATLAS</u> SM backgrounds with <u>their</u> associated systematic errors, search analyses/cuts & criterion for SUSY discovery. ( $\rightarrow$  ATL-PHYS-PUB-2010-010 for 7 TeV)

• We verified that we can approximately reproduce the <u>7</u> & 14 TeV ATLAS results for their benchmark mSUGRA models with our analysis techniques for each channel. ..<u>BUT beware of some analysis differences:</u>





ISASUGRA generates spectrum & sparticle decays

Partial NLO cross sections using PROSPINO & CTEQ6M

Herwig for fragmentation & hadronization

**GEANT4** for full detector sim

SuSpect generates spectra with SUSY-HIT<sup>#</sup> for decays

NLO cross section for <u>all 85</u> processes using PROSPINO\*\* & CTEQ6.6M

PYTHIA for fragmentation & hadronization

#### PGS4-ATLAS for fast detector simulation

\*\* version w/ negative K-factor errors corrected

<sup>#</sup> version w/o negative QCD corrections, with  $1^{st} \& 2^{nd}$  generation fermion masses & other very numerous PS fixes included. e.g., explicit small  $\Delta m$  chargino decays, etc.





M<sub>eff</sub> distribution for 4-jet, 0 lepton analysis

Meff distribution for 2-jet, 0 lepton analysis

→ We do quite well reproducing ATLAS 7 & 14 TeV benchmarks with some small differences due to, e.g., (modified) public code usages & PGS vs GEANT4

 The first question: 'How well do the ATLAS analyses cover the pMSSM model sets?' More precisely, 'what fraction of these models can be discovered (or not!) by <u>any</u> of the ATLAS analyses & which ones do best?'

• Then we need to understand WHY some models are missed by these analyses even when high luminosities are available



#### Solid=4j, dash=3j, dot=2j final states



Red=20%, green=50%, blue=100% background systematic errors





#### Solid=4j, dash=3j, dot=2j final states



Red=20%, green=50%, blue=100% background systematic errors



# What fraction of models are found by n analyses @7 TeV assuming, e.g., $\delta B=20\%$ ?

|               | # anl. | Flat $\mathcal{L}_{0.1}$ | Flat $\mathcal{L}_1$ | Flat $\mathcal{L}_{10}$ | $\mathrm{Log}\;\mathcal{L}_{0.1}$ | $\operatorname{Log} \mathcal{L}_1$ | $\operatorname{Log} \mathcal{L}_{10}$ |
|---------------|--------|--------------------------|----------------------|-------------------------|-----------------------------------|------------------------------------|---------------------------------------|
| $\rightarrow$ | 0      | 38.172                   | 7.5501               | 0.9965                  | 63.64                             | 43.988                             | 22.92                                 |
|               | 1      | 9.2928                   | 4.1988               | 0.90862                 | 5.376                             | 4.8674                             | 5.8482                                |
|               | 2      | 8.7432                   | 4.6665               | 1.6102                  | 3.6687                            | 5.6665                             | 6.0298                                |
| $\rightarrow$ | 3      | 41.836                   | 59.878               | 39.573                  | 26.008                            | 34.907                             | 35.38                                 |
|               | 4      | 0.65686                  | 4.9257               | 7.9422                  | 0.25427                           | 2.2158                             | 6.4657                                |
|               | 5      | 0.53472                  | 4.2629               | 6.7163                  | 0.47221                           | 2.0341                             | 4.8311                                |
|               | 6      | 0.54366                  | 8.5391               | 13.494                  | 0.32692                           | 3.0875                             | 6.5383                                |
|               | 7      | 0.067026                 | 2.5217               | 8.9044                  | 0.21794                           | 1.453                              | 4.1773                                |
|               | 8      | 0.062558                 | 1.2288               | 5.6364                  | 0.036324                          | 0.72648                            | 2.2884                                |
|               | 9      | 0.077452                 | 1.2958               | 6.548                   | 0                                 | 0.58118                            | 2.9422                                |
|               | 10     | 0.013405                 | 0.93241              | 7.6711                  | 0                                 | 0.47221                            | 2.579                                 |

 $\rightarrow$   $\rightarrow$  SUSY signals usually seen in multiple analyses

# How good is the pMSSM coverage @ 7 TeV as the luminosity evolves ??

#### The coverage is <u>quite good</u> for both model sets !



- These figures emphasize the importance of <u>decreasing</u> background systematic errors to obtain good pMSSM model coverage. For <u>FLAT</u> priors we see that, e.g.,
  - L=5(10) fb<sup>-1</sup> and  $\delta$ B=100% is 'equivalent' to
  - L=0.65(1.4) fb<sup>-1</sup> and  $\delta$ B=50% (<u>x ~7</u>) OR to
  - L=0.20(0.39) fb<sup>-1</sup> and δB=20% (<u>x ~25</u>) !!

This effect is less dramatic for the LOG case due to the potentially heavier & possibly compressed mass spectrum

## ATLAS pMSSM Model Coverage<sup>\*</sup> <u>RIGHT NOW</u> for ~35 pb <sup>-1</sup> @ 7 TeV



Wow! This is actually quite impressive as these LHC SUSY searches are just beginning !

\* Fraction of models that SHOULD have been found but weren't if all ATLAS analyses were performed as stated

# Search 'effectiveness': If a model is found by only 1 analysis which one is it??

| Analysis | Flat $\mathcal{L}_{0.1}$ | Flat $\mathcal{L}_1$ | Flat $\mathcal{L}_{10}$ | $\operatorname{Log} \mathcal{L}_{0.1}$ | $\operatorname{Log} \mathcal{L}_1$ | $\operatorname{Log} \mathcal{L}_{10}$ |
|----------|--------------------------|----------------------|-------------------------|----------------------------------------|------------------------------------|---------------------------------------|
| 4j01     | 71.037                   | 63.533               | 59.18                   | 75.676                                 | 63.433                             | 41.615                                |
| 3j01     | 1.154                    | 11.493               | 18.689                  | 1.3514                                 | 11.94                              | 21.118                                |
| 2j01     | 26.206                   | 13.799               | 4.4262                  | 20.27                                  | 15.672                             | 12.422                                |
| 4j11     | 0.30454                  | 4.6116               | 6.5574                  | 0                                      | 5.9701                             | 7.4534                                |
| 3j11     | 0.096169                 | 0.81589              | 0.98361                 | 0                                      | 0                                  | 0.62112                               |
| 2j11     | 0.080141                 | 1.8801               | 4.0984                  | 0                                      | 0                                  | 6.2112                                |
| 4jOSDL   | 0.048085                 | 0                    | 0                       | 0                                      | 0.74627                            | 0                                     |
| 3jOSDL   | 0.032056                 | 1.6318               | 0.32787                 | 0                                      | 0                                  | 0.62112                               |
| 2jOSDL   | 0.99375                  | 1.6673               | 0.4918                  | 1.3514                                 | 1.4925                             | 1.8634                                |
| 2jSSDL   | 0.048085                 | 0.56758              | 5.2459                  | 1.3514                                 | 0.74627                            | 8.0745                                |

### δ**B=20%**

 $\rightarrow$   $\rightarrow$  again, 4j0l is the most powerful analysis...

## The Undiscovered SUSY

## Why Do Models Get Missed by ATLAS?

The most obvious things to look at first are :

- small signal rates due to suppressed  $\sigma$ 's
- which can be correlated with large sparticle masses
- small mass splittings w/ the LSP (compressed spectra)
- decay chains ending in stable charged sparticles



 $\sigma$ 's: Squark & gluino production cross sections @ 7 TeV cover a very wide range & are correlated with the search significance. But there are models with σ ~30 pb that are missed by all ATLAS analyses while others with σ below ~100 fb are found.





#### Soft jets & leptons

Both 7 & 14 TeV models can be missed due to small mass splittings between squarks and/or gluinos and the LSP  $\rightarrow$  softer jets or leptons not passing cuts. ISR helps in some cases...



# For small mass splittings w/ the LSP a smaller fraction of events will pass analysis cuts



## **Missed vs Found Model Comparisons**



- 38036 (~2.5 pb) fails while 47772 (~1.7 pb) passes all nj0l
- u<sub>R</sub> lighter (~500 vs ~635 GeV) & produces larger σ in 38036 but decays ~75% to j+MET in both models
- BUT due to the ∆m w/ LSP difference (→ eff ~13% vs ~3.5%) 38036 fails to have a large enough rate after cuts Efficiencies win over cross sections !

## **Missed vs Found Model Comparisons**



## What went wrong ??

- 21089 (σ ~ 4.6pb) & 34847 (σ ~ 3.3pb) yet both models fail nj0l due to smallish Δm's. BUT 34847 is seen in the lower background channels (3,4)j1l
- In 34847,  $u_R$  cascades to the LSP via  $\chi_2^0$  & the chargino producing leptons via W emission. The LSP is mostly a wino in this case.
- In 21089, however, u<sub>R</sub> can only decay to the lighter ~Higgsino triplet which is sufficiently degenerate as to be incapable of producing high p<sub>T</sub> leptons
- Note that the jets in both  $u_R$  decays have similar  $p_T$ 's

## **Missed vs Found Model Comparisons**







## What went wrong ??

- 8944 seen in (3,4)OSDL while 21089 is completely missed nj0l fail due to spectrum compression but with very similar colored sparticle total  $\sigma$  = (3.4, 4.6) pb
- models have similar gaugino sectors w/  $\chi_{1,2}{}^0~$  Higgsino-like &  $\chi_3{}^0~$  bino-like
- $\chi_3^0$  can decay thru sleptons to produce OSDL + MET
- However in 8944, the gluino is <u>heavier</u> than  $d_R$  so that  $d_R$  can decay to  $\chi_3^0$
- But in 21089, the gluino is <u>lighter</u> than u<sub>R</sub> so that it decays into the gluino & not the bino so NO leptons

## **Missed vs Found Model Comparisons**



## What went wrong ??

- 9781 seen in 2jSSDL while 20875 is completely missed nj0l fail due to spectrum compression but with very similar colored sparticle total  $\sigma$  = (1.1, 1.3) pb
- Both models have highly mixed neutralinos & charginos w/ a relatively compressed spectrum
- In model 9781,  $u_R$  can decay to j+leptons+MET via the bino part of  $\chi_2^0$  through intermediate e,  $\mu$  sleptons
- But in 20875, these sleptons are too heavy to allow for decay on-shell & only staus are accessible. The resulting leptons from the taus are too soft to pass analysis cuts

## **Missed vs Found Model Comparisons**



## What went wrong ??

- 68329 passes 4j0l (σ~4.6 pb) while 10959 (σ~6.0 pb) fails all
- In 68329, d<sub>R</sub> decays to j+MET (B~95%) since the gluino is only ~3 GeV lighter. The gluino decays to the LSP via the sbottom (B~100%) with a ∆m~150 GeV mass splitting. The LSP is bino-like in this model
- In 10959, d<sub>R</sub> decays via the ~107 GeV lighter gluino (B~99%) and the gluino decays (with ∆m ~40 GeV) through sbottom & 2<sup>nd</sup> neutralino to the (wino-like) LSP (with ∆m~ 60 GeV).
- Raising the LSP & b<sub>1</sub> masses in 68239 by 50 GeV (the 2<sup>nd</sup> set of curves) induces failure due to the new gluino decay path

## **Missed vs Found Model Comparisons**



- 13900 & 65778 have heavy spectra & well-mixed gauginos w/  $\sigma \sim 0.36(0.22)$  pb, too small for nj0l but 65778 seen in 4j1l
- In 13900 the gluino decays to sbottoms & stops while  $u_{\rm R}\,$  goes mostly to the LSP, so no leptons
- In 65778, (d,u)<sub>R</sub> decay to  $j+\chi_{2,4}^{0}$ , then to  $W\chi_{1}^{\pm}$  w/ B~75% &  $\Delta m \sim 160-270$  GeV, producing a subsequent lepton <sup>32</sup>

#### A 14 TeV Example:



|   | Failed model 43704(process-partonicXS-fullXS-frac.diff) |          |          |            | Sister mo |          |          |            |
|---|---------------------------------------------------------|----------|----------|------------|-----------|----------|----------|------------|
| Γ | 62                                                      | 591.6537 | 552.6714 | 0.0705342  | 62        | 554.1683 | 598.2279 | -0.0736501 |
|   | 63                                                      | 919.5316 | 1007.283 | -0.0871171 | 63        | 1136.412 | 1115.883 | 0.0183972  |
|   | 68                                                      | 1689.407 | 2207.448 | -0.234679  | 68        | 1574.955 | 2111.774 | -0.254203  |
|   | 69                                                      | 4117.824 | 4558.5   | -0.0966714 | 69        | 4469.741 | 4868.156 | -0.0818411 |

| #Cut  | lepton-pt | t num-leps | MET      | hardest jet |     | Meff-4   | Meff-3   | Meff-2 | Sum-4jet-pt | Sum-3jet-pt | Sum-2jet-pt |
|-------|-----------|------------|----------|-------------|-----|----------|----------|--------|-------------|-------------|-------------|
| 43704 | 46.50313  | 0.3305726  | 114.8049 | 424.965     | ! / | 1070.408 | 996.6819 | 859.09 | 67 893.27   | 52 819.549  | 4 681.9642  |
| 63170 | 74.5432   | 0.3209754  | 200.8012 | 368.075     | 5   | 1090.669 | 1005.495 | 867.36 | 06 819.99   | 18 734.818  | 2 596.6838  |

## What went wrong ??

In 43704: gluinos  $\rightarrow d_R \rightarrow \chi_2^0 \rightarrow W$  + 'stable' chargino (~100%) (Zanesville, OH) as the  $\chi_2^0$  –LSP mass splitting is ~91 GeV

In 63170: gluinos  $\rightarrow u_R \rightarrow \chi_2^0 \rightarrow Z/h + LSP$  (~30%) as the (St. Louis, MO)  $\chi_2^0$  –LSP mass splitting is larger ~198 GeV

- Again: a <u>small spectrum change</u> can have a large effect on the signal observability!
- → Searches for stable charged particles in complex cascades may fill in some gaps as they are common in our model sets

### **'Stable' Charged Particles in Cascades**

 $\rightarrow$  Mostly long-lived charginos produced in long decay chains

~84% of these  $\chi_1^{\pm}$  with  $c\tau$ >20m have  $\sigma$ B>10 fb @ 7 TeV



**Unboosted Minimum Decay Length** 

Estimated ob

## **Impact of Higgs Searches**

Searches for the various components of the SUSY Higgs



Baglio & Djouadi 1103.6247

sector also can lead to very important constraints on SUSY parameter space.

So far with ~35 pb<sup>-1</sup> these searches have excluded only <u>4</u> of our models (due to the existing strong flavor constraints) but these searches are just beginning ...

## **Summary & Conclusions**

- ATLAS searches at both 7 &14 TeV (& any value in between) with ~10 fb<sup>-1</sup> will do quite well at discovering or excluding most of the FLAT pMSSM models & not at all badly with the LOG prior set
- With ~35 pb<sup>-1</sup>, a reasonable fraction of this model space has already been 'covered' !
- Reducing SM background uncertainties is quite important in enhancing model coverage..
- Models 'missed' due to either compressed spectra *or* because of low MET cascades ending in 'stable' charginos *or*... There are actually MANY reasons that models are missed. 37

## Summary & Conclusions (cont.)

- Searches in other channel, e.g., stable charged particles & Higgs, will play an important role in covering the pMSSM parameter space
- Quite commonly small changes in the sparticle spectrum can lead to very significant changes in signal rates & will then substantially alter the chances for SUSY discovery

## **BACKUP SLIDES**





Models that fail all analyses for flat priors, 10 fb<sup>-1</sup>

## Fine-Tuning SUSY ?

 It is often claimed that if the LHC (@7 TeV) does not find anything then SUSY must be <u>VERY</u> fine-tuned & so 'less likely'.
 Is this true for the <u>pMSSM</u>??



- → Models w/ low tuning do appear to 'suffer' more than those w/ larger values from null SUSY searches
- The amount of fine tuning in the LOG prior set is somewhat less influenced by null ATLAS searches due to spectrum differences , i.e., compression plus mass stretch-out



# How many signal events do we need to reach S=5? Depends on the M<sub>eff</sub> 'cut' which is now 'optimized' @ 7 TeV

 $N_{\rm S}$  required to get  $5\sigma$  discovery with various  $M_{eff}$  cuts for nj0l



ۍ ع

 The size of the background systematic error can play a very significant role in the pMSSM model coverage especially for nj(0,1)I ...





 $N_s$  required to get  $5\sigma$  discovery with various  $M_{eff}$  cuts for 2jssdl



 $N_{\rm s}$  required to get  $5\sigma$  discovery with various  $M_{eff}$  cuts for njosdl

# **Survivor Spectra : FLAT**

g Mass Distribution for FLAT models failed for 50% error



d<sub>1</sub> Mass Distribution for FLAT models failed for 50% error



u<sub>L</sub> Mass Distribution for FLAT models failed for 50% error









b1 Mass Distribution for FLAT models failed for 50% error



 $\tau_1$  Mass Distribution for FLAT models failed for 50% error



t1 Mass Distribution for FLAT models failed for 50% error



 $\mathbf{e}_{\mathsf{L}}$  Mass Distribution for FLAT models failed for 50% error



Number of models



e<sub>R</sub> Mass Distribution for FLAT models failed for 50% error



 $\chi_1{}^+$  Mass Distribution for FLAT models failed for 50% error

#### <u>Aside</u>: How many models remain missing in the 'best' case as the minimum requirements of 'S=5' for all searches is weakened?



number of models failed all searches vs zncuts for 20% and 10fb<sup>-1</sup>